WPI-CS-TR-03-20 June 2003

FS-Miner: An Efficient and Incremental System to Mine
Contiguous Frequent Sequences

by

Maged El-Sayed
Elke A. Rundensteiner
Carolina Ruiz

Computer Science _,/:\,\ i

) @
Technical Report %l%\‘

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

F'S-Miner: An Efficient and Incremental System to Mine
Contiguous Frequent Sequences

Maged EL-Sayed, Elke A. Rundensteiner, and Carolina Ruiz

Department of Computer Science
orcester Polytechnic Institute
Worcester, MA 01609-2280

{maged|rundenst|ruiz}@Qcs.wpi.edu

June 8, 2003

Abstract

Mining frequent patterns is an important component of many prediction systems. One common
usage in web applications is the mining of users’ access behavior for the purpose of predicting and hence
pre-fetching appropriate web pages.

Mining solutions in the literature are often based on the use of an Apriori-like candidate generation
strategy, which typically requires numerous scans of the potentially huge sequence database. In this paper
we instead introduce a more efficient strategy for discovering frequent patterns in sequence databases
that requires only two scans of the database. The first scan obtains support counts for subsequences
of length two. The second scan extracts potentially frequent sequences of any length and represents
them as a compressed pattern tree structure (FS-tree). Frequent sequence patterns are then mined from
the FS-tree. Incremental and interactive mining functionalities are also facilitated by the FS-tree. Our
FS-Miner system has the ability to adapt to changes in users’ behavior over time, in the form of new
input sequences, and to respond incrementally without the need to perform full re-computation. Our
system also allows the user to change the input parameters (e.g., minimum support and desired pattern
size) interactively without requiring full re-computation in most cases.

We have tested our system using two different data sets, comparing it against two other algorithms
from the literature. Our experimental results show that our system scales up linearly with the size of the
input database. Furthermore, it exhibits excellent scalability with respect to support threshold decreases.
We also show that the incremental update capability of the system provides significant performance
advantages over full re-computation even for relatively large update sizes.

Keywords: Frequent Patterns, Traversal Patterns, Sequence Mining, Incremental Mining, Prediction,

Prefetching, Web Logs.

1 Introduction

A sequence database stores a collection of sequences, where each sequence is a collection of ordered data items
or events. Examples of sequences are DNA sequences, web usage data files or customers’ transactions logs.
For web applications, where users’ requests are satisfied by downloading pages to their local machines, the
use of mining techniques to predict access behaviors and hence help with prefetching of the most appropriate
pages to the local machine cache can dramatically increase the runtime performance of those applications.
These mining techniques analyze web log files composed of listings of page accesses (references) organized
typically into sessions. These techniques are part of what is called web usage mining. In web usage mining
many types of patterns can be discovered including association rule patterns and traversal patterns. These

patterns can be classified based on four main features [2]:
e Whether or not the order of page references in a pattern matters.
e Whether or not duplicate page references (backward traversal! or page refresh/reload) are allowed.
e Whether patterns must consist of contiguous page references or they can have gaps.

e Whether or not only maximal patterns are considered. A pattern is maximal when it is not part of

another pattern.

In this paper we are particularly interested in web usage mining for the purpose of extracting frequent
sequence patterns that can be used for pre-fetching and caching. For pre-fetching and caching, knowledge of
such ordered contiguous page references is useful for predicting future references [2]. Furthermore, knowledge
of frequent backward traversal is useful for improving the design of web pages [2]. In other words we
are interested in mining for traversal patterns, where traversal patterns are defined to be sequences with
duplicates as well as consecutive ordering between page references [13]. Our goal is to introduce a technique
for discovering such sequence patterns, that is efficient, yet incremental and can adapt to user parameter
changes. The patterns extracted by our system have four properties: the order of page references in patterns
is important, duplicate page references are allowed (backward traversals and page refreshes), patterns consist
of contiguous page references, and maximal and non-maximal patterns are allowed.

In general, discovering frequent patterns in large databases is a costly process in terms of I/O and CPU
costs. One major cost associated with the mining process is the generation of potentially frequent items (or
sequences), called candidate item sets. Many mining techniques use an Apriori style level-wise candidate
generation approach [1, 7, 9] that requires multiple expensive scans of the database, one for each level, to
determine which of the candidates are in fact frequent. To address this issue, Han et al. [4] proposed a
frequent pattern growth (FP-growth) based mining method that avoids costly repeated database scans and

candidate generation. Their work focuses on the discovery of frequent item sets in transactional databases.

lthe same page reference can appear more than one time in the sequence in a non contiguous manner.

In that work the order of the items in each record (i.e. in each transaction) is not of consideration. Hence it
does not support mining for sequences where order among items is important. We now propose an extension
of their technique to tackle the sequence mining case.

The mining cost is even more prohibitive for dynamic databases which are subject to updates such as
the continuous insertion of new sessions to the web log. In this case the reconstruction of frequent sequences
may require re-executing the mining process from the beginning. The problem of incrementally mining for
association rules has been studied widely [3, 12]. Parthasarathy et al. [8] introduced an interactive and
incremental sequence mining approach using a lattice structure. In their approach, the discovery of frequent
sequences is done by traversing the lattice and intersecting subsequences of common suffixes to obtain their
support. Their performance study has shown that the incremental capability of their system is more efficient
than re-computing frequent sequence mining process from scratch. However, the limitation of their approach,
as they point out, is the resulting high memory utilization as well as the need to keep an intermediate vertical
database layout which has the same size as the original database [§].

Our work is similar to [4] in that we also aim to avoid the expensive candidate generation process,
particularly in the presence of large number of items (page references). We propose a frequent sequence
tree structure (FS-tree) for storing compressed essential information about frequent sequences. Unlike [4],
which aims to discover frequent item sets in which order is not important, our work takes order among
page references into consideration. We introduce an algorithm which we call Frequent Sequence mining
(FS-mine) that analyzes the FS-tree to discover frequent sequences. Our approach is incremental in that
it allows updates to the database to be incrementally reflected in the FS-tree and in the discovered frequent
sequences, without the need to reload the whole database or to re-execute the whole mining process from
scratch. Finally the user can interactively change key system parameters (in particular the minimum support
threshold and the maximum pattern size) and the system will remove the patterns that are no longer frequent
and will introduce the patterns that are now frequent according to the new parameter values, without the
need for scanning and loading the entire database.

The rest of this paper is organized as follows. Section 2 introduces the FS-tree data structure design
and the FS-tree construction algorithm. Section 3 describes the FS-mine algorithm for discovering frequent
sequences from the FS-tree structure. Section 4 describes the incremental mining algorithm while Section 5
introduces the interactive capabilities of our system. Section 6 discusses related work. Section 7 discusses

our experiment results. Lastly, Section 8 provides some conclusions.

