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Abstract

A Data Warehouse Management System (DWMS) maintains materialized views derived from one or more
data sources under source changes. Given the dynamic nature of modern distributed environments, both source
data and schema changes are likely to occur autonomously and even concurrently. Data warehouse maintenance
strategies proposed in the recent literature typically issue maintenance queries to the data sources and then apply
compensating queries to correct any errors in the delta refreshs. However, these existing solutions are limited to
handling pure data updates only, making the restricting assumptions that (1) the schemata of all sources remain
stable over time, and (2) maintenance queries are never broken by source schema changes.

In this paper, we introduce a formal framework that successfully lifts these restrictions. In particular, we
characterize two classes of dependencies between concurrent update messages not currently handled in the litera-
ture. We then propose a two-pronged solution strategy tackling these dependencies: one, a dependency detection
strategy based on dependency safety analysis, and two, a conflict resolution strategy based on reordering and
merging affected updates. The DWMS now refreshs the data warehouse correctly in situations not handled by
previous DWMS solutions. This proposed solution has been successfully implemented in our Dynamic Data
Warehousing system, called DyDa, the first system that can correctly maintain a data warehouse view under
all classes of concurrency. The experimental results show that our new concurrency handling strategy can be
plugged into any data warehouse system, imposing an almost negligible overhead on existing data updates main-
tenance solutions to allow for this extended functionality.
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1 Introduction

1.1 Introduction to Data Warehouse Environment

Data warehouses (DW) [GM95, MD96] are built by gathering information from data sources and
integrating it into one virtual repository customized to users’ needs. One important task of a Data
Warehouse Management System (DWMS) is to maintain the DW upon changes of the data sources,
since for most data sources, frequent data updates are common, for example in stock price marketing
or telephone call recording. In addition, the requirements of a data source are likely to change during
its life-cycle, which may force schema changes for the data source. A schema change could occur for
numerous other reasons, including design errors, schema redesign during the early stages of database
deployment, the addition of new functionalities and even new developments in the modeled application
domain, such as new tax laws or Y2K problems. Even in fairly standard business applications, rapid
schema changes have been observed. In [Mar93], significant changes (about 59% of attributes on the
average) were reported for seven different applications over relational databases. A similar report
can also be found in [Sjo93]. These applications ranged from project tracking, accounting and sales
management, to government administration. In the field of information integration, data sources also
have been found to be extremely volatile to the extent that some of them may be temporarily or even
permanently unavailable [IFF*99].

Data sources are typically owned by different providers and hence function independently from one
another. In a fully concurrent environment, the relationship between the DWMS and the data sources
is loosely-coupled [ZGMHW95]. That is, source updates are committed without any concern of how
the DWMS will incorporate them. This causes new problems for DW maintenance. When processing
a source update, the DWMS may need to query the data sources for more information by issuing so
called maintenance queries [ZGMHW95]. Given a concurrent source update, the maintenance queries
may either return erroneous query results or even fail completely. These problems, which we call the
DW maintenance anomaly problems, are illustrated via a motivating example in Section 1.2.

While recent work [ZGMHW95, AASY97, SBCLO00] has proposed compensation-based solutions to
remove the concurrent data updates’ effect from the query results, we demonstrate that these existing
solutions will fail under source schema changes. The reason of this new anomaly problem is that neither
maintenance queries nor compensation queries may be able to get any query response from data sources
due to the discrepancy of the schema of the data source with the schemata required by these queries.
With the interleaving of concurrent source data and schema changes from distributed data sources,

maintenance becomes even more complicated. This is the problem we now address in this work.



1.2 The Maintenance Anomaly Problem

In a fully concurrent environment, the relationship between the DWMS and the data sources is loosely-
coupled. That is all source updates are committed without any concern of how the DWMS may or may
not incorporate them. Thus new problems arise for DW maintenance. Intuitively, the problem is how
to refresh the DW while the DWMS no longer knows the current state of the underlying sources. When
processing a source update, the DWMS may need to query the data sources for more information by
issuing so called maintenance queries [ZGMHWY95]. They then assume that the data sources are in the
state that the update was just committed in. This is however not necessarily true because the data
sources could continue to change both their data and schema autonomously. Thus the maintenance
queries that the DWMS generates for that data source may either return erroneous query results
[ZGMHW95] (if the related data has meanwhile been changed by a source data update) or even fail
completely (if the schema of the data source referred in the query has meanwhile been modified by a
source schema change). These problems, which we call the DW maintenance anomaly problems, are
illustrated via a motivating example in Section 2.

While recent work in the literature [ZGMHW95, AASY97, SBCL00, ZRDO01] has proposed compensation-
based solutions to remove the concurrent data updates’ effect from the query results, we demonstrate
in this paper that these existing solutions will fail under source schema changes (see the example in
Section 2). The reason of this new anomaly problem is that neither maintenance queries nor com-
pensation queries may be able to get any query response from data sources due to the discrepancy of
schema of the data source with the schemata types required by these queries. With the interleaving
of concurrent source data updates and schema changes over distributed data sources, things become

even more complicated. This is exactly the problem we now successfully tackle in this work.

1.3 Our Contributions

In this paper, we now propose a solution, called Dyno, capable of dealing with all types of concurrency
conflicts under both source data and schema changes. Dyno enables all data sources to operate au-
tonomously for all update types. To the best of our knowledge, this is the first complete solution to

all identified DW concurrency problems. In summary, the contributions are:

(1) We identify that the maintenance anomaly problem is caused by the violation of dependencies

between source updates. We formally characterize and classify these dependencies.

(2) We propose a suite of methods for the detection of different classes of dependency problems
during DW maintenance and develop a dependency correction algorithm to eliminate anomalies

once identified.



(3) We design a new view adaptation algorithm for processing an executable plan generated by the
Dyno algorithm that now may contain batches of mixed data updates and schema changes, which

cannot be handled by previous VM, VS or VA algorithms.

(4) We have implemented the Dyno solution in our DyDa data warehousing system demonstrated at
SIGMOD’2001 [CZC*01]. Our experimental results confirm that Dyno imposes an almost negligi-
ble overhead on data update processing while now offering comprehensive support for concurrency

handling.

