
WPI-CS-TR-02-09 January 2002

XEM: XML Evolution Management

by

Hong Su
Diane K. Kramer and Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Abstract

XML has been emerging as a standard format for data representation on the web. In many application
domains, specific document type definitions (DTDs) are designed to enforce the structure (schema) of
the XML documents. However, both the data and the structure of XML documents tend to change over
time for a multitude of reasons, including to correct design errors in the DTD, to allow expansion of
the application scope over time, or to account for environmental changes such as the merging of several
businesses into one. Most of the current software tools that enable the use of XML do not provide
explicit support for such data or schema changes. Using these tools in a changing environment entails
first making manual edits to DTDs and XML documents and thereafter reloading them from scratch.
To overcome this limitation, we put forth a framework, called the XML Evolution Manager (XEM),
to manage the evolution of DTDs and XML documents. XEM provides a minimal yet complete tax-
onomy of basic change primitives. These primitives, classified as either schema or data changes, are
consistency-preserving. For a schema change, they ensure that the new DTD is legal, and all existing
XML documents are transformed to also conform to the modified DTD. For a data change, they en-
sure that the update is only performed if the modified XML document would conform to its DTD. We
have implemented a working prototype system called XEM-Tool in Java with PSE Pro Object Oriented
Database as our backend storage system. Our experimental study using this system compares the rela-
tive efficiencies of using these the primitive operations for in-place XML data and schema changes in
terms of their execution times against the time to reload the modified XML data into the backend OO
storage system.

Keywords: XML, Document Type Definition, Schema Evolution, Structural Consistency, XML Evo-
lution Management

1

1 Introduction

1.1 Motivation

XML [38], the Extensible Markup Language, has become increasingly popular as the data exchange
format over the Web. Although XML data is considered to be “self-describing”, many application
domains tend to use Document Type Definitions (DTDs) [38] or XML Schema [39] to specify and
enforce the structure of XML documents within their systems. A DTD defines for example which tags
are permissible in an XML document, the order in which such tags must appear and how the tags are
nested to form a hierarchical structure. DTDs thus assume a similar role as types in programming
languages and schema in database systems.

Many database vendors, such as Oracle 8i [27], IBM DB2 Extender [19] and Excelon [29], have
recently started to enhance their existing database technologies to manage XML data as well. Many
of them [27] assume that a DTD is provided in advance and will not change over the life of the
XML documents. They hence utilize the given DTD to construct a relational [19] or object-relational
[27] schema which serves as the structure into which to populate the XML documents. For example,
Oracle8i [27]) provides one fixed mapping between a DTD and relational schemas. The mapping is
done by matching the element tag names with the column names in the table. Elements with text
only content map to scalar columns and elements containing subelements map to object types. In the
DB2 XML Extender [19], a user can define a Document Access Definition (DAD) file to specify their
own mapping. The DAD is an XML formatted document which allows the user to associate the XML
document structure with particular relational tables and columns. However all of these systems do not
provide sufficient change support for XML data.

We note that change is a fundamental aspect of persistent information and data-centric systems [32].
Information over a period of time often needs to be modified to reflect perhaps a change in the real
world, a change in the user’s requirements, mistakes in the initial design or to allow for incremental
maintenance. While these changes are also inevitable during the life of an XML repository, most of
the current XML management systems unfortunately do not provide enough (if any) support for these
changes.

1.2 Motivating Example of XML Changes

Here we present an example how changes in XML documents lead to various data management issues
that must be addressed. Figure 1 depicts an example DTD Article.dtd on publications and Figure
2 shows a sample XML document conforming to this DTD. These sample documents are used for
running examples hence forth in the remainder of this paper.

Changes can be classified as either data changes or schema changes. An example of a data change
is the deletion of the editor information, i.e., removal of � editor name = “Won Kim” � from the XML
document in Figure 2. In this case, an XML change support system would have to determine whether
this is indeed a legal change that will result in an XML document still conforming to the given DTD.
Since the element definition for monograph, � !ELEMENT monograph (title, editor) � , requires that
the editor subelement must occur exactly once in the parent element monograph, this data change

2

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name)>

<!ATTRLIST author id ID #REQUIRED>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT related (monograph)*>

<!ELEMENT monograph (title, editor)>

<!ELEMENT editor EMPTY>

<!ATTRLIST editor name CDATA #IMPLIED>

Figure 1: Sample DTD: Article.dtd

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>

<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>

<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>
<affiliation>WPI</affiliation>
<related>

<monograph>
<title>Modern database systems</title>
<editor name = “Won Kim”></editor>

</monograph>
</related>

</article>

Figure 2: Valid Sample XML Document Con-
forming to Article.dtd

should be rejected.
Now, consider the DTD change where the definition of the element monograph, which must have an

editor subelement, is relaxed such that it is optional to have the editor subelement, i.e., � !ELEMENT
monograph (title, editor) � is changed to � !ELEMENT monograph (title, editor?) � . For such a DTD
change, a change support system would need to verify that (1) the suggested change leads to a new
legal DTD conforming to the DTD specification [38] and (2) the corresponding changes are propa-
gated to the existing XML documents to conform to the changed DTD. A single occurrence of the
editor subelement in the XML data would still conform to a new DTD definition in which the editor
subelement is optional. Therefore this DTD change requires no changes to the underlying XML data.
In fact, in this case, we can make this particular decision without even having to consult the particular
XML data instances.

1.3 Limitations of XML Management Systems

In most current XML data management systems [27, 19], change support, if any, is inherently tied to
the underlying storage system, its data model and its change specification mechanism. For example,
in IBM DB2 XML Extender, once the structured XML documents are stored as relational instances,
the user has to write SQL code to perform any type of update on the documents. This requires users to
be aware of the underlying relational database, and the mapping between the DTD and the schema of
the relational database as expressed by the DAD mapping file. In addition, the specification of updates
tightly coupled to a specific XML data management system may induce extensive re-engineering work
either for migration to another system or integration of several systems. This clearly points out the need
for the development of a standard XML change specification and support system.

Moreover, a database system should maintain structural consistency [1], i.e., data should always
be consistent with its schema. Hence, it is critical to detect in advance whether an update is a legal
operation that preserves the structural consistency as illustrated in Section 1.2. However, this problem
is ignored in most existing XML data management systems [27, 19, 29] and the tools [18, 21] specially

3

XML Enabled System Data Update Schema Update Generality Consistency
DB2 XML Extender Yes No No No

Oracle 8i Yes No No No
Excelon Yes Yes General for Data Update No

Table 1: Support for XML Change

designed for transforming XML documents from one format to another.
In Table 1, we compare the update support of the commercial XML data management systems in

the following four aspects, namely (1) support for XML data updates, (2) support for XML schema
updates, (3) update specification general for XML or tied to particular native format of the back-end
storage engine, and (4) if the update is ensured to preserve the structural consistency of the XML data
and the associated XML schema.

1.4 XML Evolution Manager (XEM) Approach

In this work we fill this void by proposing a general XML evolution management system that provides
uniform XML-centric schema and data evolution facilities. To the best of our knowledge, XEM is
one of the first efforts to provide such uniform evolution management for XML documents. The
contributions of our work are:

1. We identify the lack of generic and safe support for evolution in current XML data management
systems such as [27, 19, 29].

2. We propose a taxonomy of XML evolution primitives that provides a system independent way to
specify changes to both the DTDs and XML documents.

3. We ensure three forms of system integrity during evolution in order for the change support system
to be sound: legal DTDs, well-formed XML documents and valid XML documents.

4. We show that our proposed evolution taxonomy is complete and sound.

5. We develop a working XML Evolution Management prototype system called XEM-Tool using
the Java object server PSE Pro as storage system to verify the feasibility of our approach.

6. We conduct experimental studies on XEM-Tool to assess the relative costs associated with dif-
ferent evolution primitives. We also analyze the dependency between specific implementation
choices made and the resulting impact on change performance.

1.5 Outline.

The remainder of this paper proceeds as follows. Section 2 provides background information on XML
documents and DTDs, and shows how we model these constructs in our system. In Section 3 we
present our taxonomy of evolution primitives, and provide proofs showing that the taxonomy is both
complete and sound. Section 4 reviews our prototype design and implementation. In Section 5 we
present our experimental studies, including tests run on our prototype system and the results from

4

those tests. Section 6 discusses other related research upon which we base our work. And finally, in
Section 7 we present our conclusions, including future areas of study that could be taken up to continue
this research, and a summary of the main contributions of this work.

2 XML and DTD Data Model
2.1 Background on DTD and XML

Both Document Type Definitions (DTDs) [38] and XML Schema [39] define the structure and content
of an XML document. XML Schema is more powerful than a DTD. For example, it supports list types
whereas a DTD cannot. However, XML Schemas are still in the preliminary stages of a proposed
recommendation, while DTDs are currently the dominant de-facto industry standard. For this project,
therefore, we choose to focus on DTDs rather than XML Schemas. However, our results should be
transferable to XML Schemas with some extensions.

A DTD is legal if it conforms to the DTD specification [38]. For example, if a DTD uses illegal
characters in element type names, or defines two element types with the same name, it is then not legal.

