WPI-CS-TR-02-07 Feb 2002

Prefetching For Visual Data Exploration

by

Punit R. Doshi
Elke A. Rundensteiner
Matthew O. Ward

Daniel Stroe

Computer Science

Technical Report

Seriles

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

*

Prefetching For Visual Data Exploration

Punit R. Doshi, Elke A. Rundensteiner, Matthew O. Ward and Daniel Stroe

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 016092280
{punitd|rundenst|/matt } Qcs.wpi.edu

Abstract

More and more modern computer applications from business decision support to scientific data analysis
utilize visualization techniques to support exploratory activities for large datasets. Various tools have
been proposed in the past decade that help users better interpret data using such display techniques.
However, such exploratory visualization tools do not scale well when applied to huge datasets. Various
features provided by database management systems must be applied to such applications to scale them
for huge datasets. To improve the performance of such visualization systems, caching the data at client
side is necessary. We exploit semantic caching [24, 8] for the advantages it offers over the traditional
caching systems. To further improve the performance, we propose to exploit characteristics of visualization
environments to prefetch the data for the visualization tools. We have incorporated these features into
XmdvTool [47, 13, 14, 50], a freeware visual tool for multivariate exploration. We also compare an array of
different prefetching strategies to determine their relative effectiveness for both synthetic user traces and
real users of our system. Our results show that significant improvement can be achieved for visualization

applications by caching and prefetching the data on the client-side.

Keywords: Semantic caching, Prefetching, Large-scale multivariate data visualization, Exploratory data

analysis, Hierarchical data exploration

*This work is supported in part by several grants from NSF, namely, NSF grant 1IS-9732897, NSF CISE Instrumentation
grant IRIS 97-29878, and NSF grant IIS-0119276.

1 Introduction

Whether the domain is stock data, scientific data, or the distribution of sales, visualization is becoming
an increasingly popular technique for data exploration. Humans can often easily detect patterns, trends
as well as outliers in the underlying data when presented with visual depictions of the data [38], which
may be more difficult to identify with automatic techniques. The exploration of large information spaces
remains a challenging task especially with the growth of the World Wide Web and other huge repositories of
information. Visualization plays an important role in aiding users to find their way through such large data
sets. By presenting information visually and allowing dynamic user interaction through direct manipulation
paradigms, it is possible to traverse larger information spaces in a shorter time [38]. In both academia and
industry alike, significant effort has thus been spent on developing effective methods to display and visually

explore information [1, 40, 39, 37, 32, 16, 36, 20, 30].

Most visualization techniques nowadays still execute on data that is first fetched from the file system
into main memory. However, as data is being generated at an ever increasing rate and typical sizes of
datasets become larger in the order of giga-bytes, current datasets can no longer be held entirely in main

memory, rendering many current visualization tools useless.

We thus must scale current visual tools to work with large data sets. Issues related to efficient storage
and retrieval of data, while often ignored in the context of visualization applications, are critical for the
success of modern exploration tools. In such interactive environments the user must get the response to his
or her navigation requests with little or no time lag. Furthermore, users wish to interactively explore the
data using visual navigation tools. Each small movement in the user’s navigation tool may mean executing

a completely new query to retrieve the selected data, potentially resulting in a high data access rate.

In this work, we propose to exploit characteristics of visualization environments to improve the per-
formance of visualization tools. An appropriate memory organization is also one critical component in
interactive applications, since it influences the performance of the subsequent operations of maintaining the
cache. In this vein, we apply semantic caching techniques [24, 8] for the advantages it offers, namely flexi-
bility of grouping of data in the cache to be adjusted to the needs of the current query and saving lookup

overhead in the cache due to the compact query-based organization of the cache content.

In addition, to further improve the performance of our system, we have designed several methods for
prefetching data tuned to visualization applications. These strategies, working hand in hand with the query-
based caching scheme, exploit the characteristics of the visualization environment such as the incremental

refinement nature of queries formulated via a visual query tool in order to optimize the contents of the

cache. We support features necessary for visualization, by making our prefetching solutions speculative and

non-pure.

The proposed caching and prefetching techniques have been incorporated into XmdvTool [47, 13, 14, 50],
a freeware visual tool for multivariate exploration. We have also ran experiments to evaluate the performance
of the prefetching strategies both with various synthetic user traces as well as with real users of our system.
Results show that the proposed strategies indeed improve the performance of the system, making visual

exploration of large-scale data practical.