2 Frequent Sequence Tree

Let I = {i1,42,...,im } be a set of unique items, such as page references. A sequence Seq = <pips...pp> is
an ordered collection of items with p; € I for 1 <i < n. A database DB (for web usage mining typically a
web log file) stores a set of records (sessions). Each record has two fields: the record ID SID field and the
input sequence field InSeq. The order of items does matter within such an input sequence. When an item
pi+1 comes immediately after another item p; we say that there is a link /; from p; to p;+1. We denote that
as l; = p; — pi+1. We may also represent a sequence as Seq = p — P, where p is the first element in the
sequence and P is the remaining subsequence.

For a link h, the support count, Supp'™®(h), is the number of times this link appears in the database.
For example if the link a — b appears in the database five times we say that Supp'™*(a —b) = 5. For a
sequence Seq = <pyps-.-pp> we define its size as n which is the number of items in that sequence. Given
two sequence S = <pips...p,> and R = <q1¢s...q,> we say that S is a subsequence of R if there is some
i, 1 <4 <m—n+1,such that p1 = ¢, p2 = Gi+1, --s Pn = Gip(n—1)- For a given input sequence Seq =
<p1p2...pn> we consider only subsequences of size > 2. For example, if a record in the database has an input
sequence <abcd> we extract subsequences <abcd>, <abc>, <bcd>, <ab>, <bc>, and <cd> from that input
sequence. The support count Supp®“?(Seq) for a sequence Seq is the number of times the sequence appears
in the database either as a the full sequence or as a subsequence of sessions. We allow item duplicates
in frequent sequences, which means that the same item can appear more than once in the same sequence.
Duplicates can be either backward traversal, e.g. the page b in <abeb>, or refresh/reload of the same page,
e.g. the page a in <aabc>.

The behavior of our system is governed by two main parameters. The first parameter is minimum
link support count, M SuppC”"k, which is the minimum count that a link should satisfy to be considered
potentially frequent. M SuppC*™ is obtained by multiplying the total number of links in the database by
a desired minimum link support threshold ratio M SuppR'™*. M SuppR“™* is the frequency of the link in
the database to the total number of links in the database (Supp"™" /total # of links in the database) which
a link has to satisfy in order to be considered potentially frequent. M SuppR'™ is a system parameter (not
set by the user) and is used by the FS-tree construction algorithm to decide what links to include in the
FS-tree as will be discussed later. The second parameter M SuppC®®?, is the minimum sequence support
count, that denotes the minimum number of times that a sequence needs to occur in the database to be
considered frequent. M SuppC®®? is obtained by multiplying the total number of links in the database by
a desired minimum sequence support threshold ratio M SuppR°¢?. This desired ratio is the frequency of

the sequence in the database to the total number of links in the database (Supp®®?/total # of links in the

database?) which a sequence has to satisfy in order to be considered frequent. M SuppR*?? is set by the user
and is used by the FS-Mining algorithm during the mining process.

M SuppC®®? is the main parameter needed for sequence mining in our system. At all times, we assume
that M SuppC“™* < M SuppC*®. The reason for having M SuppC'™ is to allow the system to maintain
more data about the input database than required for the mining task at hand. This will help in minimizing
the amount of processing needed when handling incremental updates to the database, or when the user
changes system parameters. This issues will be discussed in more detail in the incremental and interactive
mining sections. In short, we consider any sequence Seq that has Supp®®?(Seq) > M SuppC?®®? a frequent
sequence or a pattern. We consider any link h that has Supp'™* (h) > MSuppC®®? a frequent link
(also considered a frequent sequence of size 2) . And if Supp'™* (h) > MSuppC'™ and Supp'™* (h) <
M SuppC®®? we call h a potential frequent link. And if Supp'™ (h) does not satisfy M SuppC"™ and
M SuppC?®®? we call h anon-frequent link.

Definition 1 A frequent sequence tree is a structure that consists of the following three components:

o A tree structure with a special root node R and a set of sequence prefix subtrees as children of the
root. FEach node n in the FS-tree has a node-name field that represents an item from the input
database®. Each edge in the tree represents a link relationship between two nodes. Each edge has three
fields: edge-name, edge-count, and edge-link. Edge-name represents the from and to nodes that
are linked using this edge, edge-count represents the number of sequences that share this edge in the
particular tree path, where a tree path is the prefix path that starts from the tree root to the current

node.

o A header table HT that stores information about frequent and potential frequent links in the database.
FEach entry in the header table HT has three fields: Link which stores the name of the link, count
stores the count of that link in the database, and listH pointer, which is a linked list head pointer that
points to the first edge in the tree that has the same edge-name as the link name. Note that edge-link
field in each edge in the tree is pointing to the next edge in the FS-tree with the same edge-name (or

null if there is none).

e A non-frequent links table NF LT, that stores information about non-frequent links. This table is only

required for supporting the incremental feature of the system. The NFLT has three fields: Link which

2Note that this is slightly different from the definition of support ratio in other work [13], which has the same patterns
assumptions, that defines this ratio to be the frequency of the sequence to the total number of pages in the database. We think
that our ratio is more convenient since it eliminates the effect of sessions with single page reference, in the input web log, on
the desired ratio (given that we are interested in patterns of size > 2).

3For supporting the incremental property of the system, we extent the node by adding a structure that stores a single session
ID that ends at this node for ceratin sequences. We will introduce this structure in more details in the incremental mining
section.

stores the name of the link, count which stores the count of that link in the database, and SIDs which

stores the IDs of records in the database that have sequences that include that link*.

SID | InSeq

1 dgi

2 dg

3 cdehi

4 cde Link Count ListH Link Count SID

5 chbedg v d-g| 4 eb| 1 n

6 cb Frequent -~ 4 &1 2 bf | 1 1

7 abedgi Links g ed| 7 ef | 1 12

8 abed de| 6 adi 1 13

’ bdehi e 3 Non-frequent e | 1 13

10 bdeh hi | 2 Links ai 1 14

1 cdebfabe Potential bc| 5 ie 1 14

12 cdefabe Frequent 4 c-b 2 g 1 15

B aie Links — ab| 4 gd| 1 15

14 die \ b-d| 2 abl| 1 15

15 igdba f-a 2 bal 1 15
(a) Web Log File (b) Header Table (HT) (c) Non-Frequent Links Table (NFLT)

Figure 1: (a) Web log file example, (b) HT and (¢c) NFLT. Assuming M SuppC"™* = 2 and M SuppC*®? =
3, Frequent links are those satisfying both support thresholds, Potential Frequent links are those satisfying
only M SuppC"™ and Non-frequent links are those not satisfying any of the two support thresholds.