A XML document is well-formed if it meets all the well-formedness constraints enumerated in the
specification [38]. For example, a well-formedness constraint of element type match requires that the
name in an element’s end-tag must match the element type in the start-tag (e.g., � /name � matches

� name �). The unique attribute specification constraint prohibits that one attribute name appears more
than once in the same start-tag or empty-element tag.

A well-formed XML document can in addition be valid if it has an associated document type decla-
ration (DTD) and if the document complies with the constraints expressed in it.

In the following, in order to distinguish an element in an XML document from an element declara-
tion in a DTD, we use the term “element instance” to refer the former as opposed to the term “element
definition” referring the latter. Similarly, the term “attribute instance” is used as opposed to “attribute
definition”.

2.2 The XML Data Model

A tree-structure can be used to represent an XML document. We use the following notation to describe
our model of an XML data tree.

Definition 1 An XML data tree is a quadraple
�

= (� , �������
	��������� , �������
	��������� , �
������
�) where
� is the set of nodes in the tree, �������
	������� � is a function representing the relationship between a
node and its ordered children while �������
	��������� represents the relationship between a node and its
unordered children with �������
	��������� , �������
	��������� : � ! �#" , $&%(' ; and �
������
� is a labeling
function: �
������
� : �)! *,+.- , where * is the set of node types, i.e., *0/�1 XMLDOC, ELEMNODE,

ATTRNODE, VALNODE 2 , and - is the set of strings which can serve as legal names of the node.

Figure 3 depicts an XML data tree which represents the XML document in Figure 2. For simplic-
ity, we do not mark each node with its label [� , 3]. Instead, we use different shapes of the node to
distinguish its type “ � ” and only mark its name “ 3 ” inside the node.

5

XMLDOC

article

title author author related

XML

Evolution

Manager

id

dk

name

first last

Diane Kramer

id

er

name

first last

Elke Rundensteiner

monograph

title editor

Modern

Database

Systems

name

Won Kim

x1

x2

x3

x4

x5

x6

x7

x9

x10

x8

x11

x12

x14

x13

x15

x16

x17 x19

x18 x20

x21

x24

x25 x27

x26

x28

x29

attribute nodeelement node

value nodeXMLDOC node

Parent and ordered child relationship

parent and unordered child relationship

affiliation

WPI

x23

x22

Figure 3: Tree Representation of XML Document in Figure 2
Each XML document can be identified by a unique XMLDOC node � with labelN(�) =[XMLDOC,

“XMLDOC”]. The XMLDOC node’s child is an ELEMNODE node which represents the root element
instance of the XML document. Each ELEMNODE node � with labelN(�) = [ELEMNODE, 3] represents
an element instance with the name 3 . For example, � article � ... � /article � is represented as the node
labeled as [ELEMNODE, “article”] (the content between � article � and � /article � is represented by
the node’s descendant nodes). Each ATTRNODE node � with labelN(�) = [ATTRNODE, 3] represents
an attribute instance with the name 3 . For a VALNODE � with �
������
� � ��� / [VALNODE, 3], 3 is either
a #PCDATA value of an ELEMNODE node or a CDATA value of an ATTRNODE node.

The unordered children relationship exists between an element node and its attribute nodes because
attributes are not ordered in a XML document. Subelements of an element are ordered hence the
ordered children relationship is used to model this. We also use the terms children list and children set
to refer to the collection of ordered and unordered children respectively.

2.3 The DTD Data Model

A DTD is composed of a set of element definitions. An element definition can in turn contain subele-
ment definitions or attribute definitions or be empty. The structure of an element definition is defined
via a content-model built out of operators applied to its content particles. Content particles are either
simple subelement definitions or groups of subelement definitions. Groups may be either sequences in-
dicated by “,” (e.g., a,b) or choices indicated by “ � ” (e.g., a � b) where both � and � are content particles.
For every content particle, the content-model can specify its occurrence in its parent content particle

6

using regular expression operators such as “?” (zero or one occurrence), “*” (zero or more occur-
rences) or “+” (one or more occurrences). The content model of an element type can be: EMPTY (have
no content particles); #PCDATA (contain only text); ANY (can contain any of defined subelements);
MIXED (can contain both subelements and text).

Definition 2 A DTD graph is a quadraple
�

= (� , � ����� 	��������� , �������
	��������� , �
��� ����). � is the set
of vertices in the graph. � �����
	��������� is a function representing the relationship between a vertex and
its ordered children, while �������
	 ��� represents the relationship between a vertex and its unordered
children with � �����
	��������� , � ����� 	�����������	� ! ��" , $ % ' . �
��� ���� is a labeling function: � ��� ��
���
� ! * + ��� +� � " , $ %(' where * is the set of vertex types, i.e., * = 1 DTDROOT, ELEMDEF,
ATTRDEF, GROUPDEF, QUANTDEF, PCDATA, ANY 2 , $ is the number of the properties of the vertex,
and each pair (� , �) where ���

�
and ����� indicates that the vertex takes value � for property � .

We use labelV(�).Type to represent the type of vertex � , e.g., DTDROOT, ELEMDEF and PCDATA
etc. Vertices of different types can have different sets of properties. Among them, a vertex of type
ELEMDEF, GROUPDEF or QUANTDEF is called a content particle vertex since it is associated with a
content particle. Below we describe the properties of each vertex type. The six vertex types fall into
three larger categories, namely, tag vertex, constraint vertex and built-in vertex.

1. Tag Vertex:

(a) ELEMDEF (Element Definition Vertex): Each ELEMDEF vertex v represents an element
definition. � has one property, denoted as labelV(�).Name which represent the name of the
element type.

(b) ATTRDEF (Attribute Definition Vertex): Each ATTRDEF vertex v represents an at-
tribute definition. � has four properties, denoted as labelV(�).Name, labelV(�).ValType,
labelV(�).Default and labelV(�).DefaultVal, which represent the name, value type (e.g.,
CDATA, ID, IDREF, IDREFS etc.), default property (i.e., #REQUIRED, #IMPLIED,
#FIXED or with a default value), and default value (if any) of the attribute type respec-
tively.

2. Constraint Vertex:

(a) GROUPDEF (Group Definition Vertex): Each GROUPDEF vertex v has only one property,
denoted as labelV(�).GrpType which specifies how the content particles are grouped in its
parent content particle.

i. if GrpType = “,” (i.e., LIST): the children are grouped by sequence;

ii. if GrpType = “ � ” (i.e., CHOICE): the children are grouped by choice.

(b) QUANTDEF (Quantifier Definition Vertex): Each QUANTDEF vertex v has only one prop-
erty, denoted as labelV(�).QuantType which specifies how many times the content particles
occur in its parent content particle.

7

i. if QuantType = “ � ” (i.e., STAR): children are repeatable but not-required.

ii. if QuantType = “
�

” (i.e., PLUS): children are repeatable and required.

iii. if QuantType = “?” (i.e., QMARK): children are neither repeatable nor required.

3. Built-in Vertex:

(a) DTDROOT vertex: The DTDROOT vertex is the entry for the DTD graph, i.e., the only vertex
in the graph whose indegree is zero. It has a set of children each of which is an element
definition vertex. A DTDROOT vertex has no properties defined.

(b) PCDATA vertex: The PCDATA vertex indicates the content type of its parent, an element
definition vertex, is #PCDATA.

(c) ANY vertex: The ANY vertex indicates the content type of its parent, an element definition
vertex, is ANY.

Note, if an element vertex does not have any subelement vertices, its content type is EMPTY.
Otherwise, its content type is MIXED. Hence for those content types that can be derived from the
parent and children relationship, we do not have explicit built-in vertices to express them.

Figure 4 depicts the DTD graph representing the Article.dtd in Figure 1. For simplicity, we use
different shapes of the vertices to denote their types and the label of a vertex shows the values of all
the vertex’s properties.

The unordered children relationship exists between an element vertex and its attribute vertices, or
between a DTDROOT vertex and its element definition vertices. A content particle vertex is modeled
as an ordered child of its parent content particle vertex. We use children list and children set to refer
to ordered and unordered children respectively.

To locate a content particle � within the content model of element � , we define the concept of a DTD
position denoted by the format of a list of integers [��� , ��� , ..., ��� , ���
	�� , ..., � "]. Each integer is associated
with a vertex. A list of such integers is then associated with a path by which � can be reached from
� . ���
	�� (� � ') is associated with a vertex which is the ���	�� th child in the children list of the vertex
associated with ��� . For ��� , it is associated with the �
� th child of � . For example, in Figure 4, the content
particle related? (d16) defined in article (d2) is reached through the path [d3, d16]. d3 is the first child
of d2 and d16 is the third child of d3, thus the DTD position of d16 is then [1, 3].

2.4 Relationships between DTD Graph and XML Data Tree

It is required in [38] that a DTD must be deterministic, i.e., an element in the document can match only
one occurrence of an element type in a content model. Hence in an XML data tree, each element or
attribute instance node is “uniquely typed”, i.e., an instance node is bound to a unique path in a DTD
graph starting from the DTDROOT vertex and ending at either an element or an attribute definition
vertex. We therefore define the bi-direction relationship between the XML data tree nodes and the
DTD graph vertices.

