
Drop Tail (FIFO)

FREDCBQ ……

Class-Based
Threshold (CBT) Dynamic-CBT

Resource Reservation

RED

Active Queue Mgmt

Dynamic-CBT – Better Performing Active Queue
Management for Multimedia Networking

Mark Claypool and Jae Chung
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609
{claypool|goos}@cs.wpi.edu

Abstract
The explosive increase in Internet traffic has placed a growing
emphasis on congestion control and fairness in Internet routers.
Approaches to the problem of congestion, such as active queue
management schemes like Random Early Detection (RED) use
congestion avoidance techniques and are successful with TCP
flows. Approaches to the problem of fairness, such as Fair
Random Early Drop (FRED), punish misbehaved, non-TCP
flows. Unfortunately, these punishment mechanisms result in a
significant performance drop for multimedia flows that are well
behaved. We extend Class-Based Threshold (CBT), and propose
a new active queue management mechanism as an extension to
RED called Dynamic Class-Based Threshold (D-CBT) to improve
multimedia performance on the Internet. The performance of our
proposed mechanisms is measured, analyzed and compared with
other mechanisms (RED and CBT) in terms of throughput and
fairness through simulation using NS. The study shows that D-
CBT improves fairness among different classes of flows.

1. Introduction
The Internet has moved from a data communication network for a
few privileged professions to an essential part of public life
similar to the public telephone networks, while assuming the role
of the underlying communication network for multimedia
applications such as Internet phone, video conferencing and video
on demand (VOD). As a consequence, the volume of traffic and
the number of simultaneous active flows that an Internet router
handles has increased dramatically, placing new emphasis on
congestion control and traffic fairness. Complicating traditional
congestion control is the presence of multimedia traffic that has
strict timing constraints, specially delay constraints and variance
in delay, or jitter constraints [1,2]. This paper presents a router
queue management mechanism that addresses the problem of
congestion and fairness, and improves multimedia performance on
the Internet. Figure 1 shows some of the current and the proposed
router queue mechanisms.
There have been two major approaches suggested to handle
congestion by means other than traditional drop-tail FIFO
queuing. The first approach uses packet or link scheduling on
multiple logical or physical queues to explicitly reserve and
allocate output bandwidth to each class of traffic, where a class
can be a single flow or a group of similar flows. This is the basic
idea of various Fair Queuing (FQ) disciplines and the Class-Based
Queuing (CBQ) algorithm [3]. When coupled with admission
control, the mechanism not only suggests a solution to the
problem of congestion but also offers potential performance
guarantees for the multimedia traffic class. However, this explicit

resource reservation approach would change the “best effort”
nature of the current Internet, and the fairness definition of the
traditional Internet may no longer be preserved. Adopting this
mechanism would require a change in the network management
and billing practices. Also, the algorithmic complexity and state
requirements of scheduling make its deployment difficult [4].

Figure 1: Router Queue Mechanisms (shaded is proposed)

The second approach, called Active Queue Management, uses
advanced packet queuing disciplines other than traditional FIFO
drop-tail queuing on an outbound queue of a router to actively
handle (or avoid) congestion with the help of cooperative traffic
sources. In the Internet, TCP recognizes packet loss as an
indicator of network congestion, and its back-off algorithm
reduces transmission load when network congestion is detected
[5]. One of the earliest and well-known active queue management
mechanism is Random Early Detection (RED), which prevents
congestion through monitoring outbound buffers to detect
impending congestion, and randomly chooses and notifies senders
of network congestion so that they can reduce their transmission
rate [6]. While fairly handling congestion for TCP flows, RED
reveals the critical problem that non-TCP flows that are
unresponsive or have greedier flow-control mechanisms than TCP
can take more share of the output bandwidth than TCP flows
[4,7]. In the worst case, it is possible for non-TCP flows,
especially for unresponsive ones, to monopolize the output
bandwidth while TCP connections are forced to transmit at their
minimum rates. This unfairness occurs because non-TCP flows
reduce transmission load relatively less than TCP flows or do not
reduce at all, and the same drop rate is applied to every flow.
This unfairness could be a serious problem in a near future as the
number of multimedia flows increases. Delay sensitive Internet
multimedia applications typically use UDP rather than TCP
because they require in-time packet delivery and can tolerate some
loss, rather than the guaranteed packet delivery with potentially
large end-to-end delay that TCP produces. Also, they prefer the