In summary, our main contribution consists of developing a set of techniques that together can be
applied to interactive visualization tools in order to enable users to explore large datasets. We have designed
a high-level cache policy that reduces the latency of the system by incrementally loading and maintaining
data in the memory buffer. When the system is idle, a prefetcher will bring data into the cache that is likely
to be used next. Our experiments confirm the important role of prefetching in visualization applications and
demonstrate that the benefit of using prefetching significantly exceeds the result gained by using caching

only.

Section 2 discusses the characteristics of the interactive visualization environments. Section 3 explains
our approach to semantic caching, while Section 4 introduces our prefetching strategies. In Section 5 we
discuss the XmdvTool visualization system, while Section 6 focuses on the experimental evaluation of our
prefetching strategies. Section 7 presents the work related to our research and finally we state conclusions

and some areas for future work in Section 8.

2 Multivariate Data Visualization

Here we briefly introduce XmdvTool, an exploration tool for multivariate data, which represents the driving
force motivating the need for this work as well as representing the testbed into which we incorporate and
then evaluate our solutions. XmdvTool is a visualization package developed at WPI [50] designed for the
exploration of multivariate data which provides four distinct visualization techniques and support for clus-
tering and analyzing hierarchies [47, 13, 14]. The tool provides four distinct visualization techniques (parallel
coordinates, scatterplot matrices, glyphs, and dimensional stacking) with interactive selections and linked

views, as depicted in Figure 1.

The main idea of XmdvTool is to help users to understand the data by first clustering the data points
in the navigation space based on a distance function, and then to associate aggregate information with the

resulting clusters [47, 31, 34, 12]. The clustering process generates a hierarchy in which different levels

conceptually represent different degrees of abstraction of the data. Brushing then consists of setting the

selection parameters and in specifying the desired level of detail at which data is displayed.

Tree Dep

CUFrent

MPC tylivders HorsepowsrWeight Asceleration'/ea1 Origin yp 1y H gl i e [l
5210 . 260.50 mn"m a2 w5 (39 L) asiittal L5

e
5

(-
[
i
[
|

590 283 2350 15000 375 6885 086

Figure 1: Various displays in XmdvTool. Figure 2: Structure-based brush.

In order to improve the support for visual navigation across large datasets we have designed the
structure-based brush [11] tool shown in Figure 2 that supports hierarchical exploration of data for all
four multi-resolution visualization techniques. The data can then be explored by interactively selecting and
displaying points at different levels of detail of the cluster hierarchy. We term this exploration process hi-
erarchy navigation. The user navigation operations expressed by our brushing tool interface (Figure 2) get
translated into queries to the database. Brushing tool marked ‘e’ is used to select cluster(s) to be displayed,
while tool marked ‘b’ is used to select the level of detail for the selected cluster(s). A user can select data
by moving the brush marked as ‘e’ horizontally or moving the brush marked as ‘b’ vertically, as shown in

Figure 2.

While exploring the data, a user may navigate by sliding the extents of ‘e’ to select a particular cluster
in the tree hierarchy, or by moving vertically the level brush ‘b’ to display data at a different level of
detail. Thus the queries passed to the database are contiguous rather than ad-hoc, since the visual interface
provides limited and controlled means of expressing navigational requests from the users. Such contiguity of
user queries allows us to cache the queries in main memory, as there is a high probability of a partial query

result from a prior query still being relevant (and thus in our cache) for the new user request.

Lastly note that users’ exploratory movements are somewhat more predictable when they explore the

data using such visualization tools, as such explorations are different from say, random accesses via an ad-hoc
SQL query based interface. This gives us the hint that the use of prefetching in such applications may be a

suitable mechanism for improving the performance of visualization applications.

Since the user will be examining the visual displays for interesting patterns in the data, there typically
would be delays between two user operations. These delays between user operations allow us to prefetch the

highly probable data into the main memory before the user explicitly specifies her next request.

3 Semantic Caching for Visualization Applications

Semantic caching is a popular caching strategy proposed in recent years [24, 8] for providing efficient support
for access to data. In contrast to traditional caching schemes [10, 25], it caches query descriptors rather than
pages of data or individual objects. It provides the following benefits over the traditional syntactic caching

approaches:

e adjusts grouping of queries to the requirements of the incoming query so that no irrelevant data is

cached along with the relevant ones, thus reducing overhead in managing the cache,

e minimizes the cost of cache lookup due to the compact representation of the cache content based on

semantic query descriptors,

e adapts dynamically to the patterns of user queries rather than just caching static clusters of tuples.