1.4 Outline of Paper

In the next section we give a motivating example of the maintenance anomaly problem. Section 3
introduces a general data warehouse architecture. Section 4 provides a formal characterization of
the concepts of dependency. Section 5 discusses the correctness criterion for dependency violation
correction. Section 6 proposes a complete solution to the problem in the form of the Dyno algorithm.
It also proves the termination and correctness of this approach. Section 7 discusses the experimental

results. Section 8 reviews related work, while Section 9 concludes the paper.

2 The Maintenance Anomaly Problem

We distinguish between three DW maintenance tasks, namely, View Maintenance (VM), View Synchro-
nization (VS) and View Adaptation (VA) as explained below. VM [ZGMHW95, AASY97, SBCLOO]
maintains the DW view extent under source data updates. In contrast to VM, VS [LNRO1, NLRYS]
aims at rewriting the DW view definition when the schema of a source has been changed. To handle
the delete of any schema information of a data source, VS tries to locate an alternative source for re-
placement to keep the view available. Thereafter, View Adaptation (VA) [NR99] incrementally adapts
the view extent to again match the newly changed view definition.

For a single (non-concurrent) data update (DU) or a single schema change (SC), the processing
steps of the DWMS have been well defined in the literature. For a single DU, the DWMS uses one
of the many VM algorithms [ZGMHW95, AASY97, SBCLO00] proposed in the literature to refresh the
data warehouse. For a single SC, DWMS first engages the VS to rewrite the affected view definition(s)
and then the VA to incrementally repopulate the extent of the modified view(s) [LNRO1].

If there is no concurrency, namely, the data warehouse maintenance completes before the next
source update occurs, then the VM incorporates each source data update (DU) while VS and VA
together incorporate the source schema change (SC) into the data warehouse. However, as we have
mentioned, the data sources are autonomous and may undergo changes at any time. Thus during

the data warehouse maintenance of one update message, other source updates may occur causing the



maintenance anomaly problem as illustrated by the example below.

Example 1 Assume we have four data sources with one relation each as shown in Figure 1.

DS 1: Customer(Name, Address, Phone): Customer Info.

DS 2: Tour(TourID, TourName, Age, Type, NoDays): Tour. Info.

DS 3: Participant(Participant, TourID, StartDate, Loc): Participant. Info.
DS 4: FlightRes(Name, Age, FlightNo, Dest): Reservation. Info.

Figure 1: Description of Data Sources.

The view Asia-Customer of the data warehouse is defined by the SQL query in Equation (1). Assume
the data update “insert AF = (‘Ben’,"MA’,123}56) into the Customer relation”. In order to determine
the delta effect on the DW extent, this now requires us to send the incremental view maintenance

query @ [ZGMHW95] defined in Equation (2) down to the FlightRes relation.
CREATE VIEW  Asia — Customer AS

SELECT C.Name, F.Age,
F.FlightNo, F.Dest , , .
FROM Customer C, FlightRes F SELECT 'Ben’ as Name, F.Age, F.Flight No, F.Dest
) -
WHERE C.Name = F.Name FROM FlightRes F, , (2)
AND F.Dest = 'Asia' WHERE F.Name = 'Ben

1) AND F.Dest = 'Asia’

Let us now distinguish between two different scenarios that may arise:

e Duplication Anomaly: If during the transfer time of the query @ to the relation FlightRes in the
DS}, FlightRes has already committed a new data update AF = insert (‘Ben’, 18,°AA8/567,‘Asia’).
This new tuple would also be included in the join result of Q and a tuple (‘Ben’, 18, ‘AA83456’,‘Asia’)
would be inserted into the view. However, later when the DW starts processing AF = insert(‘Ben’,
18,‘AA3456°,‘Asia’), the same tuple would be inserted into the view again. A duplication
anomaly appears, as has also been observed by [ZGMHW95].

e Broken Query Anomaly: If during the transfer time of the query Q) to DS/, the FlightRes relation
in DS4 has a schema change, e.q., the attribute FlightRes.Age is dropped, then the query @ faces
a schema conflict. In this case, the selected attribute Age is not available. Thus the query Q
cannot be processed by DS/ due to the inconsistency between the schemata specified in the query
(“F.Age”) and the schema of the underlying source (no such attribute). We then say that the
query @ is broken.

An intuition of the broken query problem is that the old view definition is no longer consistent
with the underlying sources. To solve the problem, we have to rewrite the view definition immediately
so as to make future maintenance work applicable.

The timeline of either of those two scenarios is shown in Figure 2. We can see that when the DWMS

wants to incorporate a source data update, it may send maintenance queries down to a data source. If



at the time before answering the maintenance queries, another SC has already been committed at this

data source, these queries will not succeed due to the changed source schema.

ow VM : VSand VA
DS2 %‘I ..“':"-._ A
DS1 :

Time

®294 Update at Data Source (DS)

—> Source update reported to DW

eZz7z7Z DW refresh period

3w Queriesissued by DW to DS

===> Unexpected query result or query is broken

Figure 2: Interleaved Processing in DWMS

From the example above, we know that the concurrency is caused by the autonomy of sources that
commit updates that may conflict with the DW maintenance process. A concurrent DU may result
in an incorrect query result returned by a maintenance query while a concurrent SC may result
in a broken query that cannot be processed by the respective data source, i.e., an error message is

returned.

3 The Data Warehouse Framework

To set the context of our solution, we first introduce the general data warehouse management framework

as depicted in Figure 3.

o

DWMS Space
VS VA VM
Update M essage Queue (UM Q) ‘ Dyno ‘ ‘ Query Engine ‘
Remote Source Space

Cwrape | [ ] [ |

Figure 3: The DataWarehouse Architecture



As typically assumed in the literature [ZGMHW95, AASY97], the framework is divided into three
spaces. The DW space houses the extent of the data warehouse. It receives view delta data from the
middle space to update the DW. The remote source space is composed of remote data sources and their
corresponding wrappers. We assume that every update at a data source is reported to the DWMS
once committed.

