
1

Aggregate Rate Control for Efficient and Practical
Congestion Management

Jae Chung and Mark Claypool
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609, USA
{goos|claypool}@cs.wpi.edu

Abstract— Active queue management (AQM) promises
to overcome the current limitations of end-host only
congestion control by providing congestion feedback in-
formation before router queue buffers overflow. Many
emerging AQM approaches use proportional integral (PI)
controller design because of PI’s simplicity and effective-
ness. Unfortunately, these promising AQMs still face a
critical deployment challenge since there are no simple and
effective PI control parameter configurations available for
time-delayed systems (i.e. the Internet). As a solution, we
present the Aggregate Rate Controller (ARC), a reduced
parameter PI controller for Internet traffic. ARC, founded
on both classical control theory and a sound understand-
ing of Internet congestion control, uses a low frequency
rate-based approach to detect congestion that minimizes
control noises and provides more flexible link Quality of
Service (QoS) compared with queue-based approaches. In
addition, we provide practical configuration guidelines for
ARC that produce efficient and resilient performance over
a wide range of traffic conditions. Simulations verify that
ARC effectively handles network congestion over a range
of network and traffic conditions, overall outperforming
other mechanisms in terms of queue dynamics, link uti-
lization, data loss rate and object response time for Web
traffic.

Keywords: Stochastic processes/Queuing theory, Con-
trol theory, Simulations

I. INTRODUCTION

TCP, the de-facto Internet transport protocol, has an
end-host congestion control mechanism that has largely
been effective in managing Internet congestion. Yet, TCP
alone can be inefficient in controlling congestion, mainly
since end-hosts typically must wait until router buffers
overflow before detecting congestion. Active queue man-
agement (AQM) with explicit congestion notification
(ECN) [1] promises to overcome the limitations of end-
host only congestion control by providing congestion
feedback information to the end-hosts before router
buffers overflow.

The most promising approaches model AQM as a
feedback controller on a time-delayed response sys-
tem and apply control-engineering principles to design
efficient controllers for TCP traffic [2], [3], [4]. In
modern control systems, proportional integral derivative
(PID) designs dominate because of their simplicity and
effectiveness. Without exception, this applies to recent
AQM developments and has moved AQM research from
issues with basic framework design and detailed con-
troller design to, with this paper, issues with practical
implementation.

Among the PID principles, AQMs primarily consider
only the proportional integral (PI) feedback control since
the effect of the derivative control is often insignificant
under practical Internet environments. While PI con-
trol approaches seems promising, a critical deployment
challenge is the configuration of PI control parameters
in a time-delayed feedback system (i.e., the Internet);
there are no simple and effective PI control parameter
configuration available for time-delayed systems [5]. The
existing PI control-based AQM mechanisms such as the
PI controller [3], Adaptive Virtual Queue (AVQ) [4]
and Random Early Marking (REM) [6], lack complete
configuration guidelines for network operators making
their practical deployment difficult.

In this work, we present a a practical PI control-based
AQM offering aggregated rate control (ARC) for TCP
traffic. ARC is founded on classic control theory and
a sound understanding of PI behavior for the Internet
traffic control domain, yielding a reduced parameter PI
controller and easy configuration while keeping proven
system stability characteristics. We model a TCP-ARC
feedback control system using a linear TCP model [3]
and develop practical yet effective ARC configuration
guidelines. The guidelines cover issues in choosing a
target stable boundary system for ARC configuration and
provide a method for selecting control parameters that
help avoid system instability even when the system is out
of the stability boundary. The guidelines also address the

2

effects of the rate sampling interval on system stability,
a consideration often neglected in other AQM studies.

Controllers with the same underlying principle design
can result in noticeably different implementations, in
terms of both complexity and performance, depending
on how control information is obtained and feedback is
processed. AQMs require information on the incoming
traffic load in order to make effective congestion control
decisions, information that can be obtained in two ways:
by deriving samples of the queue length, or by comparing
the incoming traffic rate to the service rate. ARC takes
the latter, a rate-based control information acquisition
approach. For a small amount of data collection over-
head, rate-based data acquisition reduces sampling noise
that can significantly degrade the accuracy of congestion
measurement. In addition, rate-based mechanisms can
more effectively react to impending congestion, making
control decisions before outbound queue buildup and
can also be tuned to tradeoff queuing delay for link
utilization, allowing enhanced support for quality of
service (QoS) for various Internet applications.

Through an extensive simulation study, we evaluate
ARC and compare it to alternate AQM mechanisms
including the PI controller [3], AVQ [4] and SFC [2], and
drop-tail queue management for a wide range of network
and traffic conditions, including Web flash crowds and
multiple congestion bottlenecks. Our simulations vali-
date the stability and practicality of ARC, showing that
ARC efficiently handles network congestion in all the
tested traffic conditions, and when considering all traffic
scenarios, outperforms other mechanisms in terms of
queuing delay, link utilization, data loss rate, and Web
object response time.