8

,,

+ ?

#PCDATA

**

,

,,

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d13

d16

d14

d19

d21

d12

d17

id

ID

REQUIRED

name

last

first

title

related

monograph

editor

name

CDATA

IMPLIED

article

DTDROOT

built-in vertex

element vertex attribute vertex

constraint vertex

parent and ordered child relationship

parent and unordered child relationshipbuilt-in vertex

element vertex attribute vertex

constraint vertex

parent and ordered child relationship

parent and unordered child relationship

affiliation

?
d18

d20

d22

author

,

d11

d15

Figure 4: Graph Representation of Article.dtd in Figure 1
Given an XML tree

�
= (� , childrenON, childrenUN, labelN) and a DTD graph

�
= (� , childrenOV,

childrenUV, labelV), we define a function typeOf: � ! �
�

(� � 1).
� � � � and � an element or

attribute instance node, typeOf(�) gives a list [� � , � � , ..., � � , � � 	�� , ..., � "] ($ % 1).

1. If � is not a root element node, then $ ��� , and � � . � � ... � � . � � 	�� ... � " is a path in the DTD graph. In
the path, � � is an element definition vertex that defines the type of � ’s parent element, � � 	�� is � � ’s
child and � " is the definition vertex that defines � ’s type.

2. If � is a root element node, it does not have any parent element, thus $ /�� , and � � gives the
definition vertex defining � ’s type.

We call the list [� � , � � ,..., � "] a DTD path list.
For example, in Figures 3 and 4, typeOf(x3) = [d2, d3, d4], and typeOf(x23) = [d19, d20, d4].
Conversely, we define a function as extent: � " ! � � � � � (� , � , $ % 1). The input for extent is a DTD

path list.

1. If � � is a DTDROOT vertex: � � can only be an element definition vertex, and extent(� � , � �) gives a
singleton list which contains only one sublist. The sublist contains all the instance nodes defined
by type � � .

2. If � � is a ELEMEDEF vertex:

(a) if � � is a ELEMDEF or ATTRDEF vertex: extent(� � , � �) gives a singleton list. The only
sublist contains all the instance nodes � that satisfy typeOf(�) = [DTDROOT, � � , � �].

9

(b) if � � is a GROUPDEF vertex: extent(� � , � �) gives a singleton list. The only sublist contains
all the instance nodes � that � � groups together. � can be of different element or attribute
types since � � can group elements or attributes of different types together.

(c) if � � is a QUANTDEF vertex: extent(� � , � �) gives a list of sublists each of which contains one
occurrence of a group of instances that � � quantifies.

For example, in Figures 3 and 4, extent(d1, d2) gives all instance nodes of type article, i.e, [[x2]].
extent(d2, d4) returns all instance nodes bound with the content particle title in article, i.e, [[x3]].
Moreover, extent(d2, d6) gives the binding of content particle (author, affiliation?)+ which is com-
posed of two occurrences of groups bound with content particle (author, affiliation?), i.e., [x5], [x13,
x21] respectively. Therefore extent(d2, d6) = [[x5], [x13, x21]].

3 Taxonomy and Semantics of Evolution Primitives
3.1 Overview of the Taxonomy

In this section we present our proposed taxonomy of evolution primitives and define their semantics.
Our goal is to provide a set of primitives with the following characteristics:

� Complete: While we aim for a minimal set of primitives, all valid changes to manipulate DTDs
and XML data should be specifiable by one or by a sequence of our primitives.

� Sound: Every primitive is guaranteed to maintain system integrity in terms of legality of DTD,
well-formedness of XML data, and consistency between DTD and XML data. We ensure that the
execution of primitives violates neither the invariants nor the constraints in the content model.

The primitives fall into two categories: those pertaining to the DTD, and those pertaining to the
XML data. Table 2 gives the complete taxonomy of primitives for DTD and XML data changes. A
more detailed explanation of the primitives and examples of their use are given in Section 3.2.

3.2 Details of Change Primitives

In this section, we define the precise syntax and semantics of each DTD and
XML change primitive. We assume that the input DTD graph

� � = (� � ,
�������
	��������� � , �������
	����� ��� � , �
��� ��
� �) is legal and the input XML data tree

� � = (� � ,
�������
	������� � � , � �����
	��������� � , �
��� �� � �) is well-formed and valid. To ensure that the targeted
output DTD graph

� � = (� � , � ����� 	��������� � , �������
	����� ��� � , �
� � ��
� �) and XML data tree
� � = (� � ,

�������
	������� � � , �������
	����� ��� � , �
� � ��
� �) remain legal, well-formed and valid after the changes,
pre-conditions and post-conditions are enforced on each change primitive. The primitive will not be
executed unless the corresponding pre-conditions are satisfied, and changes will not be committed
unless the corresponding post-conditions are accomplished.

We now clarify some of the terms we are using in this paper. For a new vertex � , existing vertices
� and � with � a descendant of � at DTD position � = [� � , � � , ..., � "�� � , � "], if we say “ � is inserted at

10

DTD Operation Description
createDTDElement(� , �) Create target element type with name � and content type

�
destroyDTDElement() Destroy target element type
insertDTDElement(� , � , � , �) Add element type � with quantifier � and default value � at DTD position � to target element type
removeContentParticle(�) Remove content particle at DTD position � in target element type
changeQuant(� , �) Change quantifier of content particle at DTD position � in target element type to �
convertToGroup(start, end,

�
) Group content particles from DTD position start to end in target element type into a group of type

�
flattenGroup(�) Flatten group at DTD position � in target element type
addDTDAttr(� , � , � , �) Add attribute type with name � with type

�
, default type � , and default value � to target element type

destroyDTDAttr(�) Destroy attribute type with name � from target element type

XML Data Operation Description
createDataElement(� , �) Create target element node with type � and value �
addDataElement(� , �) Add element node � at position � in target element node
destroyDataElement() Destroy target element node
addDataAttr(� , �) Add an attribute with name � and value � to target element node
destroyDataAttr(�) Destroy attribute with name � in target element node

Table 2: Taxonomy of DTD and XML Data Change Primitives

DTD position � in � ”, it means � will be at DTD position � in � after being inserted and � will be the
sibling right after � . If we say “ � is inserted above DTD position � in � ”, it means � be will be at DTD
position � after being inserted and � will now be � ’s child. If we say “ � is removed from DTD position
� in � ”, it means the incoming edge from the vertex at DTD position [� � , ..., � "�� �] to � is deleted.

3.2.1 Changes to the DTD

Due to the space limitation, we describe the change operations formally only when necessary. The full
formal definitions are in [23]. Each change operation is executed on the target object. And Primitive
1 createDTDElement and Primitive 10 createDataElement return the new object created through the
operation.

For an element definition or built-in vertex, we use its name to represent it since its name is unique
in the DTD. Similarly, an XMLDOC node in an XML data tree can be represented by its name. For
an element instance node, it is represented by an XPath [37] uniquely identifying it (i.e., the XPath
can only refer to this single node). Also, a variable can be used to represent an object (i.e., a vertex or
a node) returned by some primitives. We use $ as a prefix to distinguish a variable. For example., a
represents an element definition vertex with type name a while $a is a variable named � .
Primitive 1: createDTDElement

Syntax: DTDROOT.createDTDElement(String 3 , ConType �)
Semantics: Create and return a new non-nesting element definition named 3 with content type � .
Preconditions: No existing element definition vertex with name 3 has been defined. That is,

� � � � �
and �
������
� � � � � . �	� � = ELEMDEF, �
� � �� � � � ��
 �0� � �/ 3 . Also, � must be either EMPTY or #PCDATA.
Resulting DTD Changes: A new element definition vertex with name 3 will be created
with content type � , and will be added to the children set of the DTDROOT vertex. That is,
� � = � �� , � ��� ��
� � � � . �	� �� = ELEMDEF, �
� � ��
� � � � . �0� � = 3 , �������
	����� ��� � (DTDROOT) =
�������
	��������� � (DTDROOT) � , �
��� ��
� � � � . ��� � �	� �� = � . � � � � � , we have �������
	��������� � � � � =

11

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name)>

<!ATTRLIST author id ID #REQUIRED>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT related (monograph)*>

<!ELEMENT monograph (title, editor)>

<!ELEMENT editor EMPTY>

<!ATTRLIST editor name CDATA #IMPLIED>

(a)

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name)>

<!ATTRLIST author id ID #REQUIRED>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT middle (#PCDATA)>
<!ELEMENT related (monograph)*>

<!ELEMENT monograph (title, editor)>

<!ELEMENT editor EMPTY>

<!ATTRLIST editor name CDATA #IMPLIED>

(b)

Figure 5: Results of createDTDElement Primitive
�������
	��������� � � � � , � �����
	��������� � � � � = � �����
	��������� � � � � , and � ��� ��
� � � � � = �
��� ��
� � � � � .
Resulting Data Changes: The newly created element type is not a subelement of any other element
type yet, i.e., it cannot be reached from any other defined element. We say such an element definition
vertex is “dangling”. No instances of � will be created. Therefore, this primitive causes no changes to
the XML data.