The DWMS space maintains the DW under source updates. It consists of the general DW manage-
ment algorithms, such as VS [LNRO1], VA [GMR95, NR99] and VM [ZGMHW95, AASY97, SBCLO0O]
for maintenance of different type of source updates, namely, data updates and schema changes. The
Update Message Queue (UMQ) collects the updates from the data sources. The Query Engine is
responsible for query processing, that is, decomposing the view queries to individual source queries,
sending down these queries to data sources and then collecting and assembling query results.

Most DWMS solutions maintain the updates simply based on their arrival order which might intro-
duce concurrency problems as described in Section 2. In this paper, we instead propose a new strategy,
called Dyno (DYNamic reOrdering) to detect concurrent updates and correct them by adjusting their
processing order. Dyno is a general strategy, in particular, a dynamic scheduler for concurrency han-
dling in DW maintenance. Hence as shown in Figure 3, we propose to plug Dyno into this framework

to coordinate with various other components to handle the maintenance concurrency problems.

4 Classes of Dependency Relationships

The motivating problem in Section 2 illustrates that the known view maintenance solutions are not
applicable when the view definition is not consistent with the underlying sources. We discover that
the reason for this are the dependencies between source updates. In this section, we first formalize
these dependencies and then define the view maintenance anomaly problem based on the concept of

dependency.

4.1 Concurrency Dependency

There are two kinds of dependencies between source updates received by a DWMS: concurrency depen-
dencies and semantic dependencies. Example 1 illustrates that concurrency dependencies are caused
by the asynchronicity between the update processes at the data sources and the DW refresh processes

at the DWMS. Below, we first describe an assumption and define some notations.

Assumption 1 Network communication between an individual data source and the DWMS is FIFO

[ZGMHW95, AASY97].

Assumption 1 guarantees that whenever an erroneous query result is returned to the DWMS from

a data source, the update at that source that caused the problem has already prior arrived in the



DWMS. This way we can find the conflicting concurrent updates.

Definition 1 We then define the following notations:

(1) Given two update messages ml1 and m2 in the UMQ. If m1 precedes m2 in the UMQ, then we
denote this by “pos(m1, UMQ) < pos(m2, UMQ)”.
(2) DU(n)[i] and SC(n)[i] denote a data update or a schema change, respectively, committed on data

source with index ‘i’ and with a global unique

at the DWMS.

n” indicating the time this update message arrives

(8) @ denotes the maintenance query generated by the VM (or VA) algorithm if the update is a DU
(or an SC). We use DU(m)[i].Q[k] to denote one maintenance query issued to a data source with
index ‘k’ when processing the DU(m)[i], and use SC(m)[i].Q[k] to denote one maintenance query
issued to data source ‘k’ when processing the SC(m)[i].

(4) QR denotes the query results returned by data sources. In particular, we use DU(m)[i]. QR (n)[k] or
SC(m)[i].QR(n)[k] to denote the result of the query DU(m)[i].Q[k] or SC(m)[i].Q[k]. “n” denotes

the time when this query result message arrives at the DWMS.

Intuitively, the reason for the DW maintenance anomaly problem is that the DW maintenance
query is affected by a concurrent source update. We now formalize this notion of being affected by a

concurrent update.

Definition 2 Let X(n)[j] and Y(m)[i] denote DUs and/or SCs committed on data source ‘4’ and data
source (i) respectively. We say that Y(m)[i] is concurrent dependent (CD) on X(n)[j], denoted by:
o cd :
Y(m)fi] <= X(n)[j]
iff:
1. X(n)[j] and Y(m)[i].Q[j] both refer to a common relation on data source (j), and

2. there is at least one query result Y(m)[i]. QR(k)[j] such that n < k. The later means that X(n)[j]
is received by the DWMS before the maintenance query result Y(m)[i].QR(k)[j].

For example, in the broken query anomaly case of Example 1, the maintenance query of the data
update is broken and the result arrives at the DWMS after the drop operation. Hence the data update
is concurrent dependent on the drop operation.

There are four kinds of Concurrent Dependencies:

1) DU(1 ) &h DU(2): The process of DU(1) is concurrent dependent on the process of DU(2);
3) DU <4 SC The process of DU is concurrent dependent on the process of SC;

(1) D
(2) SC <4 DU: The process of SC is concurrent dependent on the process of DU;
(3)
(4) S

C(1) & SC( ): The process of SC(1) is concurrent dependent on the process of SC(2).



The two cases of Example 1 are of concurrency dependency types “DULDU” and “DU&SC”,
respectively.

Note that concurrent DUs (namely the concurrency dependency cases (1) and (2) modify the sources’
content and thus may invalidate the results returned by the maintenance queries. Concurrent SCs
(concurrency dependency cases (3) and (4) modify the underlying sources’ schema which may break
the maintenance queries.

We propose to apply the compensation algorithm [AASY97] to correct any errors from the main-
tenance query result in the Query Engine module, hence solving the dependency types (1) and (2).
We omit the discussions of this algorithm here. For details please refer to [AASY97]. In the remain-
der of this paper, we focus on solving the latter two concurrency dependency problems triggered by
the schema changes, namely, DULSC and SC«%SC. Hence from now onwards, when we refer to

concurrent dependencies, we mean the dependencies of type (3) and (4).

4.2 Semantic Dependency

A semantic dependency concerns the semantic requirement of the processing order of the updates
from the same resources. Let’s take for example the view defined in Equation (1). Assume there are
two SCs: SC(1) and SC(2). SC(1) renames the relation FlightRes to FlightReservation and then SC(2)
renames the relation FlightReservation to FR. Obviously, if we reverse the processing order, we cannot
proceed. The processing of SC(2) is dependent on the processing of SC(1). It’s apparent that we must
process the update messages in the order they are received, and not in any other order.

We assume we preserve the processing order of updates from shared resources such as the same
relation, attribute or tuples. We adopt the same relation here for simplicity. We now formally define

this type of semantic dependency (SD).

Definition 3 Let X(n)[i] and Y(m)[i] denote either DUs or SCs on the same data sourse (i), then
X(n)[i] is semantic dependent (SD) on Y(m)[i], denoted by:
X(n)fi] € Y(m)fi]
iff:
1. m < n, and

2. X(n)[i] and Y(m)[i] both refer to a shared resource on data source (i), such as the same relation.

4.3 Dependency Properties

The two types of dependencies share an important property: both represent constraints on the pro-

cessing order between updates. Hence we now abstract them in a common manner.