A semantic caching scheme must typically handle the following three tasks. First, it has to be able to
decide whether the answer for a query resides in the cache or not by comparing the incoming user query with
the cached query descriptors, called query containment. Second, the partial answer available in the cache
must be extracted by formulating appropriate probe queries. Third, it must determine any remaining query
that needs to be passed to the server to fetch the remaining data. Although concrete steps towards finding
common techniques that work in the general case have been taken [15], the task of resolving these issues is

still generally performed on an application-by-application basis.

3.1 Containment Issues

Semantic caching schemes exploit the capability of semantic descriptors to describe the content of the cache

in a concise form. This allows for a fast look-up, since only a few set-based operations are performed instead

of separately checking the containment for all individual objects contained in the cache against the user
query. However, these approaches then must assume either explicitly or implicitly the following. First, that
it is always possible to test whether the answer for the query can be found in the cache (i). Second, that it is
possible to extract the answer from the cache (ii). And third, that it is possible to compute the difference (at
the query level) between the requested query and the cache predicates (iii). These assumptions define the
area of applicability of semantic caching, since they are not always true (see for instance [15]). In our visual
application, we are able to map our recursive hierarchical queries into range queries and then can address

these three questions.

3.2 Operational Model of Semantic Caching

An operational model for our semantic caching is presented in Figure 3. In this model, the client processes a
stream of queries Q1,...,Qn. Let C; = C{U...UC} denote the cache content in terms of queries at the time
query Q; is issued, Qo = 0, and O(C;) = O(C}),...,0(C!) denote the objects that correspond to the cache
descriptor C';. The cache descriptors C;: are queries, but could in principle be any form of set descriptors.

Objects have individual replacement values, in our case determined by some probabilistic function.

I I

CTO s <7 2
CLIENT O(Ri) SERVER
Ci — Citl O p,')f ’PI ORI} I I
[111] eyl
MEMORY

Figure 3: Operational Model for Semantic Caching.

Processing query); involves the following steps:

e Compute the probe query P, = Q; NC; = (Q;NCH U...U (Q; NC}).

e Extract from cache objects O(P;) = O(P}),...,O(P%) that correspond to the constraint formula P;,

i.e., answer (; partially from the set of tuples that satisfy P;.

e Compute the remainder query R; = (Q; — Ci) U...U(Q; — C}).

e Fetch the tuples O(R;) that satisfy the constraint formula R; from the server from C; to C;41. Update

C; to reflect the changes; this may result in unifying (merging) descriptors.

e If the cache does not have enough free space, discard objects Oj- in the decreasing order of their replace-
ment value until enough space is free. Adapt C; to reflect the changes; this may result in fragmenting

(splitting) descriptors.

e Update the replacement values of all objects O; based on R;, P; and the replacement policy.

3.3 Replacement Issues

The first step in implementing a replacement policy is to provide an estimation strategy able to measure the
likelihood that an object will be needed in the near future. The estimation strategy, also called a predictor, is
usually based on heuristics, probabilistic models, or some recorded statistics. In our case we use a probability

function. The probability function also defines a partition on the set of objects.

The main task of a cache replacement policy is to find the entries in the buffer that have the lowest
probability of being used and to remove them when more room is needed. This operation needs to be
efficient, since it occurs frequently. When new objects are brought in they have to comply with the internal

cache organization.

When a request is issued by the GUI, a containment test is performed. The system first checks whether
the requested data resides entirely in memory or not. In case it doesn’t, a compensation query has to be

sent to the loader, an agent that fetches the data from the persistent storage.
In conclusion, the buffer access operations can be summarized as:
A: Remove old objects. Get the objects with the lowest probability that reside in the buffer (and further
remove them one at a time when more room in the buffer is needed).

B: Retrieve new objects. Place an object from the database cursor into the memory buffer (and rehash

the buffer entry).

C: Display active set. Get those objects from the buffer that form the active set (and send them to the
graphical interface to have them displayed).

D: Recompute probabilities. Recompute the probabilities of the objects in the buffer once the active

window gets changed (to ensure accurate predictions in the future).

E: Test containment. Test whether the new active set fully resides in the buffer and get the missing

objects (if any) from the database (when a new request is issued).