Example 1 For the DTD in Figure 5 (a), we create a new element type middle to represent the concept
of an author’s middle name. The command is:

DTDROOT.createDTDElement(“middle”, #PCDATA).

This primitive changes the DTD in Figure 5 (a) to the form in Figure 5 (b).

Primitive 2: destroyDTDElement
Syntax: e.destroyDTDElement()
Semantics: Destroy the element definition .
Preconditions: An element definition vertex must exist, be non-nesting, i.e., its content model is
either EMPTY or #PCDATA.
Resulting DTD Changes: will be removed from the children list of the DTDROOT vertex and then
be destroyed.
Resulting Data Changes: All instance nodes of type are removed.

Example 2 For the DTD in Figure 5 (b), we destroy the dangling element definition middle. The
command is:

middle.destroyDTDElement().

This primitive restores the DTD in Figure 5 (b) to the form in Figure 5 (a). Since no instance of middle
exists yet, no data change will be made to the XML document.

3.2.2 Changes to an Element Type Definition

Primitive 3: insertDTDElement
Syntax: � .insertDTDElement(ElemDef , DTDPosition � , QuantType � , Value �)

12

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name)>

<!ATTRLIST author id ID #REQUIRED>

<!ELEMENT name (first, last)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT related (monograph)*>

<!ELEMENT monograph (title, editor)>

<!ELEMENT editor EMPTY>

<!ATTRLIST editor name CDATA #IMPLIED>

(a)

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name)>

<!ATTRLIST author id ID #REQUIRED>

<!ELEMENT name (first, middle?, last)>
<!ELEMENT first (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT middle (#PCDATA)>
<!ELEMENT related (monograph)*>

<!ELEMENT monograph (title, editor)>

<!ELEMENT editor EMPTY>

<!ATTRLIST editor name CDATA #IMPLIED>

(b)

Figure 6: Results of insertDTDElement Primitive Operation
Semantics: Insert the element definition with quantifier � into target element definition � at DTD
position � . The default value of the instances correspondingly generated (if any) is � .
Preconditions: There must exist an element definition vertex . � � 1 STAR, PLUS, QMARK, NONE 2 .
If � signifies a required constraint, 1 i.e., � = STAR or � = NONE 2 and is a PCDATA element, � must
not be null.
Resulting DTD Changes: If � is NONE, the element definition vertex will be added to � at DTD
position � . Otherwise, a new quantifier vertex � of type � will be created with as its only child and �
will then be added to � at DTD position � .
Resulting Data Changes: If � signifies a required constraint, then for each instance node � � ex-
tent(DTDROOT, �), a subtree rooted at an instance node � with typeOf(�) = [DTDROOT,] will be
created based on � (if any) and then inserted below � .

Example 3 For the DTD in Figure 6 (a), we create the element middle, as was done above in Example
1.

DTDROOT.createDTDElement(“middle”, PCDATA);

We then insert element middle with quantifier QMARK into the target element name at DTD position
[1, 2]) (i.e., between first and last). The command is:

name.insertDTDElement(“middle”, [1, 2], QMARK);

Since the quantifier does not impose a required constraint, no data changes are required for this
operation. These primitives change the DTD in Figure 6 (a) to the form in Figure 6 (b).

Primitive 4: removeContentParticle
Syntax: � .removeContentParticle(DTDPosition �)
Semantics: Remove the content particle at DTD position � in the target element definition � .
Preconditions: There must exist a content particle vertex � at DTD position � in � .
Resulting DTD Changes: � is removed from the children list of � .
Resulting Data Changes:

� � �� � � �� � � ��� � � , all subtrees rooted at � are destroyed.

Example 4 For the DTD in Figure 7 (a), we remove the content particle related? from the element
type article. The DTD position of ralated? is [1, 3]. Thus the command is:

13

<!ELEMENT article (title, (author, affiliation?)+, related?)>
...

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>
<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>
<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>
<affiliation>WPI</affiliation>
<related>
<monograph>

<title>Modern database systems</title>
<editor name = “Won Kim”></editor>

</monograph>
</related>

</article>

(a)

<!ELEMENT article (title, (author, affiliation?)+)>
... (rest is the same)

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>
<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>
<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>
<affiliation>WPI</affiliation>

</article>

(b)

Figure 7: Results of removeContentParticle Primitive Operation
article.removeContentParticle(article, [1, 3]);

The primitive changes the DTD in Figure 7 (a) to the form in Figure 7 (b). As for the XML data change,
since the only instance of the content particle related? in article is x23, the subtree rooted at x23 which
corresponds to the bold part in the XML document in 7 (a) is removed. The XML document is then
changed to the form in 7 (b).

Primitive 5: changeQuant
Syntax: � .changeQuant(DTDPosition � , QuantType �)
Semantics: Change the quantifier for the content particle at DTD position � in the target element
definition � to type � .
Preconditions: There must exist a content particle vertex � at position � in � . � must be one of the
two following cases. First, � is not a quantifier vertex and � does not have a parent quantifier vertex,
i.e., � ’s quantifier state is NONE. Second, � is a quantifier vertex.
Resulting DTD Changes: If � is not a quantifier vertex without a parent quantifier vertex, then a new
quantifier vertex of type � will be inserted above � . If � itself is a quantifier vertex, then � is updated
to the new quantifier type � . Especially, if � is NONE, � will be removed.
Resulting Data Changes: The XML data changes required for this primitive depend on the old and
new quantifier types. These changes can be summarized using the following three rules:

1. If the old quantifier � �
represented a repeatable constraint and the new quantifier does not, we

must remove the multiple occurrence of the instances that � �
quantifies. We adopt a “first kept”

policy where only the first occurrence is kept. That is, for list
� / � � �� � � ��� � � � , remove all nodes

in the sublists in
�

besides the ones in the first sublist.

2. If the new quantifier � represents a required constraint and the old quantifier � �
did not, we must

check whether there exists any instance of the content particle that � �
quantifies. If not, an instance

must be created. That is, for each instance node � � � � �� � (DTDROOT, �), we check whether

14

<!ELEMENT article (title, (author, affiliation?)+, related?)>

...

<article>

<title>XML Evolution Manager</title>

<author id = “dk”>

<name>

<first>Diane</first>

<last>Kramer</last>

</name>

</author>

<author id = “er”>

<name>

<first>Elke</first>

<last>Rundensteiner</last>

</name>

</author>

<affiliation>WPI</affiliation>

<related>

<monograph>

<title>Modern database systems</title>

<editor name = “Won Kim”></editor>

</monograph>

</related>

</article>

(a)

<!ELEMENT article (title, (author, affiliation?), related?)>

... (rest is the same)

<article>

<title>XML Evolution Manager</title>

<author id = “dk”>

<name>

<first>Diane</first>

<last>Kramer</last>

</name>

</author>

<related>

<monograph>

<title>Modern database systems</title>

<editor name = “Won Kim”></editor>

</monograph>

</related>

</article>

(b)

Figure 8: Results of changeQuant Primitive Operation
there exists a sublist

� �
� � � �� � � ����� � � such that

�
� � � �

, � ��� ����� 	������� � � � � . If not, add a new
default subtree which represents an instance of the content particle that � �

quantifies.

3. The remaining combinations of old and new quantifiers such as not-repeatable becomes repeat-
able, or required becomes not-required cause no changes to the XML data.

Example 5 For the DTD in Figure 8 (a), we change the quantifier of subelement type author in the
parent element type article from PLUS to NONE. The DTD position of the content particle author in
article is [1, 2]. Thus the command is:

article.changeQuant([1, 2], NONE);

This primitive, in addition to changing content particle (author, affiliation?)+) to (author, affiliation?),
also deletes some instances of (author, affiliation?) according to rule 1. As illustrated in Section 2.4,
extent(d2, d6) = [[x5], [x13, x21]], therefore only the nodes in the first sublist [x5] are kept while
the nodes in the other sublists [x13, x21] are all deleted. This primitive changes the DTD and XML
document in Figure 8 (a) to the forms in Figure 8 (b).

Primitive 6: convertToGroup
Syntax: � .convertToGroup(DTDPosition 3 � ��� � , DTDPosition ���	 , GroupType �)
Semantics: Group together a sequence of content particles, whose DTD positions range from 3 � ��� � to
���	 in the target element definition � , with group type � .
Preconditions: 3 � ��� � and ���	 must be at the same level in � , i.e., the content particles to be grouped
must be siblings. Also, � � 1 LIST, CHOICE 2 .
Resulting DTD Changes: We create a new group definition vertex � , move a set of children

�
whose

DTD positions are falling into the range (3 � ��� � , ���) in � to be � ’s children, and then insert � into � at
DTD position 3 � ��� � .

15

<!ELEMENT author (first, last, email)> <!ELEMENT author ((first, last), email)>

... ...

(a) (b)

Figure 9: Results of convertToGroup Primitive Operation
Resulting Data Changes: Since this primitive only changes the hierarchical organization of the con-
tent particle vertices, it does not cause any change to the XML data.