Definition 4 For two updates m1, m2 in UMQ, we say m1 is dependent on m2, denoted by mi<—m?2,
if either m1 is concurrent dependent on m2 by Definition 2, or m1 is semantic dependent on m2 by

Definition 3.

Lemma 1 For two updates m1 and m2, if ml1 is dependent on m2 by Definition 4, then m2 must be

processed by the DWMS before m1.

For a semantic dependency, the required order given above is obvious as discussed in Section 4.2. For
a concurrent dependency, since the source schema is changed, the old view definition is out of date and
has to be rewritten to be consistent with the new schema of the underlying sources immediately. For
example, in the second case of Example 1, the drop attribute has to be processed first to rewrite the
view definition (the rewritten view is presented in Section 4.4), otherwise the processing of the insert

utilizing the old view definition would not succeed.

Definition 5 For two update messages m1 and m2, we define the directed dependency relationship

between m1 and m2 to be:
1. independent iff there is no dependency between m1 and m2 by Definition 4.

2. safe dependent iff pos(ml1, UMQ) < pos(m2, UMQ) and all dependencies between m1 and m2
by Definition 4 are m2«—ml.

3. unsafe dependent iff pos(m1l, UMQ) < pos(m2, UMQ) and there is at least one dependency
m1<—m?2 in the UMQ.

The concurrent dependency of the second case in Example 1 is DU<4 sC. However, since pos(DU,
UMQ) < pos(SC, UMQ), this dependency is unsafe by Definition 5.

We now are ready to characterize the DW broken query problem.

Theorem 1 The broken query problem corresponds to the existence of some unsafe concurrency de-

pendency between updates.

This is because, the broken query problem occurs when a source schema change affects the main-
tenance process of a previous source update. Thus there must be a concurrent dependency between
these two updates that is unsafe by Definition 5.

By Theorem 1, to resolve the DW anomaly problem is thus to find a processing sequence of updates

to make all dependencies safe by Definition 5.

4.4 Cyclic Dependencies

A set of dependencies may comprise a cycle as now illustrated by an example. Given the data

source relations from Example 1, assume an SC; (drop relation Customer) and SC5 (drop attribute



FlightRes.Age). Based on the view synchronization (VS) algorithm in [LNRO1], the data warehouse
may rewrite its view definition for each schema change as shown in Equations (3) and (4), respectively.
The basic idea of this rewriting is that if a relation is dropped, we try to locate an alternative rela-
tion for replacement. If an attribute is dropped, we try to locate an attribute from another relation
for replacement along with an appropriate join. In our example, this is join condition “F.Name =

T.TourName” shown in Equation (4).

CREATE VIEW  Asia — Customer’ AS CREATE VIEW  Asia — Customer’ AS
SELECT P.Participant, F.Age, SELECT C.Name, T.Age,
F.FlightNo, F.Dest F.FlightNo, F.Dest
FROM Partipant P, FlightRes F FROM Customer C, FlightRes F, Tour T  (4)
WHERE P.Participant = F.Name WHERE C.Name = F.Name AND
AND F.Dest = 'Asia’ F.Dest = 'Asia’ AND
(3) F.Name = T.TourName

Assume both SC; and SC5 have been committed. If we process SC, first, the view is rewritten
into Equation (3) by replacing the Customer by the relation Participant. However, we are unable to
adapt the view extent, because the F.Age attribute is no longer available. Similarly, if we process SCy
first, the view is rewritten to Equation (4) by including the Tour relation and a corresponding join .
Again, we are unable to proceed because the Customer has been dropped.

We thus notice that these two updates are dependent on each other, i.e., the dependency orders as

defined in Definition 4 between them comprise a cycle. We give a formal definition now.

Definition 6 For n update messages mfi1], mfia], ..., mfin], we say the dependencies among these

update messages comprise a dependency cycle if they satisfy the following:

1. for 1 <k<n: mfigJ<—mfig+1] if pos(mfi], UMQ) < pos(mfixi1], UMQ).
2. and mfiy[<mfi1].

Intuitively, such a “cycle” of dependency edges in a dependency graph may result in a deadlock in
the sense that we have maintenance processes waiting for each other. Dependencies forming such a cycle
may be all concurrency dependencies, or may be a mixture of semantic and concurrent dependencies.
They can never be all just semantic dependencies. This is because the semantic dependency directly
relates to the sequence in which updates were committed by a data source and such a commit sequence

does never comprise a cycle.

5 Correctness Criterion for Update Message Processing

We now introduce a correctness criterion for DW maintenance processing. We start with a correctness

definition assuming a fixed set of updates. In the next section, we will show how to adjust this to also

!The rewriting strategies, i.e., the view synchronization (VS) solutions are described in [LNR01, NLR9S].
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take the newly incoming updates into consideration.

From the DWMS’s point of view, we call the arrival order of source updates the receiving order.
First, for one specific data source, by the Assumption 1, its updates arrive at the DWMS in a strict
sequential order, namely, in the order in which they were committed at that data source. Second, the
order among updates from different sources is not critical 2. However, as shown in Example 1, the DW
maintenance based on the receiving order may cause broken query anomaly. We hence define an order

of updates that can avoid such anomaly.

Definition 7 Given a sequence of updates, any order of processing these updates is called a legal

order if it keeps all dependencies safe.

Having all concurrent dependencies safe, by Theorem 1, means no broken queries will occur. To
have all semantic dependencies safe, we have a processing order consistent with the order of updates
at each data source. The DW is thus able to maintain updates in a legal order correctly assuming the
DW maintenance modules VM,VS and VA process each update are correct. The reason is that the
maintenance process of one update will not be affected or aborted by other updates, thus as long as
the maintenance algorithms are correct, the refreshing of the DW is correct.

Defintion 7 thus establishes the correctness criterion for a solution strategy of the anomaly problems

defined in Section 2.

6 Dyno: A Dynamic Scheduler

In this section, we first introduce dependency detection and correction algorithms. Then we propose a
DYNamic reOrdering strategy, called Dyno that integrates the former two components to search for a

legal order for updates at run-time.