FS-tree construction. Consider the web log file in Figure 1(a). It stores a set of users’ sessions where
each session has two fields: SID filed that stores the session id and InSeq filed that stores sequence of page
references accessed by the user in a certain order. Given such input web log file we construct the FS-tree as
follows:

1) We first perform one scan of the input database (log file) to obtain counts for links in the database.

2) We identify those links that have Supp'™ > M SuppC'™ and we insert them in the header table
(HT), along side with their counts, as shown in Figure 1(b). For links that do not satisfy the predefined
M SuppC'™ we insert them in the non-frequent links table (N FLT), along side with their counts and the
SID of sessions they are obtained from®, this is shown in Figure 1(c).

3) We create the root of the FS-tree.

4) We then perform a second scan of the database calling the insertTree function (shown in Figure 2)
for each input sequence. The insertTree function inserts the input sequences in the FS-tree starting by the
first link in the sequence, frequent links (and potentially frequent links) are stored as edges in tree branches

(sharing nodes and edges when possible), until some non-frequent link is encountered, or the input sequence

4For optimization, if more than one of these sessions have exactly the same sequence we might store only the ID of one
of them along side with their count. For example if the link a-b was non-frequent and if it appeared in three sessions in the
database: {5, <abc>} {9, <eabd>} and {15, <abc>} we may store this information in the NFLT as {a-b, 3, {(5:2), (9:1)}
} where a-b is the link name, 3 the link count and {(5 : 2),(9 : 1)} means that a-b appears in a session with SID=5 and in
another session that has exactly the same sequence as the one in session 5, and also appeared in a session with ID=9 that had
different sequence.

Sonly required for supporting incremental mining

is exhausted. If a non-frequent link is encountered in the inserted sequence we do not insert it, rather, the
insertion process is started over again from the root of the tree, with the remaining input subsequence, in
a recursive manner. Besides inserting sequences into the FS-tree we also maintain the ListH linked lists

that link different edges in the tree to the header table (HT).

FS-tree construction Algorithm Function insertTree (Free rqot node S, sequence p-P):
Updated FS-tree in which all the potentially frequent
Input: Sequence Database DB subsequences are inserted .
and minimum link support MSupp, (1) If (link p-P € HT) {
Output: Frequent sequence tree FS-tree of DB (2) If (S has a child N and N.node-name = p) {
Method: 3) increment S-N.edge-count by 1
(1) Scan the DB once to collect counts for all links (4) }Else {
Ezt))l Classify links and insert them in HT and NFLT 5) Create node N with N.node-name = p
ables
(3) Create a root R for the FS-tree (6) Create edge S-N with S-N.edge-count = 1
) Append edge S-N to HT \.ListH }

(4) For (each record in DB get sequence InSeq;)
call insertTee (R, InSeq,)
(5) Return FS-tree

(8) If (P is non-empty) {call insertTree(N, P)}
(9) }Else if (link p-P € NFLT) {
(10) If (P is non-empty) {call insertTree(R, P) } }

(11) If P is last page in InSeq; and InSeq; was not cut,
store Seq.ID in seqEnd.ID

Figure 2: FS-tree construction.

Figure 3 shows the FS-tree constructed for the example in Figure 18. The total number of links in the
database is 52, based on first database scan. And assuming that the system defines M SuppR'™™ to be 4%
and the user defines M SuppR*®? to be 6%, we obtain M SuppC'™ = 2 and M SuppC®®? = 3 accordingly
(note that M SuppC'™* is used in FS-tree construction, while M SuppC®? is used later in FS-tree mining).
We create the FS-tree root node R. We then insert sequences into the tree starting from the tree root using
the procedure described above. For the sequence <dgi> we start from the root and since the tree is empty so
far, we create two new nodes with names d and g. We also create an edge d — g that is assigned edge-count
= 1. In addition, we link the ListH pointer for link d — g in HT to the new edge. Lastly, we insert the node
i into the F'S-tree creating a new node and the edge g — i with edge-count =1, and link ListH pointer for
link g — ¢ in HT to that edge. When inserting the second input sequence <dg>, we share the nodes d and
g and the edge d — g and increment the count of that edge to 2.

Next we insert the sequence <cdehi> by creating new nodes and edges (with counts = 1) for all the
items and links in the sequence since there was no possible path sharing. Sequences in sessions with ids 3
to 10 are inserted following the same logic described above. Session 11 (<cdebfabc>) is a different from

prior sessions, since the sequence in this session has non-frequent links, namely e — b and b — f. First, the

SNote that we only show some of the lines that link the header table to edges in the FS-tree for simplicity

Header table
Link Count ListH
d-g

IS

g-i

c-d
d-e
e-h
h-i
b-¢
c-b
a-b
b-d
f-a

N A N U N W A 9N

Figure 3: The FS-tree constructed for the example in Figure 1

sub-sequence <cde> is inserted in the tree. Insertion here involves sharing existing nodes and edge and
incrementing edges counts. Then we ignore the two non-frequent links e — b and b — f. The sub-sequence
< fabc> is inserted from the tree root by creating new nodes and edges as described above. For session 12
we insert the sub-sequence <cde> into the tree, then we encounter the non-frequent link e-f, so we skip it
and insert the remaining sub-sequence < fabc> starting from the root node of the tree. Sessions 13, 14 and
15 are not inserted, totally or partially, into the FS-tree since all their links are non-frequent. See Figure 3

for the fully constructed FS-tree.

3 Mining Frequent Sequences from FS-tree

Based on M SuppC'™ and M SuppC®®? we classify the links in the database into three types (See Figure 1):

o Frequent links: links with support count Supp’™ > MSuppC®®? > M SuppC'™. These links are

stored in HT and are represented in the FS-tree and can be part of frequent sequences.

e Potential Frequent links: links with support count Supp'™ > M SuppC"™ and Supp'™ < M SuppC®I.
These links are stored in the HT and are represented in the FS-tree but they can’t be part of frequent

sequences (needed for efficient incremental and interactive performance).

o Non-frequent links: links with support count Supp'™* < M SuppC'™™* . These links are stored in NFLT

and are not represented in the FS-tree (needed for efficient incremental and interactive performance).

Only frequent links may appear in frequent sequences, hence, when mining the FS-tree we consider only

links of this type. Before we introduce the FS-mine algorithm, we highlight the properties of the FS-tree.

3.1 Properties of the FS-trees
The FS-tree has the following properties that are important to the FS-mine algorithm:
¢ Any input sequence that has non-frequent link(s) is pruned before being inserted into the FS-tree. only

potentially frequent subsequences of it are to be inserted in the FS-tree.

o If M SuppCh™ < MSuppC®®, the FS-tree is storing more information than required for the current

mining task. Hence, the mining algorithm would not care about all sequences encoded in the FS-tree.

e We can obtain all possible subsequences that end with a given frequent link h by following the ListH

pointer of h from the header table to correct FS-tree branches.

e In order to extract a sequence that ends with a certain link A from an FS-tree branch, we only need
to examine the branch prefix path that ends with that link (h) backward up to the tree root. The
frequency count of that sequence is equal to the count associated with the edge that ends this prefix
path. We also can extract certain length of the prefix path based on user maximum pattern size

preference. This feature is important for optimizing the mining phase”.