periodic packet transmission characteristics of UDP rather than
the bursty packet transmission characteristics of TCP that can
introduce higher receiver side jitter. Multimedia UDP applications
either do not use any flow-control mechanism or use their own
application-level flow control mechanisms that are rate-based
rather than window based and tend to be greedier than that of
TCP taking the multimedia Quality of Service (QoS) requirements
into account.
In addressing the problem of fairness, there have been strong
arguments that unresponsive or misbehaving flows should be
penalized to protect well-behaved TCP flows1 [8]. Fair Random
Early Drop (FRED) is an active queue management approaches
that incorporate this argument [7]. FRED adds per-active-flow
accounting to RED, isolating each flow from the effect of others.
It enforces fairness in terms of output buffer space by strictly
penalizing unresponsive or misbehaving flows to have an equal
fair share while assuring packets from flows that do not consume
their fair share are transmitted without loss. FRED serves its
purpose not only in protecting TCP flows from unresponsive and
misbehaving flows but also in protecting fragile TCP connections
from robust TCP connections. However, the per-active-flow
accounting is expensive and might not scale well. FRED also has
a potential problem that its TCP favored per-flow punishment
could unnecessarily discourage flow-controlled interactive
multimedia flows. Under FRED, incoming packets for a well-
behaved TCP flow consuming more than their fair share are
randomly dropped applying RED’s drop rate. However, once a
flow, although flow controlled, is marked as a non-TCP friendly
flow, it is regarded as an unresponsive flow and all incoming
packets of the flow are dropped when it is using more than its fair
share. As a result, a flow-controlled multimedia UDP flow, which
may have a higher chance to be marked, will experience more
packet loss than a TCP flow and be forced to have less than its
fair share of bandwidth.
Jeffay et al., [4] propose a new active queue management scheme
called Class-Based Threshold (CBT), which releases UDP flows
from strict per-flow punishment while protecting TCP flows by
adding a simple class-based static bandwidth reservation
mechanism to RED. In fact, CBT implements an explicit resource
reservation feature of CBQ on a single queue that is fully or
partially managed by RED without using packet scheduling.
Instead, it uses class thresholds that determine ratios between the
number of queue elements that each class may use during
congestion. CBT defines three classes: tagged (multimedia) UDP2,
untagged (other) UDP and TCP. For each of the two UDP
classes, CBT assigns a pre-determined static threshold and
maintains a weighted-average number of enqueued packets that
belong to the class, and drops the incoming class’ packets when
the class average exceed the class threshold. By applying a
threshold test to each UDP class, CBT protects TCP flows from
unresponsive or misbehaving UDP flows, and also protects

1 A well-behaved flow (or TCP friendly) is defined as a flow that

behaves like a TCP flow with a correct congestion avoidance
implementation. A flow-controlled flow that acts different (or
greedier) than well-behaved flow is a misbehaving flow.