6.1 Detection of Unsafe Dependencies
6.1.1 Dependencies Detection Method

Our dependency detection method is composed of two steps. First, we construct a dependency
graph, where the nodes are updates and the directed edges are either concurrent dependencies or
semantic dependencies. Second, we check if there are any unsafe dependencies as given by Definition
5.

Given a sequence of updates, we can determine the concurrent dependency between two updates m1

and m2 using the following method. If the maintenance query generated for maintenance of ml refers

*Note that here, for simplicity of description, we assume there is no user required update processing order, such as foreign key
constraints. However, they can be viewed as a third category of dependency and can be treated similarly.
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to the same relation as m2, then there is a concurrent dependency, namely ml &L m2, by Definition 2.
The reason is that m2 may affect this maintenance query. Since the maintenance query is constructed
solely based on the knowledge from the DW view definition, we can infer if two updates may have a
concurrent dependency relationship simply by analyzing the view definition. No other information is
needed.

It is straightforward to identify semantic dependencies between updates, namely, each pair of two
adjacent updates from the same relation is assigned a semantic dependency edge.

We now examine the time complexity of building such a dependency graph. First, the complexity
of identifying concurrent dependencies between updates is O(n?), where n is the number of updates.
That is, because in the worst case, each pair of two updates would have one concurrent dependency in
between (maybe two as described in Section 4.4).

Second, the complexity of building semantic dependencies between updates is O(n), where n is the
number of updates. To achieve this, since the updates arrive at the DW from the same source have
already been ordered by Assumption 1, we can create one bucket for each data source and scan them
once.

Thus the time complexity of building a dependency graph is up to O(n?) + O(n), i.e., O(n?). Note
that, if there are only data updates, the maintenance query would never break. Thus there is no unsafe
dependency 3. In this case, we optimize by setting a schema change flag indicating if any schema
change occurs. If there is no schema change, we avoid building the dependency graph altogether thus
reducing the time complexity to O(1).

After construction of the dependency graph, we can easily check if a dependency edge in this graph
is safe simply by checking the update positions in the UM(Q based on Definition 5.

6.1.2 Pre-exec vs In-exec Detection

Different detection methods in terms of the time they are applied can be designed: pre-ezec detection
and in-exec detection method.

The pre-exec static detection method detects the dependency before the update message in the
UMQ is processed in order to discover any potential conflicts with other updates before doing the
maintenance.

Take the second case of Example 1. Before DWMS processes the insert, it discovers that the drop
attribute operation already in the UMQ forms an unsafe concurrent dependency with the insert. Thus
we need not bother to maintain the insert now and send down a maintenance query to DS which
surely would break. The main goal of this strategy is to avoid such waste of computation that later

would have to be discarded.

3Semantic dependencies only would never be unsafe.
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The pre-exec detection method by itself is not sufficient because a schema change that occurs after
the pre-ezec detection phase could still break the maintenance query.

The in-exec dynamic detection method is thus introduced for compensation purposes. It can detect
any unsafe dependencies during the maintenance by a broken query scheme. That is, whenever a broken
query occurs, an error message is reported from the data source. We thus know that there is an unsafe
dependency in the UMQ. To optimize this, the change of the schema change flag (in Section 6.1.1)
caused by a newly incoming conflicting schema change can terminate the current ongoing maintenance

process before it encounters the broken query. This way we can save some further wasted effort.

6.1.3 Optimistic vs. Pessimistic Detection Strategies

The above two basic detection methods lead to two complete detection strategies: optimistic and
pessimistic. Both lead to correct final results, and the choice of which strategy to use is largely based
on the expected behavior of the data warehouse environment in terms of frequency of and types of

concurrency among updates.

1. Optimistic detection strategy: An optimistic solution aims to minimize or completely avoid
any the performance overhead during normal processing. Instead it may endure some extra
overhead cost to recover if a problem actually happens. For this, we simply employ the in-ezec
detection method. By not employing pre-ezec detection, thus we cannot prevent broken queries

and thus some additional abort costs may arise.

2. Pessimistic detection strategy: A pessimistic solution aims to minimize or even prevent any
aborts of the maintenance process at the cost of a continuous performance overhead during nor-
mal processing. In other words, a pessimistic strategy attempts to anticipate, detect and ideally
prevent any unsafe dependency at run-time, thus avoiding the broken queries and their overheads.
For this, we utilize a pre-ezec detection method to detect as much as possible all unsafe depen-
dencies before processing, hence the name pessimistic. But as indicated in Section 6.1.2, we still

need to employ the in-exec detection as supplementary detection method to assure correctness.

An experimental comparison of these two strategies is described in Section 7.4.

6.2 Static Correction of Unsafe Dependencies

After we have detected an unsafe dependency between two updates using one of the strategies from
Section 6.1.3, we need to determine how to change the unsafe dependency into a safe one. Based on
the dependency graph constructed during the detection phase, we propose a solution that employs two

dependency correction operations to achieve this goal.
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In particular, assume we have detected that there is an unsafe dependency order between two
update messages ml and m2, i.e., ml is before m2 in UMQ and ml is dependent on m2 (ml«+m2)
by Definition 5. We propose to reorder them by placing m2 just before m1, which in this case would
turn this dependency safe. The intuition of this method is that after we reorder these two updates,
their processing order would obey the order imposed by their dependency constraints.

If there were also another dependency m2<—ml that comprises a cycle, reordering obviously can’t
make both of these two cyclic dependencies safe. We instead propose to merge m2 and m1l into one
combined update {ml,m2} and place at m1’s place. To generalize, we eliminate the dependency by
merging the two or more updates into one combined update which will be processed by the DWMS in
one refresh process. The intuition of this operation is that since only the combination of these updates
reflects the real schema of the data sources, the DW must take all of them into consideration at the
same time to be able to rewrite the view definition consistently with all data sources.

The DEpendency COrrection algorithm Deco applying both the reorder and merge strategies for

a sequence of updates is shown in Figure 4.