Now we describe in detail the mining steps that we use to extract frequent sequences from the FS-tree.
We assume the FS-tree shown in Figure 3, and MSuppC'™ = 2 and M SuppC**? = 3 as our running

example.

3.2 FS-tree Mining Steps

Figure 4 lists the FS-Mine Algorithm. The algorithm has four main steps that are performed for only
frequent links (potentially frequent links are excluded) in the header table (HT):

Extracting derived paths. For link h in HT with Supp'™ (h) > M SuppC®®? we extract its derived
paths by following the ListH pointer of h from HT to edges in the FS-tree. For each path in the FS-tree
that contains h we extract its path prefix that ends at this edge and go maximum up to the tree root®.
We call these paths derived paths of link h. For example, from Figure 3, if we follow the ListH pointer for
the link e — h from the header table we can extract two derived paths: (¢ —d:4,d—e:4,e—h :1) and
(b—d:3,d—e:2,e—h:2).

Constructing conditional sequence base. Given the set of derived paths of link h extracted in

previous step we construct the conditional sequence base for h by setting the frequency count of each link

"For example if we follow the ListH pointer for link g — i from header table in Figure 3 to the second edge and assuming
that, at the mining stage, the user is interested in patterns of maximum size of 4, we need to extract only the path prefix (c-d:2,
d-g:1, g-i:1) instead of the full path starting from the tree root.

8Note the backward prefix extraction might terminate before the tree root and return a smaller prefix path in two cases: (1)
reaching the limit determined by the user as the maximum pattern length he is interested in discovering or (2) encountering a
potential frequent link (since we do not mine for them).

FS-Mine Algorithm

Input: FS-tree root R, and minimum sequence support MSuppg

Output: Frequent sequences

Method:

(1) Frequent sequences set FSS < ¢

(2) (2) For (all links I, € HT and I, .count > MinSupp,) {

3) Conditional sequence set CSS « ¢

“4) For (all paths P; in FS-tree reachable from HT. ListH(1)){
) CSS « CSS w extract P}, remove last link, and adjust P;.count = last link count }
(6) Conditional FS-tree CFST « ¢

(@) Construct CFST

®) For (all sequences Seq, in CFST){

) FSS < FSS U concatenate (Seq,, 1) 1} }

Figure 4: FS-Mine Algorithm.

in the path to the count of the removed h (this gives he frequency of the derived path), Then we remove h
from the end of each of the derived paths, since it is a common ending for all of them. Given the two derived
paths extracted above for link e — h, the conditional base for that link consists of: (¢ —d:1,d —e: 1) and
(b—d:2,d—e:2).

Constructing conditional FS-tree. Given the conditional base for h, we create a tree and insert each
of the paths from the conditional base of h into it in a backward manner. We create necessary nodes and
edges or share them when possible (incrementing edges counts). We call this tree the conditional FS-tree for
link h. For example, given the conditional base for link e — h the constructed conditional FS-tree is shown
in Figure 5.

Extracting frequent sequences. Given a conditional FS-tree of a link h, we perform a depth first
traversal for that tree and return only sequences satisfying M SuppC®®?. We append h to the end of each of
the sequences extracted from the tree to obtain the full length frequent sequences for link h. By traversing
the conditional FS-tree of link e — h only the sequence <de> satisfies the M SuppC?®¢?, so we extract it.
We then append the link e — h to the end of it to get the full size frequent sequence: <deh : 3> where 3
represents the support (count) of that sequence.

We perform the same steps for the other frequent links in HT', namely d—g a—b, b—c¢, d—e, and ¢ —d.
The detailed mining steps for these links are shown in Table 1. The last column in that table gives the final
result for the mining process. The generated frequent sequences are: <deh : 3>, <abc: 4>, <cde : 4>, and
<bcd : 3> in addition to the frequent links themselves: (<eh : 3>, <dg : 4>, <ab: 4>, <bc: 5>, <de : 6>,

and <cd : 7>) as they are considered frequent sequences of size 2.

Extract Derived Paths |:’> Construct Conditional Sequence base

(c-d:1, d-e:1),

Header table (b-d:2, d-e:2)
Edge Count Link
az] 4 Construct Conditional FS-tree
gi| 2 2, @
cd| 7 ig
de| 6 v o
eh| 3 T - 3
bi| 2 \‘\\‘
b-¢ 5 2
c-b 2
a-b 4
b-d| 2 o P Extract Frequent Sequences
fal| 2 - o

<deh:3>

Figure 5: Mining steps for link e — h from the example in Figure 1.

Link Derived Paths Conditional Sequence base Conditional FS tree Frequent Sequences generated

e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1) , (b-d:2, d-e:2) | (d-e:3) <deh : 3>
(b-d:3, d-e:2, e-h:2)

d-g (d-g:2), (c-b:2, b-3:1,c-d:1,d-g:1), | (c-b:1, b-c:1,c-d:1), ¢)
(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1, b-c:1 ,c-d:1)

a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) [[

b-c (c-2:2, b-c:1), (c-b:1), (a-b:2), (a-b:4) <abc: 4>
(a-b:2,b-c:2), (f-a:2, a-b:2)
(f-a:2, a-b:2,b-c:2)

d-e (c-d:4, d-e:4), (c-d:4),(b-d:2) (c-d:4) <cde : 4>
(b-d:3, d-e:2)

c-d (c-d:4), (c-b:1, b-c:1), (b-c :3) <bcd : 3>
(¢-b:2, b-c:1,c-d:1), (a-b:2,b-c:2)
(a-b:2,b-c:2 ,¢-d:2)

Table 1: Mining for all sequences that satisfy M SuppC®9=3.

4 Incremental Mining

In the presence of incremental updates ADB to the sequence database, our goal is to propagate these updates
into the generated frequent sequences with minimum cost. In particular, we aim to develop an incremental
maintenance strategy that avoids the need for expensive scans of the complete sequence database and the
complete recomputation of frequent sequences. In this section, we discuss requirements for supporting
Incremental feature of the FS-miner. We then address how to maintain the FS-tree incrementally without

reconstructing it from scratch and how to mine incrementally for frequent sequences.