2 Tagged (multimedia) UDP flows can be distinguished from other
(untagged) UDP flows by setting an unused bit of the Type of
Service field in the IP header (Version 4).

multimedia UDP flows from the effect of other UDP flows. CBT
avoids congestion as well as RED, has less overhead and
improves multimedia throughput and packet drop rates compared
to FRED. However, as in the case of CBQ, the static resource
reservation mechanism of CBT could result in poor performance
for rapidly changing traffic mixes and is arguably unfair since it
changes the best effort nature of the Internet.
To eliminate the limitations due to the explicit resource
reservation of CBT while preserving its good features from class-
based isolation, we propose Dynamic-CBT (D-CBT). D-CBT
fairly allocates the bandwidth of a congested link to the traffic
classes by dynamically assigning the UDP thresholds such that the
sum of the fair share of flows in each class is assigned to the class
at any given time.
We use an event driven network simulator called NS (version 2)
[9] to evaluate D-CBT. NS implements most of common IP
network components including RED. We implement CBT in NS,
extend it to D-CBT, and compare the performance of D-CBT with
that of RED and CBT. In the evaluation, our primary focus is on
the effect of heterogeneously flow-controlled traffic on the
behavior of the queue management mechanisms especially on
fairness.
Section 2 discusses CBT and Section 3 presents D-CBT in detail.
Section 4 describes our simulation setup, Section 5 analyzes and
evaluates D-CBT and Section 6 concludes our research.

2. Class-Based Threshold (CBT)
Before describing D-CBT, we briefly discuss the design of Class-
Based Threshold (CBT) [4] which D-CBT extends. As discussed
briefly in Section 1, the main idea behind the design of CBT is to
apply class-based isolation on a single queue that is fully or
partially managed by RED without using packet scheduling.
Instead of using packet scheduling on multiple logical queues,
CBT regulates congestion-time output bandwidth for n classes of
flows using a RED queue management mechanism and a
threshold for each of the n-1 classes of flows, which is the average
number of queue units that a class may use.
CBT categorizes flows into three classes, which are TCP, tagged
(multimedia) UDP and untagged (other) UDP, and assigns a pre-
determined static threshold for each of the two UDP classes,
assuming that UDP flows are mostly unresponsive or misbehaving
and need to be regulated. When a UDP packet arrives, the
weighted-average for the appropriate class is updated and
compared against the threshold for the class to decide whether to
drop the packet before passing it to the RED algorithm. For the
TCP class, CBT does not apply a threshold test but directly passes
incoming packets to the RED test unit. This is the first design of
CBT, called “CBT with RED for all”. In the second design,
called “CBT with RED for TCP”, only TCP packets are subjected
to RED’s early drop test, and UDP packets that survive a
threshold test are directly enqueued to the outbound queue that is
managed by RED. Another difference from the first design is that
RED’s average queue size is calculated only using the number of
enqueued TCP packets. CBT with RED for TCP is based on the
assumption that tagged (multimedia) UDP flows as well as
untagged (other) UDP flows are mostly unresponsive, and it is of
no use to notify these traffic sources of congestion earlier. D-CBT
is extended from CBT with RED for all. In the rest of this paper,
CBT refers to CBT with RED for all.

RED

TCP

Untagged
UDP

Tagged
UDP

Count
Active
Flows

In

Each
Class

Update

Class
Avgs

&

RED
Avgs

Calc
Thrsh

Thrsh*

Test

Calc
Thrsh

Thrsh*

Test

c
l
a
s
s
i
f
y

Early
Drop
Test

Queue
Manager

* Threshold Test is activated when red_avg > red_min

3. Dynamic-CBT (D-CBT)
D-CBT enforces fairness among classes of flows, and gives UDP
classes better queuing resource utilization. Figure 2 shows the
design of D-CBT. The key difference from CBT is (1) the
dynamically moving fair thresholds and (2) the UDP class
threshold test that actively monitors and responds to RED
indicated congestion. To be more specific, by dynamically
assigning the UDP thresholds such that the sum of the fair average
queue resource share of flows in each class3 is assigned to the
class at any given time, D-CBT fairly allocates the bandwidth of a
congested link to the traffic classes. Also, the threshold test units,
which are activated when RED declares impending congestion
(i.e. red_avg > red_min), coupled with the fair class thresholds,
allow the UDP classes to use the available queue resources more
effectively than in CBT, in which each UDP class uses the queue
elements an average of no more than its fixed threshold at any
time. Looking at it from a different view, D-CBT can be thought
of a Class-Based FRED-like mechanism that does per-class-
accounting on the three classes of flows.