Deco Algorithm

Input: A sequence of updates U

Output: A new sequence of U free of unsafe dependencies
begin

1: G < Build Dependency Graph of U;

2: while(exists dependency (m1< m2) unsafe in G)

3: if exists (m2 €< m1) then // merge step

4. create m’=ml+ m2;

5. replace m1l by m’;

6: remove m2 from G;

7: else insert m2 directly before m1 in UMQ; // reorder step
end

Figure 4: Deco: DEpendency COrrection Algorithm

Figure 5 depicts two dependency correction examples handled by Deco. Example 5.a illustrates the
second case in Example 1, where a concurrent dependency between the insert (DU) and drop attribute
(SC) exists. Deco reorders these two updates and the concurrent dependency becomes safe. Example
5.b illustrates the cyclic dependency described in Section 4.4, where two drop operations (SC1 and
SC2) are dependent on each other. Deco merges these two updates into one combined update, thus the
cyclic dependency disappears. This now requires that the VA algorithm [NR99] is capable of processing
such combined batches of updates as described in Section 6.5.

Termination of Deco: We prove this by contradiction. Given a fixed set of updates, assume the
algorithm does not stop. Then there must be some corrected dependencies in U turning back to unsafe
since there are finite number of unsafe dependencies. In this case, a cycle is found and related updates

are merged. This results in a reduced number of updates. If Deco doesn’t terminate, the number
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of updates would finally reduce to one, i.e., one big update that contains all original updates. The
algorithm would still stop at that point.

Correctness of Deco: We can further conclude that the Deco algorithm terminates if and only
if no more unsafe dependency exists. By Definition 7, we have a legal order of updates and thus the

maintenance of these updates will be correct.

ofclmdiclo

a. Reorder SC before DU

Fo @

b. Merge two SCsinto one

Figure 5: Examples of Unsafe Dependency Correction

6.3 Dyno Solution: Pulling It All Together

Our complete solution Dyno combines the pessimistic dependency detection strategy in Section 6.1.3
and the Deco dependency correction algorithm from Section 6.2. Dyno first uses the pre-exec detection
strategy before starting the processing of the first update in the UMQ. In-ezec detection is used
during DW maintenance. Upon detection of any unsafe dependency, the Dyno solution uses Deco to

turn any unsafe dependency into a safe one.

Dyno Algorithm

Input: Source updates dynamically arrive

Goal: DW maintaining these updates

begin
while(1) begin

. if (CheckSCFlag ) Deco(UMQ);

h < head update of UMQ;

start DW Maintenance on h;

if (no broken query occurs)
remove m from UMQ;

arwne

end
end

Figure 6: Dyno: DYNamic reOrdering Algorithm

Figure 6 details the Dyno algorithm. Just before processing of the head update in the UMQ, (1)
checks the schema change flag (Section 5.1.1). If there is no schema change, we can avoid the detection
and correction step. Or Dyno will apply Deco to detect and correct any unsafe dependencies in the

UMQ at that time. (2) and (3) get the head update in the UMQ and start the maintenance. During
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the maintenance, (4), the in-ezec detection method is employed to detect any new unsafe dependency.
If any broken query occurs, it will loop back to (1) to correct the anomaly problem. The head update
will be removed from the UMQ in (5) if no broken query occurs. Then we continue the maintenance

from (1).

6.4 Termination and Correctness of Dyno

Dyno is correct in a static environment given a fixed number of updates (see Figure 4). We now briefly
argue the correctness of Dyno in a dynamic context by now also considering newly incoming updates.

Correctness of Dyno: Assume a new conflicting update m occurs. First, it may happen before
the current maintenance process and thus can be detected by pre-exec detection. Then the conflicts will
be corrected into a conflict-free legal order by Deco. Or it may occur during the ongoing maintenance
process and break it, Dyno would detect it by in-exec detection and again correct it by Deco. In either
case, the DWMS will have a legal order of updates and thus correctly maintain the DW. Finally, if m
occurs after the maintenance process, then no concurrency would happen.

Termination of Dyno: The only possibility that may cause Dyno to loop infinitely without any
DW refresh commit is that we have continuously new schema changes arriving that would always es-
cape the pre-ezec detection, i.e., during the maintenance process and would always break the ongoing
maintenance work. However, we argue that such case is unlikely because it would require (1) a fre-
quent and continuing stream of schema changes at data sources, and (2) the schema change always
arriving after the pre-exec detection phase causing the DW never to refresh any update. We further

experimentally evaluate this in Section 7.4.

6.5 Processing of Merged Updates

In Section 6.2, the Deco algorithm will generate an executable order for updates in the UMQ. If no
Merge operation occurred, previous DW maintenance algorithms, like VM, VS or VA that work on one
individual update at a time can continue to be applied. However, if the Merge operation does happen,
there will be some complex merged update message containing both SCs and DUs over distributed
data sources. Current DW maintenance algorithms cannot handle such mixed updates at a time. Due
to the limited space, below we briefly describe the algorithm we have developed for processing such
merged updates.

Given a set of merged updates, DW first rewrites the view definition based on the schema changes
within the merged updates. A general view synchronization (VS) [LNRO1] algorithm can accomplish
this job. As a result, the old view definition V' = R; X Ry X ... X R, is rewritten to V' = R}¢% X
R M ... X Rp¢", where R]®" represents either the new state of relation R; after one or more updates,

or a replaced relation if R; has been dropped.
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In order to incrementally adapt the view extent, we need to figure out the delta change to get
from V to V'. Here we present the new view as: V' = RI*" X Rj¢Y X ... X RI®Y = (R; + AR;) X
(R2 + ARy,) M ... X (R, + AR,;,), where AR, is the difference between R}** and R;. Here, new VA
tries to restore the old state of the relation R; from the view if R; is dropped [NR99]. AR, stands for
data updates if no drop schema operation has occurred, or it would be the difference between the old
relation and the replaced relation. With R;, R7°", AR;, we are able to calculate AV as follows and

thus incrementally adapt the view extent.

AV

ARy X Ry X .. X R; X ... X R, (5)

R X ARy X R3 X ...... X R; X ... X R,

RPY M. M RPY ) AR; M Riq M ... X Ry,

+ o+ + + o+

R X ... X RV X ... X R™% X AR,

n

Let us now take the cyclic case in Section 4.4 as an example. First we rewrite the view as shown

in Equation 6 based on both schema changes in the merged update instead of just one of them at a time.