The rest of paper is organized as follows: Section II
describes the design of ARC; Section III discusses ARC
configuration issues and provides practical guidelines
for ARC configuration; Section IV evaluates ARC per-
formance through simulation and compares ARC to
several popular AQMs; and Section VI summarizes our
conclusions and presents possible future work.

II. AGGREGATED RATE CONTROLLER

Aggregate Rate Controller (ARC) is a rate-based ac-
tive queue management mechanism for TCP traffic fea-
turing a proportional-integral controller with a minimal
set of configuration parameters. ARC provides flexible
link QoS and simple yet effective aggregated traffic
control based on the TCP congestion control system.

In modern control systems, proportional integral
derivative (PID) designs are the most widely used for
feedback controllers because of their simplicity and

effectiveness, and have recently been applied to ac-
tive queue management. The PI controller [3] adapts
a proportional-integral (PI) controller into a TCP con-
gestion control system using a linear TCP behavioral
model, and converts the continuous time-domain PI con-
trol function into an algorithmic implementation through
discretization. The PI controller can be configured to
support a wide range of traffic conditions. However, it
is still not mature enough for practical deployment due
to some configuration and stability concerns. The first
concern is the configuration complexity of PI control-
based AQMs. Configuration of PI control-based AQMs
involves determining at least two parameters, a pro-
portional parameter (KP) and an integral parameter
(KI), in order to work effectively over a wide range
of traffic conditions. Silva et al. [5] present a com-
plicated process for configuring a PI controller for a
system with time-delay but lack of expert knowledge of
control theory may render the controller ineffective. The
second concern is the discretization in PI control-based
AQMs. The discretization of a continuous time-domain
control function introduces a state measurement interval,
such as the queue-sampling epoch in the PI AQM [3],
that affects the stability of the system. However, this
measurement interval is often neglected in the stability
analysis adding uncertainty to the already complicated
controller configuration process. The last concern is that
recent TCP model-based AQM design approaches [2],
[3], [4] have a small but fundamental stability issue in
that a linear TCP model is used to analyze the range of
stability for the control parameters without validating the
linearity of the TCP system. That is, the linear models
obtained from the non-linear stochastic TCP behavioral
model may not accurately represent the behavior of the
actual TCP congestion control system.

Based on sound understanding of PI control for In-
ternet traffic and stability analysis using a linear TCP
model, this section explores the possibilities of reducing
the PI configuration parameters for active queue manage-
ment, and presents the ARC logic for a configuration-
optimized PI control algorithm for TCP congestion con-
trol systems. First, we design a rate-based algorithm that
implements the general PI traffic controller algorithm
in [3], enhancing the traffic rate estimation mechanism to
provide an efficient and flexible controller configuration.
Then, we carefully reduce the control parameters to ob-
tain the ARC logic. Next, we model the ARC dynamics
in a differential equation and use it along with the linear
TCP behavior model from [7] to perform TCP-ARC
system stability analysis, while also showing the effect
of the state measurement interval on the system stability.
Lastly, we validate the linearity of the TCP system as

3

Algorithm 1 Rate-Based PI Controller for AQM
Every d seconds (epoch):
1: p← p + α(b − dγC) + β(q − q0);
2: b← 0;

Every packet arrival:
3: b← b + sizeof(packet);
4: notify(packet, p);

Variables:
p: congestion notification probability
q: queue length in bytes
b: total bytes received this epoch

Parameters:
C: link capacity (bytes per second)
γ: target link utilization (0 < γ ≤ 1)
q0: target queue length in bytes
d: measurement interval
α: virtual queue control constant
β: queue control constant

well as the correctness and usefulness of the ARC-TCP
system model through simulation.

Algorithm 1 shows our initial rate-based enhancement
of the queue-based PI controller algorithm from [3], with
added support for QoS configuration by introducing an
additional target link utilization parameter (γ) in the
PI control logic at line 1. When γ = 1, the rate-
based PI control logic is identical to the queue-based
control logic except for the incoming traffic amount
measurement. However, when 0 < γ < 1, the PI control
logic can be regarded as maintaining a virtual link as in
AVQ [4] and making control decisions proportional to
the virtual queue length, where the virtual link capacity is
dynamically adjusted to handle the traffic still present in
the physical queue due to control error from the previous
measurement interval (epoch). Thus, this version of PI
first reserves a portion of the physical link capacity
proportional to the queue displacement from the targeted
length (q − q0) and then determines the virtual capacity
used to control aggregated traffic for the next epoch
based on γ and the remaining physical capacity. This
view of the PI control behavior is clearly shown when
rewriting the logic in the following form:

p← p + α(b − γ(dC − β
γα

(q − q0)))