Figure 2: Design of Dynamic-CBT (D-CBT)

As in CBT, D-CBT categorizes flows into TCP, tagged UDP and
untagged UDP classes. However, unlike the class categorization
of CBT in which flow-controlled multimedia flows are not
distinguished from unresponsive multimedia flows (all tagged),
D-CBT classifies UDP flows into flow-controlled multimedia
(tagged) UDP and other (untagged) UDP. The objective behind
this classification is to protect flow-controlled multimedia flows
from unresponsive multimedia flows, and encourage multimedia
applications to use congestion avoidance mechanisms, which may
be different than those of TCP. We believe that there are
advantages in categorizing UDP traffic in this way for the
following reasons: First, multimedia applications are the primary
flows that use high bandwidth UDP. Second, by categorizing
flows by their congestion responsiveness characteristic (i.e. TCP
friendly, flow-controlled but misbehaving multimedia and
unresponsive flows), different management can be applied to the
classes of differently flow-controlled flows.
In fact, in determining the fair UDP thresholds, D-CBT calculates
the fair average output buffer share of the tagged UDP class from
the average queue length that is maintained by RED, and that of
untagged UDP class from the RED’s minimum threshold (plus a
small allowance). This is based on the assumption that tagged
flows (or flow-controlled multimedia) can respond to network

3 Fair class shares are calculated based on the ratio between the

number of active flows in each class.

congestion and will actively try to lower the average length of a
congested queue on notification of congestion. Therefore, they
are allowed to use the impending congestion state queue buffers
(i.e. red_avg – red_min when red_avg > red_min) up to their fair
share of the average. However, unresponsive (untagged) flows,
which have no ability to respond to network congestion, are not
allowed to use the impending state queue buffers at impending
congestion. Actually, we allow the unresponsive UDP class to
use a small fraction of the impending state queue buffers, which is
10% of (red_max – red_min) * untagged_UDP_share when the
maximum early drop rate is 0.1, to compensate for the effect of
needless additional early drops for the class.
In the design of D-CBT, the existence of the active flow counting
unit is a big structural difference from CBT. In order to calculate
a fair threshold (or average queue resource share) for each class,
D-CBT needs class state information, and therefore keeps track of
the number of active flows in each class. Generally, as in FRED,
active flows are defined as ones whose packets are in the
outbound queue [7]. However, we took slightly different approach
in detecting active flows, in that an active flow is one whose
packet has entered the outbound queue unit during a certain
predefined interval since the last time checked. In D-CBT, an
active flow counting unit that comes right after the classifier
maintains a sorted linked list, which contains a flow descriptor
and its last packet reception time, and a flow counter for each
class. Currently, the flow descriptor consists of a destination IP
address and the flow ID (IPv6). However, assuming IPv4, this
could be replaced by source and destination address, although this
would redefine a flow as per source-destination pair.
For an incoming packet after the classification, the counting unit
updates an appropriate data structure by inserting or updating the
flow information and the current local time. When inserting new
flow information, the flow counter of the class is also increased by
one. The counting unit, at a given interval (set to 300ms in our
implementation), traverses each class’ linked list, deletes the old
flow information and decreases the flow counter. The objective
behind this probabilistic active flow counting approach is
twofold: First, D-CBT does not necessarily require an exact count
of active flows as do other queue mechanisms that are based on
flow-based-accounting, although a more exact count is better for
exercising fairness among flow classes. Second, it might be
possible to improve the mechanism’s packet processing delay by
localizing the counting unit with the help of router’s operating
system and/or device. For example, the traversing delete is a
garbage collection-like operation that could be performed during
the router’s idle time or possibly processed by a dedicated
processor in a multiprocessor environment. In our
implementation, we used a sorted linked list data structure that has
the inserting and updating complexity of O(n), and the traversing
complexity of O(n), where n is the number of flows of a class.
Assuming that a simple hash table is used instead, the complexity
of inserting and updating operation drops to O(1), while the
complexity of the traverse delete will remain O(n).
When an incoming packet is updated or inserted according to its
flow identification to its class data structure at the counting unit,
D-CBT updates the RED queue average, the tagged UDP average
and the untagged UDP average, and passes the packet to an
appropriate test unit as shown in Figure 2. Note that for every
incoming packet all of the averages are updated using the same
weight. This is to apply the same updating ratio to the weighted-