Example 6 For the DTD in Figure 9 (a), subelements of author, first, last and email, are all at the
same hierarchical level. We can group content particles first and last into a sequence list group. The
group implies that first and last are more semantically coupled (they together convey the information
of name). The command is:

author.convertToGroup([1, 1], [1, 2], LIST);

This primitive changes the DTD in Figure 9 (a) to the form in Figure 9 (b). There is no data change
caused by this primitive.

Primitive 7: flattenGroup
Syntax: � .flattenGroup(DTDPosition �)
Semantics: Flatten a group of content particles at DTD position � in the target element definition � .
Preconditions: There must exist a group definition vertex � at DTD position � in � .
Resulting DTD Changes: Move all � ’s children

�
to be � ’s children and then remove � in � .

Resulting Data Changes: Similar to Primitive 6, this primitive only changes the hierarchical organi-
zation of the content particle vertices, it does not cause any change to the XML data.

Example 7 For the DTD in Figure 9 (b), we flatten the list group composed of first and last to restore
the article definition to the DTD in Figure 9 (a). The DTD position of the content particle (first, last)
in author is [1, 1]. Thus the command is:

author.flattenGroup([1, 1]);

Primitive 8: addDTDAttr
Syntax: p.addDTDAttr(String 3 , AttrType � , DefType 	 , String �)
Semantics: A new attribute definition with name 3 , attribute type � , default type 	 , and default value �
will be defined with the target element definition � .
Preconditions: No attribute with name 3 has been defined in � . � � 1 CDATA, CHOICE, HREF, ID,
IDREF, IDREFS, NMTOKEN 2 . 	�� 1 #REQUIRED, #IMPLIED, #FIXED, #DEFAULT 2 . If 	 is not
#IMPLIED, the default value � must not be null.
Resulting DTD Changes: A new attribute definition vertex � will be created with the specified prop-
erties and added to the attribute children set of � .
Resulting Data Changes: If the default type � is #REQUIRED,

� � � extent(DTDROOT, �), a new
attribute instance node � will be created with default value � and added to � ’s attribute children set.

16

<!ELEMENT article (title, (author, affiliation?)+, related?)>

...

<article>

<title>XML Evolution Manager</title>

...

</article>

(a)

<!ELEMENT article (title, (author, affiliation?)+, related?)>

<!ATTLIST article published CDATA #REQUIRED>

... (rest is the same)

<article published = “YES”>

<title>XML Evolution Manager</title>

... (rest is the same)

</article>

(b)

Figure 10: Results of addDTDAttr Primitive Operation
Example 8 For the DTD in Figure 10 (a), we add a new attribute type published to the element type
article to indicate whether this article has published or not. The command is:

article.addDTDAttr(“published”, CDATA, #REQUIRED, “YES”);

This primitive changes the DTD in Figure 10 (a) to the form in Figure 10 (b). Moreover, since the
attribute is required to be present, an instance of the attribute would be created with the provided
default value “YES”. Hence the XML document shown in Figure 10 (a) is changed to the form in
Figure 10 (b).

Primitive 9: destroyDTDAttr
Syntax: p.destroyDTDAttr(String s)
Semantics: An attribute definition named 3 defined in the target element definition � will be deleted.
Preconditions: An attribute definition vertex � named 3 must exist in the attribute children set in � .
Resulting DTD Changes: � will be destroyed.
Resulting Data Changes: For all � � extent(DTDROOT, �), � is destroyed.

Example 9 We delete the attribute type published from the element type article shown in the DTD in
Figure 10 (a). The command is:

article.destroyDTDAttr(“published”);

This primitive restores both the DTD and the XML data in Figure 10 (b) to the forms in Figure 10
(a).

3.2.3 Changes to the XML Data

In our work, schema is the first-class citizen. This means that a DTD cannot be changed by any data
change operation while a DTD change can imply some data changes, i.e., data changes may be caused
due to update propagation during the DTD change without being explicitly specified. If users mean
to perform some data changes that would result in an XML document becoming inconsistent with
the current DTD, they have to explicitly perform the appropriate DTD change primitives first. For
example, if users want to delete an subelement instance node which is however required to exist in its
parent’s contents, a changeQuant primitive may be performed to change the quantifier property of this
subelement type from required to not-required. The data change is then allowed to happen.
Primitive 10: createDataElement

17

Syntax: XMLDOC.createDataElement(ElemDef , DataEleVal �)
Semantics: Create and return a new element of type with value � .
Preconditions: � must be a valid value for element type . For example, if the content model of is
of type #PCDATA, � must be a legal string that can serve as a PCDATA value. If the content model of
 is of type EMPTY, � must be null. Especially when the content model of is of type MIXED, � must
be a list of nodes each of which represents a subelement of the to-be-created element.
Resulting Data Changes: A new data element instance of type will be created. However it is
“dangling” in the XML data tree in the sense that it is only reachable from the XMLDOC node rather
than from any other element node in the XML tree. In other words, if the XML data tree is dumped
into an XML text file, this newly created element is not visible in the XML text file. Only when this
element instance is added to the XML data tree using the addDataElement primitive (Primitive 11), is
it part of the XML document.

Example 10 We first create new element instances of type title and editor. Variables � � and � � are
used to represent them respectively. We then create an element instance � � of type monograph and
specify its value as [� � , � �] which means that the element instance � � is its first subelement and � � is
its second subelement. The commands are:

$ � � = XMLDOC.createDataElement(title, “XML”);
$ ��� = XMLDOC.createDataElement(editor, “W3C”);
$ � � = XMLDOC.createDataElement(monograph, [� � , � �]);

These primitive operations cause no change to the DTD and XML document visible outside.

Primitive 11: addDataElement

Syntax: � .addDataElement(ElemDef , DataPosition �)
Semantics: Add a new element to be the ����� subelement of element � .
Preconditions: A new element instance is allowed to be added only in two cases. In case 1, the type
of the new element instance is a repeatable content particle. In case 2, the type of the new element
instance is an optional content particle and no instance of this content particle exists before.
Resulting Data Changes: The element instance will be added to the children list of � as the � ���
child.

Example 11 For the XML document in Figure 11 (a), we create a new element instance of type mono-
graph and then add it as the second child of element article/related. The commands are:

$ � � = XMLDOC.createDataElement(title, “XML”);
$ ��� = XMLDOC.createDataElement(editor, null);
$ � � = XMLDOC.createDataElement(monograph, [� � , � �]);
article/related.addElement($ � � , 2);

18

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>
<name>

<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>
<name>

<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>
<affiliation>WPI</affiliation>
<related>
<monograph>

<title>Modern database systems</title>
<editor name = “Won Kim”></editor>

</monograph>
</related>

</article>

(a)

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>

<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>

<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>
<affiliation>WPI</affiliation>
<related>

<monograph>
<title>Modern database systems</title>
<editor name = “Won Kim”></editor>

</monograph>
<monograph>

<title>XML</title>
<editor></editor>

</monograph>
</related>

</article>

(b)

Figure 11: Results of addDataElement Primitive Operation
These primitives cause no change to the DTD. They change the XML document in Figure 11 (a) to the
document in Figure 11 (b).

Primitive 12: destroyDataElement
Syntax: n.destroyDataElement()
Semantics: Destroy the target element node � .
Preconditions: The type of the target element node � must be a not-required content particle in its
parent element, i.e., the quantifier of the type is either QMARK or STAR.
Resulting Data Changes: The element instance node will be removed from the children list of the
parent element node � .

Example 12 For the XML in Figure 11 (b), we remove the second related element. The command is:

article/related/monograph[2].destroyDataElement();

This primitive causes no changes to the DTD, but restores the XML document in Figure 11 (b) to the
document in Figure 11 (a).

Primitive 13: addDataAttr
Syntax: � .addDataAttr(String 3 , String �)
Semantics: An attribute instance with name 3 and value � will be created within the element � .
Preconditions: An attribute definition vertex � named 3 must have been defined in the element type
typeOf(n). The default type of � must be #IMPLIED and no instance of � exists in the attribute children
set of � yet.
Resulting Data Changes: A new attribute instance of type � , with value � , will be created and added
to the attribute children set of � .

19

<!ELEMENT author (name)>
<!ATTLIST author id ID #REQUIRED>

...

<article>
<title>XML Evolution Manager</title>
<author id = “dk”>

<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”>

<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>

...
</article>

(a)

<!ELEMENT author (name)>
<!ATTLIST author id ID #REQUIRED>
<!ATTLIST author primary CDATA #IMPLIED>

... (rest is the same)

<article>
<title>XML Evolution Manager</title>
<author id = “dk”, primary = “YES”>

<name>
<first>Diane</first>
<last>Kramer</last>

</name>
</author>
<author id = “er”, primary = “NO”>

<name>
<first>Elke</first>
<last>Rundensteiner</last>

</name>
</author>

... (rest is the same)
</article>

(b)

Figure 12: Results of addDataAttr Primitive Operation
Example 13 For the XML in Figure 12 (a), we first add an new attribute definition primary to the
element type author to indicate whether an author is the primary author or not. We then use the
addDataAttr primitive to add attribute values for an author element. The commands are:

author.addDTDAttr(“primary”, CDATA, #IMPLIED, null);
article/author[1].addDataAttr(“primary”, “YES”);
article/author[2].addDataAttr(“primary”, “NO”);

Thess primitives change the DTD and XML document in Figure 12 (a) to the DTD and XML document
in Figure 12 (b).