4.1 Requirements for Supporting Incremental Mining in the FS-miner

We first highlight the additional information we need to maintain to support incremental mining:
1) The Non-Frequent Links Table NFLT, described earlier in Definition 1.
2) We extend the FS-tree node by adding to it a new structure called seqEnd. This structure has two

fields: sid and count. sid stores a record id of a sequence (from the database), or null. The value of sid

10

of seqEnd is assigned at tree construction time. At the end of input sequence insertion into the tree, we
might set sid of the node corresponding to the last item in the input sequence to be equivalent to the input
sequence id. To assign a new value for sid two conditions must be satisfied: if the input sequence is inserted
as one piece into the tree without being pruned? and if the sid does not contain another sequence id already
(since we store only one id in this field). For each node with sid not equivalent to null we know that the tree
branch that starts from the tree root and ends at that node is representing a complete input sequence(s)
from the database. The second field, count, stores a count that indicates how many complete (unpruned)
input sequences share the same tree branch that ends at this node. Figure 3 shows nodes in the tree with

sid set to session IDs from the database 1°.

4.2 Maintaining the FS-tree Incrementally

The FS-miner supports both database inserts and deletes. Our incremental FS-tree construction algorithm
takes as input the FS-tree representing the database state before the update and ADB. Then it inserts
(or deletes) sequences from the tree. In some cases, the FS-tree construction algorithm performs partial
restructuring of the tree, that is, some branches might be pruned or moved from one place to another in the

FS-tree. Figure 6 shows the incremental FS-tree construction algorithm.

Function insertTreelnc (tree root node S, sequence p-P) :
Updated FS-tree.

(1) If (link p-P € HT) {

(2) If (p-P was originally in HT){

3) If (S has no child with name = p) {

Incremental FS-tree construction Algorithm
Input: FS-tree root R and ADB, and new minimum link support MSupp,
Output: updated FS-tree

Method:

(1) Scan ADB, and collect counts (+ and -) for links

4) Create node N with N.node-name = p
(2) Update counts of links in HT and NFLT ®) Create edge SN with S-N.edge-count — 1}
(3) Move links,between HT and NFLT, based on Minsupp] (6) VElse if (p-P was originally in NFLT){
(4) For (all links 1, moved from HT to NFLT) { o) Node ptr = call deleteTree (R, P)
5) Start from I, ListH pointer ®) add ptras achild to p }
(6) For (every edge p-P in the FS-tree reachable from 1, ListH) © If (P is non-empty) {call insertTreeInc(N, P)}
M Cut the edge p-P (10) }Else if (link p-P € NFLT) {
(&) CallinsertTree (R, P) } (11) If (P is non-empty) {call insertTreelnc(R, P) } }
(9) For (all links 1, moved from NFLT to HT) {
(10) For (every sequence ID inl,.SIDs) { Function deleteTree (tree rootnode S, sequence p-P) :
(11) Obtain input sequence inpSeq with ID from DB Updated FS-tree.
(12) Call insertTreelnc (R, inpSeq) } } Precondition: counts of links in HT and NFLT are already updated
(13) For (each record Rec; in ADB get Rec,.inpSeq) { (1) If (S has child N and S-N =p-P) {
(14) If (Rec; is an insert) 2) Decrement S-N.count, and deleted it if count became 0.
(15) Call insertTree(Rec,InSeq, R) 3) If (P is non-empty){call deleteTree (N, P) }
(16) Else if (Rec; is a delete) (4) }Else{
17) Call deleteTree (Rec,InpSeq, R)} (5) If (P is non-empty) call deleteTree (R, P)}

Figure 6: Incremental FS-tree construction.

The algorithm first obtains the count of links in ADB by performing one scan of ADB (step 1 in

9 All links in the sequence are frequent
10Counts are not shown there for simplicity since they are all equal to 1 for current example.

11

the algorithm in Figure 6). In step 2, link counts in HT and NFLT are incremented or decremented.
M SuppC?®¢? and M SuppC"™* values are updated if applicable. Link entries in NFLT that now become
frequent (or potentially frequent) are moved to HT. Links that were originally in HT and moved to NFLT,
because they are no longer satisfying M SuppC®®? and M SuppC*™* should no longer be presented in the
FS-tree, so we prune edges that represent them from the FS-tree. This can be done by following their ListH
pointer to their edge occurrences in the FS-tree. We remove each edge, then insert the subsequent tree whose
root was attached to the removed edge, from the top of the FS-tree, sharing nodes and edges when possible
(steps 4 through 8). For links that were originally in NF LT and moved to HT', we obtain input sequences
in the order which they appear from the original database'l. We insert them into the FS-tree using the
function insertTreelnc (steps 9 through 12). The main difference between this function and the normal
insertTree function described earlier is that insertTreelnc aims to compose sequences that were previously
decomposed by the insertTree at the initial tree construction phase'2. For each of the obtained sequences,
the insertTreelnc function traverses the sub-path of it already represented in the FS-tree (staring for the
root). When we encounter a link in the inserted sequence that was not frequent before the update and now
is frequent (or potentially frequent), we create a new edge and node for it (or share an edge and a node and
increment edge’s count). After this point, we insert the remaining subsequence starting from the current
node. At the same time we call the deleteTree function that deletes the same remaining subsequence from
the top of the FS-tree (as it had previously been inserted there). This is done by traversing the tree from
the top for that subsequence and decrementing the count of any traversed edge. If the count of decremented
edge becomes 0, the edge and its subsequent subtree are deleted from the FS-tree. The last phase (steps
14 through 17) inserts (or deletes) input sequences from ADB into the tree using the insertTree (or the
deleteT'ree) function.

Example 1: As an example for incremental inserts, assume that the following tuples where inserted into
the log file in our running example in Figure 1: {16,< efa >} , {17, < ef >}, {18,< efab >}. Figure 7
shows the effect of inserting the new input sequences. First, we scan the new records to obtain counts
of links in the inserted session and we update counts of links ¢ — b and f — a in HT and link e — f in
NFLT. Assuming the M SuppC'™* and M SuppC*®? maintain the same values (2 and 3 respectively), link
a — b maintains the same status (frequent), links f — a and e — f becomes frequent thus are moved to
table HT. The next step is to prune the tree by removing edges for any link transitioned from frequent

to non-frequent. In this example we do not have any. Next we restructure the tree for links that were not

11Recall that for each we maintained a list of sequence IDs in which the link appeared in the database.