Unlike semantic caching, we have made the caching system flexible enough to replace objects in the
cache rather than queries in order to ensure that the cache is full almost all the time. This also adds an

additional overhead of keeping probability values for every object rather than individual query.

4 Prefetching Strategies

To further reduce system latency, we use a speculative prefetcher that brings data into memory when the
system is idle. The prefetcher is based on the property of exploratory systems that queries remain “local”,
i.e., given the set of currently selected objects we have a small number of choices for which objects can
be selected next. The property therefore provides “implicit hints” to the system. Additional hints can
be extracted from the data set characteristics, its usage over time and the user’s exploration patterns as
well. In what follows, we discuss different prefetching strategies and how we exploits the characteristics of

visualization tasks.

4.1 Characteristics of our Prefetcher

In visualization applications, users spend a significant amount of time interpreting the graphical presentation
of the selected data, and the processor and I/O system are typically idle during that period. If the computer
can predict what data the user will request next, it can start fetching that data into the cache (if not already
there) before the user asks for it. Thus, when the user requests that data later, he or she perceives a faster

response time.

In some interactive database applications, there is sufficient time between user requests for such prefetch-
ing, and therefore the amount of data that can be prefetched is limited only by the cache size. This situation
is referred to as pure prefetching and constitutes an important theoretical model in analyzing the benefit of
prefetching. In our target visualization application and many others however, prefetching requests are often
interrupted by further user requests, resulting in less data being prefetched at a time. In this case of non-pure
prefetching, we also need to consider issues of cache replacement. We thus convert pure prefetching strategies
into practical non-pure ones by combining them with cache replacement strategies. In [5] for instance, a pure
prefetcher is used with the least recently used (LRU) cache replacement strategy, and a significant reduction

in the page fault rate was shown. A multi-threaded implementation of a non-pure prefetcher is reported in

[43]. There, the latency of the disk operations is improved when using threads.

Visualization applications require prefetching strategies to be speculative, non-pure, and adaptive as
explained below. Prefetching must be speculative (on-line) as decisions must be based strictly on the history.
Without apriori knowledge or statistics of the user request patterns, as is the case of most interactive
applications [7], prefetching must be speculative. An important requirement of speculative prefetching is
that the time spent on making prefetching decisions must be minimal. Prefetching must be adaptive since
the prefetching policy has to change due to run-time events. As the exploration goals and thus the access
behaviour of a user may vary over time, changing when to issue prefetching requests or the amount of data

to be prefetched may influence the performance of prefetching.

User & Data
Knowledge Focus Strategy

. Data User Access | Direction Strategy
Hot Regions | Knowledge Knowledge | Mean Strategy
EWA Strategy
No
Kuowledge Random Strategy

Figure 4: Hierarchy of Prefetching Strategies.

We designed and implemented several speculative, non-pure strategies for prefetching, as described
below in order to perform comparative evaluation. As shown in Figure 4, our approach is to generate
a hierarchy of prefetching strategies, based on different prefetching hints. We designed five prefetching
strategies: random (S1), direction (S2), focus (S3), mean (S4), and ezponential weight average (S5). In

experiments, we also considered the case of not prefetching, the case referred to as SO.

4.2 Random Strategy

As shown in Figure 5, strategy S1 (random) is based on randomly choosing the direction in which to prefetch
next. This strategy is appropriate when the predictor either cannot extract prefetching hints or provides

hints with a low confidence measure. This is utilized initially when no other knowledge is available.

114 (-1 th (tn+1)

HE— 80— g e —> @

=14

Figure 5: Random Strategy. Figure 6: Direction Strategy.

4.3 Direction Strategy

Strategy S2 (direction) implies that the most likely direction of the next operation can be determined. Based
on user’s past explorations, the predictor would assign probabilities to all the four directions. The prefetching
strategy (S2) then implies to “prefetch data in this given direction”. The hypothesis that the next direction
can be determined is not arbitrary. It is intuitive, for instance, that the user will continue to use the same
manipulation tool for a while before changing to another one and (in our system, each manipulation tool
happens to precisely control one direction only). As depicted in Figure 6, if (m — 1) and m are the last two
locations navigated by the user, then the direction strategy may predict (m + 1) as the next location to be

visited by the user.