Primitive 14: destroyDataAttr

Syntax: n.destroyDataAttr(String s)

Semantics: The attribute instance with name 3 within the element instance � will be deleted.

Preconditions: An attribute definition vertex � with name 3 must exist in the element type of instance
node � . The default type of � must not be #REQUIRED, since a required attribute cannot be deleted.

Resulting Data Changes: The attribute instance with name 3 in � will be destroyed.

Example 14 For the XML in Figure 12 (b), we destroy all the attribute instances of primary. The
command is:

article[2]/author[1].destroyDataAttr(“primary”);
article[1]/author[2].destroyDataAttr(“primary”);

Since the default type of the attribute type primary in author is #IMPLIED, i.e., em primary is not
required to be present, this primitive is allowed to be executed. It causes no changes to the DTD, but
restores the XML document in Figure 12 (b) to the form in Figure 12 (a).

20

Operation Description Taxonomy Equivalent
create-ver Creates new dangling vertex 1, 6, 8
add-edge Adds an edge between two vertices 3, 6, 8
delete-ver Deletes vertex with zero out-degree and removes all incoming edges 2, 7, 9
remove-edge Removes the edge between two vertices 4, 7, 9

Table 3: The DTD Graph Operations.

4 Discussion of the Change Taxonomy
4.1 Completeness of DTD Change Operations

In this section we discuss the set of change primitives in Section 3.1 supports all possible types of
DTD changes, i.e., the primitives are complete. The proof given here has its basis in the completeness
proof for the evolution taxonomy of Orion [2].

With the DTD graph we focus primarily on manipulations of vertices and directed edges between
parent and children vertices. We prove that every legal DTD graph operation is achievable using a set
of graph operations. The semantics of the graph operations are shown in columns 1 and 2 in Table
3. Our taxonomy equivalents of the general graph operations are given in column 3. If a DTD graph
operation is a combination of multiple general graph operations, we list the DTD graph operation in
multiple cells in the third column.

Lemma 1 For any given DTD graph
�

, there is a finite sequence of 1 delete-ver 2 that can reduce
�

to another DTD graph
� �

with only a DTDROOT vertex.

Lemma 2 Given a DTD graph
� �

with only a DTDROOT vertex, there is a finite sequence of operations
1 create-ver, add-edge 2 that generates any desired DTD graph

� � �
from

� �
.

Theorem 1 Given two arbitrary DTD graphs
�

and
� � �

, there is a finite sequence of 1 delete-ver,
create-ver, add-edge 2 that can transform

�
to
� � �

.

Proof: We can prove this by first reducing the DTD graph
�

to an intermediate DTD graph
� �

using
Lemma 1. The DTD graph

� �
can then be converted to

� � �
using Lemma 2.

Theorem 2 Given two arbitrary DTD graphs
�

and
� � �

, there is a finite sequence of DTD change
operations shown in Table 3 that can transform

�
to
� � �

.

Proof: The set of operations 1 create-ver, add-edge, delete-ver 2 all have equivalent operations in the
DTD change taxonomy. Hence the completeness of this set of operations is given from Theorem 1.

4.2 Soundness of Change Primitives

A taxonomy of XML and DTD change primitives is sound if the following properties hold true:

� Every operation on a legal input DTD graph produces a legal output DTD graph, and every op-
eration on a well-formed input XML tree produces a well-formed output XML tree (legality and
well-formedness criteria).

21

� Every operation on a valid input XML tree produces a new valid output XML tree (validity crite-
ria).

� Every operation on an input DTD graph which has an associated valid input XML tree produces
a valid output XML tree (consistency criteria).

A formal proof of soundness would be rather laborious, requiring detailed proof steps to demonstrate
that each of the above properties holds for each defined primitive. Instead, we illustrate below proofs
for these properties for a few of these operations. Other proofs could be done similarly.
Legality and Well-formedness. For example, let us consider the createDTDElement primitive, an
operation which makes only changes to the input DTD graph. Since the original DTD is legal and the
newly added element type is dangling (i.e., it is independent from any other element types), the only
violation this primitive can bring is duplicate element names. Our pre-condition checking mechanism
requires that whether an element type with the same name already exists must be checked. Only when
it finds no duplicate element name, the primitive is allowed to be executed. This thus prevents an
illegal DTD.
Validity. Let us consider the addDataElement primitive, an operation which makes a change to an
XML data tree. Prior to executing this primitive, the pre-condition checking mechanism will check
whether the element instance to be added is allowed at the requested position as a subelement of the
specified element instance. Thus, a primitive passing this checking ensures that the changed XML tree
will still conform to its DTD.
Consistency. Let us consider the removeContentParticle primitive, an operation which explicitly
changes the DTD and implicitly changes the XML data. When pre-conditions are satisfied, we re-
move the content particle definition from the content model of the specified parent element definition,
i.e., remove the directed edge between the parent and the content particle vertices. If we stopped at
this point, we would have a legal DTD graph and a well-formed XML tree, but the XML tree would no
longer be consistent with the output DTD graph. We therefore continue to make appropriate changes
to the XML trees. We must now remove all corresponding instance nodes to achieve the consistency.

The primitive definitions in Section 3.1 specify precisely when a change to a DTD also requires
a change to the XML data in order to maintain consistency via post-conditions. Since any given
change will either be rejected due to the pre-conditions not being satisfied, or will occur in both the
DTD and the XML data when required, and since we could demonstrate one by one that all of our
operations fulfill these requirements, we conclude that our taxonomy of combined DTD and XML
change primitives is sound.

5 XEM Prototype System

To verify the feasibility of our approach, we have implemented a working prototype system for XML
evolution management, XEM-Tool1. In this section we first present our system design and overall
architecture. Next we discuss our mapping model between XML and the underlying storage system.

1A preliminary version, ReWeb, has been demonstrated at ACM SIGMOD 2000.

22

XML Concept Representation in XML Tree OO Concept
element element instance node class instance
attribute attribute instance node member variable in class instance
nested structures edge member variable in class instance

Table 4: Mapping from XML to OO

DTD Element Type Class Name Member Variables Mapped from DTD Attributes
article D1 article none
title D1 title none
author D1 author name=“id”, type=String
name D1 name none
editor D1 editor name=“name”, type=String

Table 5: Application Class Definitions Mapped from DTD

5.1 Mapping XML Data Model to OO Data Model

We use an Object Oriented (OO) approach for XEM-Tool because the OO model is a data model closer
to the XML data model due to its hierarchical structures. Table 4 describes the mapping strategy that
we have used to map data in the XML format to the OO format. Basically, an element type is mapped
to a class. The attribute type defined in an element type is mapped to a member variable defined
in the class that models . The relationship between one element and its subelements is modeled by
a member variable named children which is implemented as a Java vector. Each object in this vector
refers to an instance of a class which is mapped from the subelement type. Based on this mechanism,
a set of class definitions can be defined given a DTD. We call such classes application classes.

Table 5 shows part of the schema of the application classes when processing the Article.dtd shown
in Figure 1. The first column shows the element type in the DTD. The second column shows the name
of the object class generated for the given element type in the first column. The third column shows the
names and types of the class’ member variables mapped from the attributes defined within the element
type . For each generated class definition, its name has a prefix “D” followed by a number indicating
the identifier of the DTD for the purpose of managing multiple DTDs. In this example, the identifier
of Article.dtd is 1.

5.2 XEM-Tool Architecture

We use Excelon Inc.’s PSE Pro [30], a lightweight Java object database system, as the underlying per-
sistent storage system. PSE Pro provides a object repository and a schema repository which manages
the Java objects and schema information (i.e., the class definitions) respectively. The PSE Pro system
has been extended by schema and data evolution functionalities added by our previous project, SERF
[12]. SERF supports updating the object repository and schema repository, for example creating or
deleting a class into or from the schema repository and adding or deleting an attribute to or from to
a class definition at run-time. Figure 13 depicts the architecture of the XML Evolution Management
Prototype system (XEM-Tool). The main modules of the XEM-Tool system architecture include the

23

following:

� The DTD Manager takes DTDs as the input and supports:

1. converting the DTDs to DTD graphs and managing the information of DTD graphs via the
DTD graph manager;

2. generating necessary class definitions of application classes via the application class defini-
tion generator.

3. managing the DTD graphs, such as querying and modifying the DTD graphs.

� The XML Document Manager takes an XML document as its input and supports:

1. converting the XML data to object instances of application classes and managing them via
the application class instance manager;

2. managing a bi-directional relationship between DTDs and XML data via the extent manager
as described in Section 2.4. The extent manager is able to look up all the application class
objects representing the XML data instances of a given DTD path list. Conversely, it can
look up the DTD path list (refer to Section 2.4) given an application class object which
corresponds to an XML instance node.

3. regenerating XML documents from the stored instances of application classes via the XML
regenerator.

� The XML Evolution Manger supports executing the XEM operations defined in Section 3.1 via
the Primitive Executor.