12This is needed because if a certain link was non-frequent before the update and became frequent later, during initial tree
construction time, the insertTree function has previously broken any input sequence that contained that link at this place and
inserted it as subsequences in the FS-tree. But now as that link becomes frequent due to the update, the insertT'reelnc will
bridge that gap again and put those subsequences together

12

Header table
Link Count ListH
dg| 4

a-b
b-d
f-a

=
L B R I N

e-f

Non-Frequent Links
Link Count_SID
2| 1 [l

bf| 1 1

1 13
1 13

di| 1 14
1 14
1

15
gd| 1 15
ab| 1 15
b-a 1 15

Inserted sessions {16, <e f a>} , {17, <e >}, {18, <e f a b>}

Figure 7: The effect of inserting records to the database in Figure 1.

frequent and became frequent (link e — f in our example). We obtain from the SIDs field of link e — f entry
in NFLT sequence id = 12 as the only sequence where the link appears in original database. We retrieve
this sequence (<cde fabc>)from the original database and insert it into the FS-tree using the insertTreelnc
function. This function will first traverse the tree branch that corresponds to the subsequence represented
in the tree from before (<cde>) and create a new edge for it when it encounters the link e — f. Insertion
will then continue for the remaining subsequence (< fabc>) following this point. At the same time it calls
the deleteTree function for the subsequence < fabc> to delete it from the root of the FS-tree. The last step
in the incremental FS-tree constructions is to insert all the input sequences from ADB in the FS-tree using
the insertTree function, resulting in the tree shown in Figure 6.

Example 2: As an example for incremental deletes, assume that we delete the tuple {8, <bdehi>}
from the DB. In Figure 8 we note that as a result of deleting that tuple the links b — d and h — ¢ become
non-frequent and should not be represented in the FS-tree anymore. The tree pruning step will cause the
tree branch (b —d —e— h — 1) to be cut at b — d and h — i edges, and the part (b — d — e) to be inserted
at the root of the tree sharing the existing node d and creating nodes e and h. also the edge h — i in the
tree branch (¢ —d — e — h — 1) is pruned. Now the last step is to call the function deleteTree to delete the

sequence <bdehi>. This will cause the tree branch (b — d — e) edges counts to decrement to 1.

Header table

Link Count ListH
cd 7
d-e
b-c
ab
d-g

N oA A O oo

eh

cb 2
o 2

f-a 2

d-b 15

15

Link Gount, SID__
Apd| 1 .16
Thil 1 |4
eb 1 11
b-f 1 11
ef 1 12
1-i 1 13
i-c | 1 13
d-i 1 14
i-e | 1 14 . .
gl 1 5 Deleting tuple: [8,<b d ehi>]
gd| 1 15
1
1

Figure 8: The effect of deleting records from the database in Figure 1

4.3 Mining the FS-tree Incrementally

After refreshing the FS-tree, the incremental mining is invoked for certain links in HT', namely those affected
by the update. We first need to understand the effect of database updates on different types of links'3. We
can classify the possible change in the type of a link due to database updates into 9 different transaction
types as shown in Figure 9'4. We categories how the incremental mining algorithm deals with these different
transaction cases into four categories:

(1) For transaction of type 1: we mine for those links if they are affected °.

(2) For transactions of type 2 and 4: we mine for these links.

(3) For transactions of type 3 and 5: we delete previously discovered patterns that include these links.

(4) For transactions of type 6, 7, 8 and 9: we do nothing. The incremental FS-mine algorithm is shown
in Figure 10. The mining algorithm starts by dropping any sequence in the previously discovered frequent
sequences that is either of transaction type 3 or 5 (no longer satisfying the new M SuppC®®?, if changed
due to the update). Then for all links in the HT if the link satisfies the new M SuppC®®? and if it is of
transaction type 2, 4 or of type 1 and affected by the update, the algorithm applies the F'S —mine algorithm

for these links.

13The three different types of links we discussed earlier (frequent, potentially frequent and non-frequent).

14The starting point of the arrow refers to where the link used to be before the database updates and the ending point of the
arrow refers to where the link ends up as a result of the database update.

15By affected we mean if the link was in ADB, or if the link was in one of the subsequences that were deleted from the
FS-tree in the tree restructuring process described earlier

14

Header Table (HT) Non-Frequent Links Table (NFLT)

1 < Frequent 4

Links

Non-

N 9

5 Frequent >
2

3 Potentially % Links

Frequent .

8 < Links

y

A

Figure 9: The effect of incremental updates on links in the database

Incremental FS-Mine Algorithm

Input: FS-tree root R, set of frequent sequences fSeq and set of affected links affLinks
Output: new frequent sequences based on affLinks

Precondition: all counts for links are updated in HT and NFLT

Method:

(1) For (all frequent sequences fSeq;)

(2) If (fSeq; count < Min-Suppy or fSeq; has link with count < Min-Supp,){

3) delete fSeq;}

(4) For (all links I; € HT where I;.count >= Min-Supp,)

5) if (I, moved from NFLT or |, count was < Min-Suppy or |, € affLinks) {

(6) call FS-Mine (R) for 1.}

Figure 10: Incremental FS-Mine Algorithm.

Example 3: Consider that ADB denotes an insertion of {16, < efa >} , {17,<ef >}, {18,< efab >}
described in example 3. link a — b is affected by the update and maintained the same frequent status after
the update. Link f — a status is changed from potentially frequent to frequent due to the update. Link
e — f status is changed from non-frequent to frequent due to the update. These three links are the only ones
affected by the update, hence we need to mine for these three links. Table 2 shows the steps in mining for

these links and the resulting generated frequent sequences.

Link Derived Paths Conditional Sequence base Conditional FS tree | Frequent Sequence generated
a-b (c-d:4, d-e:4, e-f:1, fra:1, a-b:1), | (c-d:1, d-e:1, e-f:1, f-a:1) (f-a:3) <fab:3>
(a-b:2), (f-a:1, a-b:1), (f-a:1)
(e-f:3, f-a:2, a-b:1) (e-f:1, f-a:1)
f-a (c-d:4, d-e:4, e-f:1, f-a:1), (c-d:1, d-e:1, e-f:1), (e-f:3) <efa:3>
(f-a:1), (e-f:3, f-a :2) (e-f:2)
e-f (c-d:4, d-e:4, e-f:1), (e-f:3) (c-d:1, d-e:1)) ¢

Table 2: Incrementally Mining for link e-h where M Supp(C®®?=3.

Example 4: Consider that ADB denotes a deletion of the record with ID = 8 from the web file in
Figure 1. In this case the affected links are: b —d, d —e, e — h, and h —i¢. And since b —d, e — h and
h — i are no longer supporting the M SuppC?®®? (assuming 3) we delete any frequent sequences previously

discovered that contain any of those links. Namely from the frequent sequences previously generated (and

15

shown in Table 1) we delete the sequence <deh : 3>. Now we look in the HT for those link that satisfy the
M SuppC?®®? and of type 2, 4, or 1 (and affected by the update). Only links d — e and e — h are satisfying

this criteria so we apply the mining steps for each of them.