4.4 Focus Strategy

Strategy S3 (focus) uses information about the most probable next direction (by keeping track of user’s
previous movement) as well as hints about regions of high interest in the data space as identified due to
prior navigations of this same data by other users. This strategy will continue to prefetch data in the given
direction using the above mentioned heuristics in Section 4.3. However, when a hot region is encountered the
prefetcher adapts from the default direction prefetching and instead adapts prefetching in that new direction.

The reason is that the user will likely stop there to explore or at least spend more time in that region.

Current Navigation

< e
window Hot Regions

Figure 7: Hot Regions (Focus Points).
4.5 Vector Strategies

All the previous strategies do not take advantage of the history of past user explorations. The next two

strategies are vector strategies that look at past user explorations.

In this model, we use a three-dimensional vector to indicate the movement of the users, one for the
start of brush, one for the width of brush and the last one for the level of detail. To enable prefetching, we
maintain user trace for each user, containing the set of historical movement vectors, my, ma, ...,m,_1. Each
vector is calculated from the corresponding viewer’s location and orientation, containing a move direction
and a move distance. We predict the n + 1st movement vector m,,41 and prefetch objects that would be
required if the user goes that way. This work is similar to a vector model of prefetching objects in distributed
virtual environments introduced by Chim et al [3]. Basically, it looks at each movement of the viewer as
a vector and computes the average of the previous movement vectors to predict the next movement. They
propose three different methods to predict the next location of the viewer, called the mean, window and

exponential weighted average methods.

We utilize two different schemes to predict the next location of the viewer: mean (S4) and exponential
weighted average (S5), as depicted in Figures 8 and 9. We are embedding the window strategy into the
previous strategies S4 and S5 by considering past user operations equal to the window size. Our experiments

discussed in Section 6 have shown that large window size results in wrong data being prefetched.

In the mean scheme, the next movement vector is predicted to be the average of the previous n movement
vectors. The intuitive meaning of the mean scheme depicted in Figure 8 is that we predict the (n + 1)st
movement vector by averaging the previous n (in this example, n = 3) movement vectors. The magnitude
of the movement is determined by the average of the magnitudes of the previous movements. Let us denote

the movement vector in the nth step by m,, and the predicted movement vector for the next step by m,41.

10

m(n
m(n+1) o

m(n-1) m{n-1) m(n+1)
m(n-2) m(n-2)
Figure 8: Mean Strategy. Figure 9: EWA Strategy.
The predicted vector will then be:
Mpt1 = Y 5y Mi/N (1)

To adapt quickly to changes in viewer’s moving patterns, our second scheme assigns a weight to each previous
movement vector m; so that recent vectors have higher weights and the weights tail off as the vectors become
aged. A parameter in the scheme is the exponentially decreasing weight, a. The most recent vector will
receive a weight of 1; the previous vector will receive a weight of «; the next previous one will receive a weight
of a2, and so on. A high a will give similar weights to all the movements and predict future movements as a
function of many movements, including the aged ones. By contrast using a low «a, aged movements will fall
off quickly and the prediction is biased towards contributions from recent movements. The predicted vector

is:

Mpt1 = D iy o™ 'm; /Sy, (2)

Sp=3 1, ant 3)

It can be shown that for both the mean and EWA strategies, the size of the history vectors (window) must

be small. Larger values of the window tend to lower the valid data being fetched.

In Section 6 we perform experimental studies comparing these strategies. The results confirm our
general assertion that prefetching is more efficient the more information we have available. Thus, changing
the prefetching strategy adaptively as more patterns are discovered is likely to improve the overall system

performance.

11

5 A Visualization Application Case Study: Applying Caching and
Prefetching Strategies to XmdvTool

Given that one general algorithm for testing the containment or for extracting the answers from a cache
do not exist (since the problems are undecidable), implementation of a semantic cache therefore remains
a challenge for most applications. In what follows we present an implementation of our semantic caching
scheme in XmdvTool. We first describe the visualization environment, then outline the characteristics of the
queries and objects that we deal with, discuss the replacement function and show why it is non-fragmenting.

Finally, we introduce the XmdvTool cache data structures main memory operations.

5.1 Objects and Queries

Previous research [41] has shown that hierarchical exploration via our brush in XmdvTool [11] can be modeled
as a two-dimensional exploration in which a selection window, called the active window, slides over an n x m
grid of integers, called the navigation grid. The objects (the data points or data clusters subject to analysis)

have a spatial representation that makes them selectable by the active window.