averages, so that a snapshot in time at any state gives the correct
average usage ratio among the classes. Using the three averages
and the active flow count for each class, the UDP threshold test
units calculate the fair thresholds for the tagged and untagged
UDP classes, and apply the threshold test to incoming packets of
the class when the RED queue indicates impending congestion.
UDP packets that survive an appropriate threshold test are passed
to the RED unit along with the TCP flows as in CBT.
Thus, D-CBT is designed to provide traditional fairness between
flows of different characteristics by classifying and applying
different enqueue policies to them, and restrict each UDP class to
use the queue buffer space up to their share in average. We
hypothesize that the advantages of D-CBT are the following:
First, D-CBT avoids congestion as well as RED with the help of
responsive traffic sources. Second, assuming that the flows in a
class (especially the tagged UDP) use flow control mechanisms of
which the congestion responsiveness characteristics are almost the
same, D-CBT will fairly assign bandwidth to each flow with much
less overhead than FRED, which requires per-flow state
information. Even if the tagged flows do not use their fair share,
D-CBT will still successfully assign bandwidth fairly to each class
of flows, protecting TCP from the effect of misbehaving and
unresponsive flows and also protecting the misbehaving (flow-
controlled multimedia) flows from the effect of unresponsive
flows. Lastly, D-CBT gives tagged (flow-controlled multimedia)
flows a better chance to fairly consume the output bandwidth than
under FRED by performing per-class punishments instead of the
strict per-flow punishment.

4. Simulation
We ran a simulation for each of RED, CBT and D-CBT. Every
simulation had the exactly same settings except for the network
routers, each of which was set to use one of the above three
outbound queue management mechanisms. The network topology
and the traffic source schedules are shown in Figure 3.

Figure 3: Simulation Scenario and Network Setup

For traffic sources, 55 FTP, 10 flow-controlled multimedia traffic
generator called MM_APP [10] (tagged) and 2 CBR (untagged)
traffic generators were used, where FTP used TCP Reno and the
others used UDP as the underlying transport agent. The network
packet size was set to 1Kbyte. The MM_APP traffic generators,
which react to congestion using 5 discrete media scales with a
“cut scale by half at frame loss, up scale by one at RTT” flow
control mechanism, used 300, 500, 700, 900 and 1,100Kbps for

scale 0 to 4 transmission rates, with a fixed frame size of 1Kbyte.
The CBR sources were set to generate 1Kbyte packets at a rate of
5Mbps.
Network routers were assigned a 60-packet long physical
outbound queue. The RED parameters, which are shown in Figure
3, were chosen from one of the sets that are recommended by
Floyd and Jacobson [11]. For CBT, beside the RED parameters,
the tagged and untagged class thresholds (denoted as mmu_th and
udp_th in the figure) were set to 2.9 packets and 0.6 packets to
force each UDP to get about their fair bandwidth shares during 0
to 20 seconds. D-CBT also shares the RED settings, however,
since each threshold is assigned dynamically to the fair share of
each class, no threshold setup was necessary.

5. Result and Analysis
We measured the performance of RED, CBT and D-CBT in terms
of fairness. In this section, we compare the average per-flow
throughput in each class, which is an average aggregated class
throughput divided by the number of flows in the class, to
visualize how fairly the output bandwidth is assigned to each class
considering the number of flows in the class. Figure 4 (a) through
(c) compares the periodic (i.e., 0-10, 10-20 and 20-30 seconds)
average per-flow throughput for each class under the three queue
mechanisms.