DTDs and XML documents are loaded in the object repository in PSE Pro by the DTD manager and
XML document manager respectively. Once a change primitive is submitted, the Primitive Executor
interacts with the DTD manager and in some cases also the XML Document manager to check the
pre-conditions. If the primitive passes the pre-condition checking, the OO evolution functionalities
will be invoked to carry on the desired changes. Some changes are performed only on the underneath
object repository while some others are performed on the schema repository as well. Further details
will be discussed in Section 6.2.

6 Experimental Study
6.1 Experimental Set Up and Data Sets

We have conducted a series of experiments comparing the time needed to perform incremental updates
versus reloading the updated XML documents from scratch. The execution platform is Microsoft
Windows NT 4.0 with service pack 6, Intel Pentium II 433MHZ and 128M memory. We selected the
set of Shakespeare’s plays [3] as the data set for our experiments. Some statistics about the Shakespeare
files are as follows:

24

DTD XML
Change Primitive

Script

SERF

PSE Pro

DTD Graph

Manager

Application Class

Definition Generator

Application Class

Instance Manager

XML Evolution

Management

System

DTD Manager
XML Document Manager

XML Extent

Manager

XEM

Primitive

Executor

XML Regenerator

Figure 13: Architecture of XEM-Tool System
� 1 DTD with 21 element definitions

� 37 XML data files, one play per file, all conforming to the same DTD

� Smallest data file is 141,345 bytes long, and contains 3133 Elements

� Largest data file is 288,735 bytes long, and contains 6600 Elements

� Average data file is 213,449 bytes long, and contains 4840 Elements.

Since the original Shakespeare DTD did not contain any attribute definitions, we have added some
attributes in order to be able to test our primitives that deal with attributes.

6.2 Comparing Time Efficiency of Each Primitive

In our implementation, the XML data change primitives only lead to object changes in the backend
OO storage system. However the DTD change primitive operations can be grouped into the following
categories based on the types of changes they lead to in the backend OO storage system.

1. For DTD changes not implying any XML data change:

(a) DTD changes leading to only OO object changes

(b) DTD changes leading to both OO object changes and application class definition changes
(i.e., OO schema changes)

2. For DTD changes implying XML data changes:

25

ID Primitive Name Time (s) ID Primitive Name Time
1 createDTDElement 2.181 2 destroyDTDElement 0.063
3 insertDTDElement 0.141 4 removeContentParticle 0.122
5 changeQuant 0.004 6 convertToGroup 0.006
7 flattenGroup 0.005 8 addDTDAttr 8.421
9 destroyDTDAttr 7.014

Table 6: Execution Times for DTD Primitives

(a) DTD changes leading to only OO object changes

(b) DTD changes leading to both OO object changes and application class definition changes

The fact that some DTD changes lead to OO schema changes while some do not is due to our
mapping mechanisms. For example, in our mapping mechanisms, children content particles are stored
in a Java Vector, while attributes are stored as member variables in the associated class. In the former
case, a change to an element’s children content particles, e.g., removeContentParticle, is not an OO
schema change, since we are not changing the definition of the application class mapped from the
element. In the latter case, on the other hand, a change which adds or removes an attribute, i.e.,
addDTDAttr and destroyDTDAttr, does correspond to a schema change in which a member variable is
added into or removed from the definition of the associated application class.

The experiment examines each of the evolution primitives individually. The purpose of this exper-
iment was to give an intuition how much actual change and the performance overhead is caused, by
each single change primitive. This experiment was run on 15 XML data files, and each operation was
run ten times for accuracy. The results in Table 6 show the averages of the ten runs for each operation.

Some OO schema change is time-consuming in that it requires recompilation of the changed class
definitions. In Table 6, we can see some DTD change primitives leading to OO schema changes such
as createDTDElement, addDTDAttr and destroyDTDAttr take significantly more time than other DTD
change primitives. Note though primitive destroyDTDElement leads to OO schema changes as well,
it does not take as long as the other three DTD change primitives leading OO schema change. This
is because while executing destroyDTDElement, the system simply deletes the definition file of the
associated application class without requiring a time-consuming recompilation.

6.3 Incremental Update versus Reloading from Scratch

We have tested two DTD change primitives insertDTDElement and addDTDAttr. Both of them involve
implied data changes besides the explicitly specified DTD change. However, due to the mapping
mechanism, the first change primitive does not lead to any OO schema evolution while the second one
does. And we randomly choose a target DTD element. In our data set, approximately 17.5% of the
total amount of data loaded is affected on average by the execution of each primitive operation.

Figures 14 and 15 compare the efficiency of incremental change versus reloading for the two prim-
itives respectively. It is obvious doing an incremental change gains over reloading from scratch. The
reason that addDTDAttr gains not as much as insertDTDSubElement lies in the mapping mechanism
we are using. For insertDTDSubElement, the definition of the class mapped from the target parent

26

� ������� � 	�
�	��������� ������������� � ��� � � ���

0
50

100
150
200
250
300
350

1 5 10 15 20 25 30 35
������������ "! # $�%����"&�'($�'

)*
+,
-
. ,
/0
12 3

Primitive Execution465�7�8�9:7<; 7

Figure 14: Incremental Updates insertDT-
DElement Vs. Complete Reload of Data

=">:>�?A@�?ABAC C D�ED F GHF C F I"J

0

50

100

150

200

250

300

350

1 5 10 15 20 25 30 35
KML6N�O�PMQMR�S T U<VWQXL�Y<Z�UXZ

[\
]^
_
` ^
ab
cd e

Primitive Executionfhg6iXjWk(ihl i

Figure 15: Incremental Updates addDT-
DAttr Vs. Complete Reload of Data

element type remains the same. This is because the new element and subelement relationship is cap-
tured in the data content of member variable “children” rather in the class definition itself. However,
for addDTDAttr, the definition of the class mapped from the target element type is changed. A new
member variable is added to represent the newly added attribute. Thus the class definition needs to be
recompiled, which is an expensive time consuming process.

7 Related Work

XML Management Tools. Since XML is primarily used as a data exchange format on the World
Wide Web, many research projects dealing with XML have focused on web site management [26, 13,
16, 9]. These projects attempt to alleviate difficulties associated with managing large amounts of data
contained in web sites by representing web pages as XML documents. Although our XEM work does
not focus on web site management, research into these projects proved useful in understanding storage
and manipulation of XML documents.

Other research on XML focuses on its semi-structured nature [8, 7, 15]. In dealing with semi-
structured data, some projects either totally ignore the schema, or just consider it implicated by the
actual storage structure and hence to be a “second-class” citizen. They therefore do not deal with
schema evolution issues. For example, Object Exchange Model [31] represents semi-structured data,
similar in nature to XML, without any associated DTD definition. DOEM [8] is further proposed as a
model to represent changes in semi-structured data via temporal annotations. [34] proposes extensions
to XQuery [40] to support XML updating. However, all these approaches only deals with the changes
at the data level and they all are schema-blind.

Some XML tools have focused on various language formats as a mechanism for manipulating XML
data. For example, Extensible Stylesheet Language Transformations (XSLT) [18] is a language de-
signed for transforming individual XML documents. It does not require any DTD and users can spec-
ify arbitrary XML data transformation rules. Hence no schema constraints are enforced on the data
or on the transformation. Lexus (XML Update Language) [21] is a declarative language proposed by
an open source group, Infozone, to update stored documents. However, its primitives also only work
on the document level without taking the DTD into account. So neither XSLT nor Lexus can serve in
scenarios where a schema or structure is required.

DTD has limited power to express integrity constraints. For example, it is not sufficient to express
keys and foreign keys. [15, 14, 6] proposes a model of constraints for XML. The model can cap-

27

ture relational constraints, object-oriented models (with object identity and scoped reference), and the
ID/IDREF mechanism of DTDs. In our system, we only focus on the inherent constraints in the DTD
model, while extensions to also take care of these constructs remain to be investigated.

Schema Evolution. Many traditional database projects have focused on the issue of schema evolution
[2, 5, 33, 8, 42], where the main goal is to develop mechanisms to change not only the schema but
also the underlying objects such that they conform to the modified schema. This issue was for the
first time tackled for the XML model in our current XEM project. Most commercial database systems
for RDB or OODB today [20, 35, 30, 36] provide support for the re-structuring of the application
schema by means of a fixed set of simple evolution primitives, as does our XEM system. Recent work
has been done to focus on the issues of supporting more complex schema evolution operations for
OODBs [4, 24]. These allow the user to string together several primitives to form higher level yet
still specific change transformations. Finally, SERF [12, 11] is a template-based, extensible schema
evolution framework developed at WPI that allows complex user-defined schema transformations in a
flexible yet secure fashion.