CREATE VIEW  Asia — Customer’ AS

SELECT P.Name, T.Age,

F.FlightNo, F.Dest
FROM Participant P, FlightRes F, Tour T
WHERE P.Name = F.Name AND

F.Dest = 'Asia’ AND
F.Name = T.TourName

(6)

Here, old view V = Customer X FlightRes and new view V' = Participant X (FlightRes' X
Tour) = (Customer + ACustomer) X (FlightRes + AFlightRes). We then calculate the view delta
change by Equation 5 as follows. Since the relation Customer and part of the FlightRes have been

dropped, we have to restore them from the view itself 4.

AV = ACustomer X FlightRes + Participant X AFlightRes
= ACustomer X Il gyigniresV + Participant X AFlight Res

= (Participant — Heoystomer V) X W piightresV + Participant X (FlightRes' X Tour — I pjightresV)

“The assumptions that have to be held are described in [NR99].
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While above just illustrates the intuitions, a more detailed solution can be found in [CZR02].

6.6 Consistency Level Achieved by Dyno

We adopt the definitions of correctness and consistency levels of the DW from [ZGMHW95].
e Correctness: Any state of the DW corresponds to one valid state of each source.

e Convergence: All source updates will be eventually incorporated into the DW resulting in a

correct final state.

e Strong Consistency: All states of the DW are correct and the order of DW states transitions

corresponds to the order of the state transitions of each of the sources.

o Complete Consistency: Strong consistency holds plus each state of one of the sources is re-

flected by a distinct DW state.

Clearly, Dyno achieves “Strong Consistency”. This is so because, first, the reordering will keep all
semantic dependencies thus the DWMS would process the source updates in the same order as they
commit at the data source. The correctness of Dyno guarantees that each state of DW is correct.
Second, however, since Dyno may merge updates thus not every update corresponds to a distinct DW

state, hence cannot reach complete consistency. In conclusion, Dyno reaches “Strong Consistency”.

7 Experimental Evaluation

7.1 Experimental Testbed

We have implemented the Dyno algorithm and embedded it into our data warehousing system DyDa
[CZCT01]. The integration enables DyDa to maintain the DW under both concurrent data and schema
changes. In DyDa, we apply the SWEEP [AASY97] algorithm to compensate for concurrent DUs, thus
solving the first two dependency problems (see Section 4.1). DyDa is implemented using JAVA, using
JDBC to connect to Oracle8i as DW server and data source servers. In our experimental setting,
there are six sources evenly distributed over three different source servers with one relation each.
Each relation has four attributes and contains 100, 000 tuples. There is one data warehouse with one
materialized join view defined upon these six source relations residing on a fourth DW server. All
experiments are conducted on four Pentium IIT PCs with 256 MB memory each, running Windows NT

and Oracle8i.
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7.2 Study of Data Update Processing

We first study the overhead that Dyno may bring to the system’s data update processing. Clearly, any
extra cost would be caused by the overhead of the detection process.

Since broken queries will not occur without the presence of schema changes, we can avoid the
construction of a dependency graph during the pre-exec detection in Section 5.1.1 thus reducing the
time complexity to O(1). The in-ezec detection strategy would not ever be launched since aborts would

never be caused by data updates only.
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Figure 7: DU Processing with/Out Detection

Figure 7 depicts the total DW maintenance cost measured in seconds (depicted on the y-axis) with
or without detection enabled for different numbers of source data updates (depicted on the x-axis).
We find that the overhead of detection is almost unobservable in all cases. Since the detection cost is
trivial, i.e., O(1), we can reasonably predict that such cost would be small even under a larger amount
of data updates. We thus conclude that the Dyno algorithm imposes little extra cost on data update

processing.

7.3 Cost of Broken Query

Recall that the broken maintenance query problem is caused by the existence of some concurrent
schema changes. There are two kinds of broken query problems, namely, a data update maintenance
processing is aborted by a schema change or a schema change maintenance processing is aborted
by another schema change. Once such a broken query occurs, the DWMS has to drop all previous
maintenance work and redo it. This imposes extra cost on DW maintenance, which we now will refer
to as maintenance abort cost.

In this experiment, we study the cost of these two kinds of aborts. Two corresponding workloads
have been chosen. The first is one data update followed by a conflicting schema change. The second is

two conflicting schema changes. Then three different environmental settings are compared. First, we
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measure the maintenance cost of all updates by spacing them far enough, so they won’t interfere with
each other °. This represents the minimum cost as no concurrency handling is needed (depicted by a
grey bar in Figure 8). Second, we apply the pessimistic strategy to discover any potential concurrency
conflicts before processing, thus trying to avoid the occurrence of any broken query (depicted by a
black bar in Figure 8). Third, we apply the optimistic strategy. Thus only after the broken query
occurs and is detected, do we correct the dependencies and restart the maintenance. In this case, more

aborts may occur (depicted by a white bar in Figure 8).
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Figure 8: Cost of Broken Query

We find that the cost of aborting schema change processing is significant compared to that of data
update processing, i.e., the white bar of SC/SC (where the abort of schema change occurs) is much
higher than the other two. While for DU/SC, three costs are similar. The reason is that the schema
change processing is rather complex and thus time consuming compared to data update processing.
It is costly to redo the schema change maintenance process. Secondly, we find that the pessimistic
strategy does indeed help to reduce the expensive abort requiring only a minimum overhead, i.e., the

black and grey bars are similar in both cases.

7.4 Mixed Update Processing

Above, we observe that the most expensive extra cost besides the normal DW maintenance processing
is the abort of the schema change processing. Also we find that the pessimistic strategy does help to
reduce this expensive abort cost (Figure 8) via a simple setting. However, the broken query may still
happen even if employing the pessimistic strategy when the newly coming update breaks the ongoing
maintenance work. We now study under what conditions the broken query would occur and how the

pessimistic strategy helps avoid this in mixed update environments.

®Because the source update occurs after the completion of DW maintenance of the previous update.
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7.4.1 Time Interval between Schema Changes

In this experiment, we employ a mixture of 200 data and 10 schema changes, both randomly generated

over all six relations. We vary the time interval between schema changes (as depicted on X-axis).