As shown
bandwidth f
two high ba
join transmi
bandwidth.
(flow-contro
bandwidth,
average of 3
able to man
UDP blast
manage ban
bandwidth t
the remainin
25 TCP flow
of 293Kbps

s1

n1

s2

s66

s67

n2

r2

r2

r66

r67

25M bps, 20m s

25M bps, 5m s25M bps, 5m s

0 10 20 30

25 FTP-TCP

30 FTP-TCP

2 C BR-UDP
(5M bps each)

10 M M-UDP

(Second)

 n1-n2: q_size = 60

 RED: max_th = 15
 min_th = 5
 qweight = 0.002
 max_prb = 0.1

 CBT: mmu_th = 2.9
 udp_th = 0.6

RED: Class Average Per-Flow Throughput

537
293 161

851 720 601

4681 4503

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

D-CBT: Cla

622 653

0

100

200

300

400
500

600

700

800

900
1000

0 ~ 10 Sec

Kb
ps

CBT: Class Average Per-Flow Throughput

587 613

305

760 739
657624

318

0

100

200
300

400
500

600

700
800

900
1000

0 ~ 10 Sec 10 ~ 20 Sec 20 ~ 30 Sec

Kb
ps

TCP
TAG_UDP
UTAG_UDP

D T
(a) RE
in Figure 4 (a), RED absolute
airly to each class of flows from 1
ndwidth untagged UDP flows (
tting at the total of 10Mbps, abo
 During 0-10 seconds, when 25
lled MM_APP) flows are c
it was somewhat unfair as a ta
7% more bandwidth than a TCP
age the bandwidth. However,
came into the system, RED wa
dwidth. The 2 untagged UDP flo
hey needed (average of 4.68Mbps
g flows used the leftover bandwi
s got severely punished and trans

 per flow as they often went bac

ss Average Per-Flow Throughput

659

356

660

378

637

313

10 ~ 20 Sec 20 ~ 30 Sec

TCP
TAG_UDP
UTAG_UDP

T

Figure 4:
Throughp
UDP and
Classes u
D-CBT
(b) CB
 Average Per-Flow
ut for TCP, Tagged
 Untagged UDP
nder RED, CBT and
(c) D-CB
ly failed to assign
0 seconds when the
unresponsive CBR)
ut 40% of the link

TCP and 10 tagged
ompeting for the
gged flow gets an
flow, but RED was
when the untagged
s totally unable to
ws got most of the

 out of 5Mbps), and
dth. Especially, the
mitted at an average
k to slow start and

even got timed out. Fairness got worse as 30 more TCP flows
joined at 20 seconds, and experienced starvation.
Figure 4 (b) shows that CBT can avoid the great unfairness of
RED using fixed thresholds for the UDP classes. CBT that uses a
fixed threshold on UDP classes was able to avoid extreme
unfairness. However, during the analysis, we found that CBT,
which updates each class average and the RED average
independently, suffers from unsynchronized weighted-average
updates. That is, the ratio between independently updated UDP
class averages and RED average does not correctly indicate the
actual class bandwidth utilization ratio, since whichever flows
updates the average more frequently will have higher weighted-
average than the others will, although they all use the same
amount of bandwidth. This is because as the average is updated
more frequently, not only is a newly enqueued packet added to the
average with a predetermined weight, but also the existence of the
other already enqueued packet are added to the average.
Figure 4 (c) shows the D-CBT results, which indicates that D-
CBT fairly manages bandwidth during all periods by dynamically
allocating the right amount of output queue space to each flow
class. It also shows that by updating each class and RED average
at the same time in a synchronized manner, the ratio between the
averages is a good indicator of the ratios between each class’
bandwidth utilization. One thing to note in the figure is that
although we strictly regulate the untagged class by assigning a fair
threshold calculated from RED’s minimum threshold, the
untagged class did get most of its share. This is because the high
bandwidth untagged (unresponsive) packets were allowed to enter
the queue without a threshold test, when RED indicated no
congestion.