XML and Database Systems. A number of projects and tools have emerged to map XML and similar
semi-structured data formats to traditional database systems. [17] studies storing and querying XML
data using a relational database management system (RDBMS). Both [22] and [25] investigate semi-
structured data in relational databases, while [10, 28] studies SGML (the predecessor of XML) storage
in an object-oriented database management system (OODBMS). Oracle’s XML SQL Utility (XSU)
[27] and IBM’s DB2 XML Extender [19] are well-known commercial relational database products
extended with XML support. They mainly provide two methods to manage XML data. The first
option is to store XML data as a blob while the second option is to decompose XML data to relational
instances. However, if there is any update to the external XML data, for the first storage option, they
need to reload the data, and for the second option, they have to manually make the change on the
relational schema or data. In other words, the evolution of the data inside or outside of the database
are independent from each other. Hence the change propagation from an external XML document
to its internal relational storage or schematic structure is not supported. In a related effort at WPI,
the database research group has developed the Clock system [41] that synchronizes internal relational
storage with external XML documents. This Clock system deals with basic XML data updates only
and does not handle XML schema changes.

8 Conclusions

Summary. In our work on the XEM project, we make a number of important contributions in the area
of XML data management, including the first approach for addressing evolution in an XML context.
We show the motivation behind the need for such support, while identifying the lack of existing support
in current XML data management systems. We propose a taxonomy of XML evolution primitives
which includes both schema and data updates to fill this gap. We identify various forms of system
integrity which a sound XML management system must maintain during evolution. These include the
well-formedness of DTDs and XML documents, which must conform to the standard language format;

28

the consistency of XML documents in terms of their invariants; and the validity of XML documents
with respect to the constraints specified in the corresponding DTD. We show that our proposed change
taxonomy is complete in that all valid desired transformations are possible using our primitives, and
sound in its maintenance of system integrity.

We verify the feasibility of our approach by developing a working XEM-Tool prototype implementa-
tion using the Java programming language and an underlying object-oriented database. Our prototype
provides automated XML evolution management facilities which are superior to making manual edits.
We conduct experimental studies to verify the correct execution of the primitive operations within our
prototype system. We also present a performance analysis which shows that incremental updating us-
ing the primitives is more efficient than reloading data from scratch, which would be necessary using
other current XML management tools.

Future Work. During the course of our research on the XEM project, a number of issues arose which
were beyond the scope of our project, which however present interesting issues of future study. Here
we present new research directions which could be undertaken to continue this work.

� Model Mapping: Our XEM-Tool implementation is currently tied to the PSE Object Store
database. A more generic storage independent XEM middleware would be a more flexible so-
lution to develop.

� Versioning: If the XEM-Tool system were modified such that changes were made to a new copy
of DTDs and XML documents, rather than “in place”, or if deltas were stored which could be
applied to old documents to produce new ones, our system could be used to provide revision
control and version management services.

� Embedding into XML Query Languages: Currently, primitives are implemented as APIs.
However the primitives can be embedded into XML query language, say XQuery [40]. This
would enable users to declaratively specify desired changes rather than using a programming
language.

� XML Schemas: XML Schema includes more powerful constructs for defining the structure and
content of an XML document than a DTD. Our XEM DTD change primitives would be adapted
to handle XML Schemas with some extensions.

� Customization of Evolution Rules: XEM has defined default rules for update propagation to
ensure consistency. However XEM also provides the flexibility for users to define their own
escape rules for update propagation. For example, when changing the quantifier of a sub-element
from REPEATABLE to ONCE, users may prefer to keep the last occurrence of the sub-element
rather than the first occurrence. Further study into this direction towards a fully customizable
XEM document management system is desirable.

29

References

[1] J. Andany, M. Leonard, and C. Palisser. Management of schema evolution in databases. In
VLDB, pages 161–170, September 1991.

[2] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. SIGMOD, pages 311–322, 1987.

[3] J. Bosak. Shakespeare’s Plays in XML Format, v2.00.
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip.

[4] P. Bréche. Advanced Primitives for Changing Schemas of Object Databases. In CAISE, pages
476–495, 1996.

[5] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams, and M. Williams.
The GemStone Data Management System. In Object-Oriented Concepts, Databases and Appli-
cations, pages 283–308. ACM Press, 1989.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML. In In Proceedings of
WWW10, pages 201–210, 2001.

[7] S. Chawathe. Describing and Manipulating XML Data. In IEEE Data Engineering Bulletin
22(3), pages 3–9, 1999.

[8] S. Chawathe, S. Abiteboul, and J. Widom. Representing and Querying Changes in Semistruc-
tured Data. In ICDE, pages 4–13, February 1998.

[9] L. Chen, K. T. Claypool, and E. A. Rundensteiner. SERFing the Web: The Re-Web Approach for
Web Re-Structuring. WWW Journal - Special Issue on Internet Data Management, Baltzer/ACM
Publication, 2(1):33, 2000.

[10] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Documents to Novel
Query Facilities. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, Minneapolis, pages 313–324, June 1994.

[11] K.T. Claypool, J. Jin, and E.A. Rundensteiner. OQL SERF: An ODMG Implementation of the
Template-Based Schema Evolution Framework. In Centre for Advanced Studies Conference,
pages 108–122, November 1998.

[12] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution through an Extensible,
Re-usable and Flexible Framework. In Int. Conf. on Information and Knowledge Management,
pages 314–321, November 1998.

[13] A. Deutsch, M.F. Fernandez, and D. Suciu. Storing Semistructured Data with STORED. In
Proceedings of ACM SIGMOD International Conference on Management of Data, pages 431–
442, Philadephia, USA, June 1999.

30

[14] W. Fan, G. Kuper, and J. Simon. A Unified Constraint Model for XML. In In Proceedings of
WWW10, pages 179–190, 2001.

[15] W. Fan and J. Simon. Integrity constraints for XML. In In Proceedings of the Nineteenth ACM
Symposium on Principles of Database Systems, pages 23–34. ACM Press, 2000.

[16] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. System Demonstration - Strudel:
A Web-site Management System. In ACM SIGMOD Conference on Management of Data, pages
549–552, 1997.

[17] D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDBMS. In IEEE
Data Engineering Bulletin, pages 27–34, 1999.

[18] W3C XSL Working Group. XSL Transformations (XSLT). http://www.w3.org/TR/xslt/.

[19] IBM Software. DB2 XML Extender. http://www-4.ibm.com, 2000.

[20] Itasca Systems Inc. Itasca Systems Technical Report. Technical Report TM-92-001, OODBMS
Feature Checklist. Rev 1.1, Itasca Systems, Inc., December 1993.

[21] Infozone Group. Lexus. http://www.infozone-group.org/lexusDocs/html/wd-lexus.html, 2000.

[22] A. Koeller. Semi-Structured Data in Relational Databases. Technical report, Worcester Polytech-
nic Institute, 1999.

[23] D. Kramer. XML Evolution Management, Master Thesis, Worcester Polytechnic Institute. Mas-
ter’s thesis, Worcester Polytechnic Institute, 2001.

[24] B.S. Lerner. A Model for Compound Type Changes Encountered in Schema Evolution. Technical
Report UM-CS-96-044, University of Massachusetts, Amherst, Computer Science Department,
1996.

[25] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Management
System for Semistructured Data. In SIGMOD Record 26(3), pages 54–66, September 1997.

[26] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the era of xml. In Bulletin of the Technical
Committee on Data Engineering, pages 19–26, September 1999.

[27] Oracle Technologies Network. Oracle8i. http://www.oracle.com/database/oracle8i, 2000.

[28] A. Nica and E. A. Rundensteiner. Uniform Structured Document Handling using a Constraint-
based Object Approach. In ADL, pages 83–101, 1995.

[29] Object Design. Excelon Data Integration Server. http://www.odi.com/excelon, 1999.

[30] ObjectStore, Inc. ObjectStore Manual, 1993.

31

[31] Y. Papakonstantinou, H. Garcia Molina, and J. Widom. Object Exchange across Heterogeneous
Information Sources. In Proceedings of the 11th International Conference on Data Engineering,
Taipei, Taiwan, pages 251–260, March 1995.

[32] D. Sjoberg. Quantifying Schema Evolution. Information and Software Technology, 35(1):35–54,
January 1993.

[33] A. H. Skarra and S. B. Zdonik. The Management of Changing Types in an Object-Oriented
Databases. In Proc. 1st OOPSLA, pages 483–494, 1986.

[34] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating XML. In
SIGMOD, 2001.

[35] O � Technology. O � Reference Manual, Version 4.5. O � Technology, Versailles, France, November
1994.

[36] Versant Object Technology. Versant User Manual. Versant Object Technology, 1992.

[37] W3C. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath, 1999.

[38] W3C. Extensible Markup Language (XML) 1.0, 2nd Edition – W3C Recommendation 6-October-
2000. http://www.w3.org/TR/REC-xml, 2000.

[39] W3C. XML Schema – W3C Proposed Recommendation 2001-03-16.
http://www.w3.org/XML/Schema, 2001.

[40] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/, 2001.

[41] X. Zhang, G. Mitchell, W. Lee, and E. A. Rundensteiner. Clock: Synchronizing Internal Rela-
tional Storage with External XML Documents. In Eleventh International Workshop on Research
Issues in Data Engineering (RIDE), Heidelberg, Germany, pages 111–118. IEEE Computer So-
ciety, April 2001.

[42] R. Zicari. A Framework for O � Schema Updates. In 7th IEEE Int. Conf. on Data Engineering,
pages 146–182, April 1991.

32