Time
Intenl (s)

‘ ... Optimistic - - ... Abort of Optimistic —— Pessimistic —x—Abort of Pessimistic ‘

Figure 9: Time Interval of Schema Changes

Figure 9 depicts the maintenance costs for the optimistic and pessimistic strategies and their respective
abort costs, when varying the delay between the schema changes from Os to 45s. 0s means that all
schema changes flood into the DWMS before any maintenance. From Figure 9, we see that this case
has the best performance for both strategies. This is obvious because the system is able to correct any
unsafe dependencies once for all updates, thus no broken query would occur. When the time interval
between schema changes increases, new updates could break the ongoing maintenance work. Thus the
cost of both strategies increases. When the interval reaches a particular range, the cost reaches a high
peak because the new schema change always occurs near the end of current maintenance. Even the
pre-ezec detection cannot avoid such broken queries in this case. After the interval is larger than the
maintenance time, there will be no concurrency but only pure maintenance cost.

However, differences between these two strategies can be observed. When a broken query happens,
the optimistic strategy is able to correct the unsafe dependencies of all updates in the UMQ so far. The
corrected plan for these updates is static in the sense that it fails to respond to any newly conflicting
updates until it breaks. In contrast, the pessimistic strategy with pre-exec detection has the potential

to avoid this break and consistently performs better.

7.4.2 Number of Schema Changes

Given a time interval between schema change of 25s, Figure 10 depicts the maintenance costs (depicted
on the y-axis) with optimistic and pessimistic strategies, respectively, when varying the number of
schema, changes from 5 to 25.

The broken query cost increases linearly for both strategies. Also, as expected, the system with

pessimistic strategies still performs better due to its ability to avoid some broken queries.
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Figure 10: Increasing Number of Schema Changes

7.4.3 Effects of Data Updates

We now study how data updates affect the system performance, in particular, the broken query prob-
lems. We fix the number of schema changes and their time intervals, but vary the number of data

updates.
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Figure 11: Increasing Number of Data Updates

From Figure 11, we can see that the broken query cost remains consistent thus is not related to the
data updates. Hence the dominant effect on broken query cost are schema changes as discussed in
Figures 9 and 10. Also we conclude that our pessimistic strategy does help improve the performance
in all cases.

Finally, recall the potential infinite wait (or infinite number of aborts) of Dyno as stated in Section
6.4 is highly unlikely to occur in practice. Because first, there must be a continuous stream of new
schema, changes. However, schema changes are often less frequent than data updates in reality. Second,
Figure 9 shows that the abort cost reaches a high peak only when the time interval is close to the
maintenance cost. Otherwise it is small when the schema changes are either close or apart from one
another. A high abort cost would only occur when the interval of the schema changes would be within

a particular narrow range. Hence this is very unlikely to arise.
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8 Related Work

Maintaining materialized view under source updates in a DW environment is one of the important
issues of data warehousing [Wid95, RKZ00]. Initially, some research has studied incremental view
maintenance assuming no concurrency [CGL196, GL95, LMSS95]. Such algorithms for maintaining
a data warehouse under source data updates are called view maintenance algorithms. More recently,
the EVE project [LKNR99, NR98] studied the problem of how to maintain a data warehouse not only
under data updates but also under schema changes. The essence of EVE is to automatically rewrite the
view definitions when the base schema has been changed, and to try to locate the best replacements
for affected view components. Such view rewriting caused by schema changes of sources is called View
Synchronization. After the view definition has been redefined, View Adaptation (VA) [GMR95, NR99]
incrementally adapts the view extent. View self-maintenance [QGMW96, Huy97] is one approach to
maintain the DW extent trying to limit the access to the base relations. [MRSRO01] proposes a strategy
for multiple view maintenance by applying multiple query optimization techniques, i.e., by sharing
some common expression computations.

In approaches that send maintenance queries down to the source space, concurrency problems can
arise. In [ZGMHW95], they introduced the ECA algorithm for incremental view maintenance under
concurrent data updates restricted to a single source. In Strobe [ZGMW96], they extend their approach
to handle multiple sources. Agrawal et al. [AASY97| propose the SWEEP-algorithm that can ensure
consistency of the data warehouse in a large number of cases compared to the Strobe family of algo-
rithms. [ZRDO01] improves upon the performance of SWEEP by parallelizing the maintenance process.
[SBCLO0] proposes to only materialize delta changes of both sources and views with timestamps, so
the view is able to asynchronously refresh its extent. They also introduce a propagation algorithm that
could significantly reduce the number of compensation queries. However, none of them can handle
source schema changes and any of these proposed systems would fail under a mixture of concurrent
data updates and schema changes. To our knowledge, we are the first to solve this challenging problem.

Our early work [ZR99, ZR01] studies the problems of the DW refresh caused by the concurrency of
source data updates and schema changes. However it assumes that each source reports a schema change
and then waits for permission from the DWMS before it commits the change to the source. In other
words, the data sources are assumed to be fully cooperative. Our proposed solution now successfully
drops this restricting assumption. [CCR00] employs a multiversion concurrency control algorithm to
handle the concurrency problem assuming there are enough system resources to completely materialize
versions of the source data and its updates. While in this current solution, no extra storage is needed

and no versions are kept.
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9 Conclusions

In this paper, we illustrate that the DW maintenance anomaly problem corresponds to the problem
of unsafe dependencies between update messages reported to the DWMS. We analyze and categorize
the different types of dependency relationships between source updates. Then we propose a suite of
detection methods for unsafe dependencies. We also introduce a dependency correction solution to
eliminate unsafe dependencies. Finally we propose Dyno that integrates both detection and correction
strategies into one integrated solution. We prove the correctness of Dyno, namely, that it enables
a DWMS to handle concurrent DUs and SCs in a dynamic context. Dyno is a general strategy for
maintenance independent from the specific view maintenance algorithms, and thus has potential to be
plugged into any DWMS system. We also develop a novel algorithm for the incremental adaptation
of the data warehouse view extent under a mixed batch of updates. The experimental results show
that our new concurrency handling strategy imposes an negligible overhead to allow for this extended

functionality. Thus, adding Dyno to any DWMS system is a complete and win-win solution.
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