6. Conclusion
In this paper, we have presented the design and evaluation of our
proposed router queue mechanisms, Dynamic Class-Based
Threshold (D-CBT), by comparing their performance with that of
RED and CBT. D-CBT is a new active queue management
mechanism that addresses the problem of fairness by grouping
flows into TCP, tagged (flow-controlled multimedia) UDP and
untagged (other) UDP classes and regulating the average queue
usage of the UDP classes to their fair shares.
As expected, RED, that has shown to be fair among TCP flows,
showed an extreme unfairness with mixed traffic. CBT that uses a
fixed threshold on UDP classes was able to avoid extreme
unfairness. However, during the analysis, we found that CBT
suffers from “unsynchronized weighted-average updates”. D-CBT
fixes CBT’s problem by synchronizing all the average updates,
and better manages bandwidth by dynamically determining the
UDP thresholds to cooperate with RED by fairly assigning the
output bandwidth to each class for all traffic mixes. That is,
through the class-based accounting, D-CBT fairly protects TCP
from the effect of UDP flows and also fairly protects tagged UDP
flows from untagged flows.
There exist many possible areas for future work and still remain
many performance aspects to be evaluated. A study that we could

not do due to the lack of time but suggest as a future work is to
compare the performance of the D-CBT with that of FRED. We
expect that D-CBT could give better throughput performance for
tagged UDP flows than FRED, since it frees flow-controlled
multimedia flows from the strict per-flow punishment.

7. References
[1] Multimedia Communications Forum, Inc. “Multimedia

Communications Quality of Service”, MMCF/95-010,
Approved Rev 1.0, 1995, URL:
http://www.luxcom.com/library/2000/mm_qos/qos.htm

[2] Claypool, M. and Tanner, J., “The Effects of Jitter on
the Perceptual Quality of Video”, ACM Multimedia
Conference, Volume 2, Orlando, FL, October 30 -
November 5, 1999

[3] Floyd, S. and Jacobson, V., “Link-sharing and
Resource management Models for Packet Networks”,
IEEE/ACM Transactions on Networking, Vol. 3 No. 4,
August 1995

[4] Parris, M., Jeffay, K. and Smith, F. D., “Lightweight
Active Router-Queue Management for Multimedia
Networking”, Multimedia Computing and Networking,
SPIE Proceedings Series, Vol. 3020, San Jose, CA,
January 1999

[5] Floyd, S., “TCP and Explicit Congestion Notification”,
Computer Communication Review, October 1994

[6] Floyd, S. and Jacobson, V., “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, August 1993

[7] Lin, D. and Morris R., “Dynamics of Random Early
Detection”, In Proceedings of SIGCOMM ’97, Cannes,
France, September 1997

[8] Floyd, S. and Fall, K., “Promoting the Use of End-to-
End Congestion Control in the Internet”, IEEE/ACM
Transactions on Networking, February 1998

[9] VINT, “Virtual InterNetwork Testbed, A Collaboration
among USC/ISI, Xerox PARC, LBNL, and UCB”,
URL: http://netweb.usc.edu/vint

[10]Chung, J. and Claypool, M., “Better-Behaved, Better-
Performing Multimedia Networking”, SCS Euromedia
Conference, Antwerp, Belgium, May 8-10, 2000

[11]Raghavendra, A. M. and Kinicki, R. E., “A Simulation
Performance Study of TCP Vegas and Random Early
Detection”, IEEE International Performance,
Computing, and Communications Conference 1999
(IPCCC99), February 1999

	Introduction
	Class-Based Threshold (CBT)
	Dynamic-CBT (D-CBT)
	Simulation
	Result and Analysis
	Conclusion
	References