Objects are the data points or data clusters to be analyzed, to which some precomputed information is
assigned in order to facilitate their visual manipulation. As shown in [41, 42], this additional information,
consisting of a level value and two extents values, makes the objects behave like small rectangles (e, e2) x L =

(e1,es, L), yet still preserving their hierarchical structure (Fig. 10).

Objects are thus similar to active windows: they are both rectangular regions of the form (e;,es) x L.
The containment test of whether an object belongs to the active window or not reduces to an inclusion test
between rectangles. Fig. 11 presents an example SQL query assuming that our N — dimensional data is
stored in a hierarchical table called HIER(e1, ea, L, dimy, dims, ..., dimy), where e; and ey are the extents,

L the level of detail, and dim;, dims, ..., dimx the multidimensional values of the data points.

5.2 Replacement Function

The replacement values are given by a probability function that measures the likelihood that an object will
belong to the active set in the near future. The function is based on a set of probability values assigned to

the operations that can change an active window.

Let’s consider a navigation grid A = (1..I) x (1..K), where I and K are natural numbers. Each region

12

select *

L --FP P P p— from hier
| | where e_1>= :x_1
I J_|_ | | and e_2 <= :x_2
| i :II ; and L = :L;
I I
| : :
I I
X1 X2

Figure 10: Objects as rectangles in XmdvTool Figure 11: SQL Queries in XmdvTool for active

and an active window A = (z1, %2, L). window A = (x1,%2, L).

(ei, L) from the navigation grid has an associated probability P(m,i, k) that measures the likelihood that
the point will belong to the active set after the user’s next m operations. Also, a probability P*(m, i, k) will
measure the likelihood that the point will belong to the active set at any time during the next m operations.
Obviously, we have: P*(m,i,k) = &~ yP(t,i, k), where @ is a probability sum, i.e., p1 ® p>» = p1 +p2 —p1p2

(from the principle of inclusion and exclusion).

The lookahead parameter (LA) is the number of operations considered in advance when computing the
probabilities P and P*, i.e., the parameter m from the definitions above. The LA parameter dictates how
many operations the predictor will predict. In general, the bigger LA is the more speculative the system

becomes and thus the more errors may occur. We used in our implementation an LA equal to 1.

In our case we have six possible operations (restricting or enlarging any of the three active window’s
parameters). Let us assume, for example, that we have an active window w = (i1,42,k) and from this
configuration, going left with i; is 50% probable, going up with k is 25% probable, and so on. Then objects
in (41,12, k) will have a probability of 1.0, objects in (i; — 1,41, k) will have a probability of 0.50, objects in
(i1,42, k — 1) a probability of 0.25, and so on.

5.3 The Cache Data Structure

Let us consider the navigation grid displayed in Fig. 12. We have here twelve regions of equal probability,

and the active window covers the two middle ones. For simplicity we consider that only one object resides in

13

P table

(00o1|o2|03|04|05]06]07]08|00]L0

P,=0.0|P,=0.3 |P3=0.3 | P,=0.0 :
Ps=0.4 |Pc=1.0 |P+=1.0 | P;=0.1
Ps=0.0 |P10=0.2 |P11:=0.2|P12=0.0

Figure 12: Navigation Grid.

Figure 13: Cache Contents.

each region. We also number the objects from 1 to 12. The picture presents only three levels (1, 2, and 3).
Assume probabilities are assigned to each region and implicitly to each object, based on a “operation-driven”
probability model. Thus, objects 6 and 7 have a probability of 1.0 as they are in the active window. There
is 40% chance that the window expands to the left, and so on. The corresponding cache content is shown in
Figure 13. In this example a probability precision of 0.1 is assumed, and consequently 10 probability-based

buckets are used.

5.4 Architecture of Visualization System

The system architecture depicted in Fig. 14 illustrates the key modules and interactions of our XmdvTool
system that incorporates all the ideas described in this paper. First, as shown on the top of the figure, an
off-line process transforms the hierarchical data into MinMax trees [41, 42], a precoded indexing structure
allowing us to express hierarchical navigation as range queries as explained in Figure 11. The prepared data
is then loaded into the database. The process implements the MinMax tree approach, the details of which

are explained in [41]. Information about the database schema is used later during exploration.

When exploring, users interact via the graphical interface (GUI) shown on the right side. Details of
the visual exploration interface have been given in Section 2. The visual navigation operations correspond
to changes in the active set. When a change in the active set is detected, a producer thread is created,
while the GUI itself acts as