5 Interactive Mining

We want to allow the user to make changes to the minimum support value and get a response in a small
amount of time. To achieve this goal we need to minimize the need to access the database and to re-execute
the mining algorithm. We can support this goal in our system by setting the M SuppC'™™* to a small enough
value that is less than any value of M SuppC®®? that the user is likely to use. The rational here is that
since M SuppCY™ is responsible for determining the potentially frequent links and hence allow them to
be represented in the FS-tree. This ensures that if the user lowered the M SuppC®®? to a value that is >
M SuppC'™ we will have enough information in the FS-tree to calculate the new frequent sequences without
the need to reference the original database. This is done by applying the FS-mine algorithm for the subset of
links in HT that is satisfying the new M SuppC®®?. On the other hand, if the user increased the M SuppC®®9,
we directly provide him/her with the subset of frequent sequences previously discovered that satisfies the
new M SuppC®®? without the need for any further computation. Our system also allows the user to vary the
size of the frequent patters he is interested in discovering. In this case the system does not use the input
database, it only uses the FS-tree to extract the frequent sequences for the required size.

Now we give an example for lowering the M SuppC?®®?. The frequent sequences shown in Table 1 were
generated based on M SuppC®®? = 3. Assume that M SuppC"™ = 2 was small enough to satisfy most of
the expected changes to the system M SuppC?®®?. And that the user later on sets M SuppC?®®? to 2. In this
case, and since our FS-tree already has all information about links and sequences with minimum frequency
of 2, we can directly apply the FS-mine algorithm and obtain the result shown in Table 3 without the need

for re-scanning any part of the input database.

6 Experimental Results

We use two data sets to test our system, the Microsoft Anonymous Web Data Set and the MSNBC Anony-
mous Web Data Set, both obtained from [5]. Each data set consists of a collection of sessions where each
session has a sequence of page references. The Microsoft anonymous data set has 32711 sessions, each session

contains from 1 up to 35 page references. The MSNBC data set has 989818 sessions. A session contains

16

Link Derived Paths Conditional Sequence base Conditional FS-tree Frequent Sequence generated

f-a (f-a:2) [[[

h-i (c-d:d,d-e:4 ,e-h:1,h-i:1), (c-d:1,d-e:1 ,e-h:1) (d-e:2,e-h:2) <dehi: 2>
(b-d:3,d-e:3 ,e-h:2,h-i:1) (b-d:1,d-e:1 ,e-h:1)

g-i (d-g:2,g-i:1) (d-g:1), (d-g:2) <d—g—1:2>
(a-b:2,b-c:2 ,c-d:2,d-g:1,g-i:1) (a-b:1,b-3:1 ,c-d:1,d-g:1)

c-b (c-b:2) I I I

bd | (b-d:2)) &)

e-h (c-d:4, d-e:4, e-h:1) , (c-d:1, d-e:1) , (d-e:3), <deh : 3>
(b-d:3, d-e:2, e-h:2) (b-d:2, d-e:2) (b-d:2, d-e:2) <bdeh : 2>

d-g (d-g:2), (c-b:2, b-c:1,c-d:1,d-g:1), | (c-b:1, b-c:1,c-d:1), (b-c:2 ,c-d:2) <bcdg : 2>
(a-b:2,b-c:2 ,c-d:2,d-g:1) (a-b:1,b-c:1 ,c-d:1)

a-b (a-b:2), (f-a:2, a-b:2) (f-a:2) (f-a:2) f-a-b :2

b-c (c-b:2, b-c:1), (a-b:2,b-c:2), (c-b:1), (a-b:2), (a-b:4) <abc : 4>
(f-a:2, a-b:2,b-c:2) (f-a:2, a-b:2) (f-a:2, a-b:2) <fabc: 2>

d-e (c-d:4, d-e:4), (c-d:4), (c-d:4) <cde : 4>
(b-d:3, d-e:2) (b-d:2) (b-d:2) <bde : 2>

c-d (c-d:4), (c-b:1, b-c:1), (b-c :3) <bcd : 3>, <abcd : 2>
(c-b:2, b-c:1,c-d:1), (a-b:2,b-c:2) (a-b:2, b-c:2)
(a-b:2,b-c:2 ,c-d:2)

from 1 up to up to several thousands of page references ‘6. The main difference between the two data sets
of interest to us is the number of distinct pages. The Microsoft data set has 294 distinct pages, while the
MSNBC data set has only 17 distinct pages (as each one of these pages is in fact encodes a category of
pages).

We compare the performance of our algorithm against two other algorithms from the literature: a varia-
tion of Apriori algorithm [1] for sequence data ' and the PathM odelConstruction algorithm [11]. We have

implemented the three systems in Java in a Windows environment. We ran the experiments on a PC with

Table 3: Mining for M SuppC®¢?=2.

a 733 MHz Pentium processor and 512 MB of RAM.

Time (sec)

MS Data Set

—&— Apriori

/
/_/./:

—&— PMC
A~ FS-Miner

Time (sec)

———

5000 10000 15000 20000

Number of Sessions

25000

30000

MSNBC Data Set

40000

35000

30000 /
25000 —&— Apriori
20000 e —=—PMC
15000 —#A— FS-Miner
10000 /./
5000 !L// Y —
0 e —

100000 300000

Number of sessions

500000

700000 900000

We have conducted three different experiments using both data sets. We first tested the scalability of our
approach with respect to changes in input database size. Figure 11 shows that our system, and the other
two systems, scale linearly in the database size. Our system tends to outperform the other two systems with

data sets that have a large number of distinct items (such as the MS set) while Apriori tends to perform

Figure 11: Scalability with number of input sessions

16We preprocessed the MSNBC data sets to keep a maximum of 500 page references for each session to smooth the effect of

very large sessions on experimental time
17Qptimized using hashing techniques and modified to provide the same sequential patterns we use.

17

MS Data Set MSNBC Data Set

10000

10000
A 1000 | o
1000 3 \l—%
o 3 —<&— Apriori
8 —&— Apriori 5 100
@ 100 P 2 TR e+ 4+ o+ o+, | mPNC
g —=—PMC F —#— FS-Miner
F \ —A— FS-Miner °
1
1
5 o b N> N WX o » VA
Q&\ Qg& & ST F ST I
QY Q7

Min Support (%) Support (%)

Figure 12: Scalability with support threshold

MS Data Set MSNBC Data Set

300.00

16.00

14.00 250.00
12.00

—~ 200.00 +
10.00 i
e00 150,00 @ Recomputation

. M Incremental . W Incremental
6.00 k
100.00 T
4.00
2.00 + 50.00
0.00 -
2% 4% 8% 12% 16% 20% 24%

0.00 =

Time (sec)
Time (sec

2% 4% 8% 12% 16% 20% 24%

Update Size Update Size

Figure 13: Scalability with support threshold

slightly better in the case of data sets with a very small distinct items (such as the MSNBC set). This is
because the candidate generation cost in this case is small. Note that part of the cost of our system is due
to maintaining the extra data needed for incremental and interactive tasks. So while the other two systems
are only performing the mining task in hand, our system is also maintaining as a byproduct the FS-tree that
can later be used for incremental and interactive operations.

We also test the scalability of the system with respect to a decrease of the support threshold level.
Figure 12 shows that our system scales better with a decrease of support level. In fact our system shows a
very smooth response time to the decrease in the support level unlike the other two systems that experience
a dramatic increase in cost when they hit lower support values. This implies that even if we choose to utilize
a low MSuppCY ™ to better support the incremental and interactive tasks of the system at later stages,
our system does not experience a significant overhead. The third experiment compares the performance of
the incremental mining versus recomputation. Figure 13 shows that even with an incremental update size
of up to one quarter of the size of the original database size, the FS-Miner’s incremental feature provides

significant time savings over full recomputation.

18

7 Related Work

Nanpoulos et al. [6] proposed a method for discovering access patterns from web logs based on a new type
of association patterns. They handle the order between page accesses, and allow gaps in sequences. They
use a candidate generation algorithm that requires multiple scans of the database. Their pruning strategy
assumes that the site structure is known.

Srikant and Agrawal [10] presented an algorithm for finding generalized sequential patterns that allows
user-specified window-size and user-defined taxonomy over items in the database. This algorithm required
multiple scans of the database to generate candidates.

Yang et al. [14] presented an application of web log mining that combines caching and prefetching to
improve the performance of internet systems. In this work, association rules are mined from web logs using
an algorithm called Path Model Construction [11] and then used to improve the GDSF caching replacement
algorithm. These association rules assumes order and adjacency information among page references. The
left hand side of the association rule is a substring of length n (called n-gram substring), and is obtained by
scanning through all substrings ranging between 1 and n in each user session and pruning substrings that
do not satisfy a pre-defined minimum support. Like us, they assume contiguous page references in sequence
patterns.

Han et al. [4] proposed a technique that avoids the costly process of candidate generation by adapting a
pattern growth method that uses a highly condensed data structure to compress the database. This work
also used a divide-and-conquer method to decompose the mining task into a set of smaller tasks that reduce
the search space. The proposed technique discovers un-ordered frequent item sets. However, is does not
support the type of sequences we are interested in.

Parthasarathy et al. [8] introduced a mining technique given incremental updates and user interaction.
This technique avoids re-executing the whole mining algorithm on the entire data set. A special data structure
called incremental sequence lattice and a vertical layout format for the database are used to store items in
the database associated with customer transaction identifiers. Sequence supports are obtained by performing
intersection between different nodes in the lattice and obtaining count supports from the intermediate vertical
database. Due to the size of the intermediate vertical database and lattice that together typically exceeds
memory limits, this process is broken into smaller processes by forming suffix-based equivalence classes.
Each class is brought to the memory and processed independently. Similar in spirit to [8], we store in the
FS-Tree additional data as that reduces the work required at later stages although we use very different data
structures and algorithms to achieve that.

Xiao and Dunham [13] proposed an incremental and adaptive algorithm for mining for traversal patterns.

19

This work relies on a generalized suffix tree structure where all sequences in the database and their suffixes
are inserted into it. This tree grows quickly in size. Whenever the size of the tree reaches the size of the
available memory during tree construction, time pruning and compression techniques are applied to reduce
its size in order to be able to continue the insertion process of the remaining sequences from the database.
This process of reducing the size of the tree to fit into the available memory is referenced to as adaptive
property. Conversely, we do not need to interrupt the FS-Tree construction process to prune or compress
the tree as we prune the input sequences before inserting them into the tree and we insert only potentially
frequent subsequences. Unlike [13], the adaptive mining here means that the system is adaptive to changes

in user-specific parameters.

8 Conclusion

In this paper we have proposed the FS-Miner, an incremental sequence mining system. The FS-Miner
constructs a compressed data structure (FS-tree) that stores potentially frequent sequences and uses that
structure to discover frequent sequences. This technique requires only two scans for the input database.
Our approach allows for incremental discovery of frequent sequences when the input database is updated
eliminating the need for full recomputation. The FS-miner calculates the incremental effect of these updates
directly from the updated FS-tree. Our approach also allows interaction with the user in the form of
changes to the system minimum support, and in most cases we can satisfy these requests without having
to use the original database. Our experiments show that the performance of our system scales linearly
to increases in the input database size. It shows an excellent time performance when handling data sets
with large number of distinct items. The FS-miner also shows great scalability with the decrease of the
minimum support threshold when typically other mining algorithms tend to exhibit dramatic increases in
response time. Finally the incremental functionality of our system shows a significant performance gain over
recomputation even with large update sizes relative to the size of the original database.
Acknowledgments. Many people deserve thanks for making the UCI KDD archive a success. Foremost

among them are the donors and creators of the databases.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Intl. Conference on Very
Large Data Bases (VLDB), pages 487-499, 1994.

[2] M. H. Dunham. Data Mining: Introductory and Advanced Topics. Prentice Hall, 2003.

20

[3] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient algorithms for discovering frequent sets
in incremental databases. In Proc. of SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD), pages 59-66, 1997.

[4] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD Conf.,
pages 1-12, May 2000.

[5] Hettich, S. and Bay, S. D. The UCI KDD Archive. Irvine, CA: University of California, Department of
Information and Computer Science. http://kdd.ics.uci.edu, 1999.

[6] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. Effective prediction of web-user accesses: A data
mining approach. In WEBKDD Workshop, San Francisco, CA, Aug. 2001.

[7] R. Ng, L. Lakshmanan, J. Han, and Pang. Exploratory mining and pruning optimization of constrained
association rules. In SIGMOD Conf., pages 13-24, 1998.

[8] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas. Incremental and interactive sequence
mining. In Intl. Conference on Information and Knowledge Management (CIKM), pages 251-258, 1999.

[9] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database
systems: alternatives and implications. In SIGMOD Conf., pages 343-354, 1998.

[10] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements.
In Intl. Conf. on Extending Database Technology (EDBT), pages 3-17, 1996.

[11] Z. Su, Q. Yang, Y. Lu, and H. Zhang. Whatnext: A prediction system for web request using n-gram
sequence models. In Intl. Conf. on Web Information Systems Engineering (WISE), pages 214-221,
2000.

[12] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for the incremental updation
of association rules in large databases. In Intl. Conf. on Knowledge Discovery and Data Mining (KDD),
pages 263-266, 1997.

[13] Y. Xiao and M. H. Dunham. Efficient Mining of Traversal Patterns. Data and Knowledge Engineering,
2(39):191 — 214, 2001.

[14] Q. Yang, H. H. Zhang, and I. T. Y. Li. Mining web logs for prediction models in WWW caching and
prefetching. In Intl. Conf. on Knowledge Discovery and Data Mining (KDD), pages 473-478, 2001.

21