When the capacity reserved for the overfilled queue
is proportional to the queue displacement, the necessary
range condition for the proportional queue control pa-
rameter is:

0 < β
γα
≤ 1

since the controller needs to reserve no more capacity
than needs to be served for the upcoming epoch. We
now consider the most conservative case of setting

–
i

ARC

C(s)

TCP + Delay

P (s) =
τ(γC)2

2N

s+ 2N

τ2γC

e−sτ- δp- Nδw-

6

Fig. 1. TCP-ARC Feedback Control System with Transmission
Delay

the proportional queue control parameter to one (i.e.
β = γα). Then, the PI control logic is reduced to the
following ARC logic:

p← p + α(b− γ(dC − (q − q0))) (1)

Next, we model the dynamics of the ARC logic for
stability analysis. Figure 1 shows the block diagram of a
TCP-ARC feedback control system that models N TCP
sources and a single congested ARC router using the
linear TCP model from [7], where τ is round trip time
the system, C is the capacity of the congested link, and
w is the expected TCP window size in packets given a
congestion notification probability of p from the system.
The system model also uses delta (δ) notation for each
system variable to express the displacement from the
equilibrium state. Thus:

δp = p− p0

δw = w − w0

δq = q − q0

where, p0, w0 and q0 are the values of corresponding
system variables at system equilibrium (assuming equi-
librium exists). Using the number of packets received
(Nw(t)) instead of the number of bytes received (b) to
be compatible with the TCP model we use and the unit
of link capacity (C in packets per second), the difference
equation that models the dynamics of the ARC logic is:

4p = α(Nw(t) + γ(q(t)− q0)− dγC) (2)

The ARC difference equation is transformed to use
delta notation in order to adapt to the input and output of
the TCP model given in delta format, and then converted
into a differential equation:

4δp = δp− δpprev = (p− p0)− (pprev − p0) = 4p

= α(Nw −Nw0 + γ(q − q0) + Nw0 − dγC)

= α(Nδw + γδq + Nw0 − dγC)

δṗ = lim
4t→0

4δp

4t

= lim
4t→0

α(Nδw + γδq + Nw0 − dγC)

4t

≈ α

d
(Nδw + γδq + Nw0 − dγC) (3)

4

–
i

ARC/Queue

Cq(s)

TCP + Delay

P (s)

Queue

Q(s)- δp- Nδw- δq-

6

Fig. 2. TCP-ARC System with the Queue Model Removed from
the ARC Transfer Function

Note in the last step of the above discrete to con-
tinuous time domain conversion that the traffic state
measurement interval (d) uses an approximation for
lim4t→04t. This approximation, also used in the dis-
cretization processes, is valid for sufficiently small d.
Note also that the ARC differential equation has a control
parameter represented by α

d
that needs to be configured

for system stability and responsiveness. Once the stable
range of α

d
is found, α can be determined by choosing

a sufficiently small d value. By applying a Laplas trans-
formation to the ARC differential equation (Equation 3),
the transfer function of ARC (C(s)) becomes:

C(s) =

α
d

(

s + 1+γ
τ

)

s
(

s + 1
τ

) (4)

Before continuing our stability analysis, in order to
identify the controller type, we take the queue behavior
model embedded in the ARC model out from the ARC
transfer function such that C(s) = Q(s)Cq(s). Figure 2
represents this view of the system. Now:

Q(s) =
1
τ

s + 1
τ

(5)

Cq(s) =
α(1 + γ)

d

τs
1+γ

+ 1

s
(6)

= KI

s
Tp

+ 1

s

Equation 6 indicates that the queue-based implementa-
tion of ARC is a special PI controller that fixes the
constant Tp = 1+γ

τ
such that the proportional constant

(KP = KI

Tp
) and the integral constant (KI) of the

compensator has the following relationship:

KP = KI
τ

1 + γ
and KI =

α(1 + γ)

d

We next perform frequency response analysis on the
TCP-ARC system model, applying Bode stability cri-
teria [8] to find the stable operating range of the α

d

parameter for a chosen range of traffic conditions. The
Bode method evaluates the stability of a closed-loop
system by examining the open-loop system response to

Slope = − 20 dB/decade

− 40 dB/decade

− 60 dB/decade

− 40 dB/decade

−90

−180

0

φp−180

ωgωp

rad/sec

rad/sec

Magnitude (dB)

Phase (deg)

µg

0

ατ 3γ 3C 3(1+γ)
4dN 2

τ
1

τ2γC
2N

τ
1+γ

Tp=

Fig. 3. Bode Plot of TCP-ARC System

sinusoidal inputs with various frequencies. The open-
loop transfer function of TCP-ARC system is:

G(s) = C(s)P (s) =

ατ3γ3C3(1+γ)
4dN2

(

τ
1+γ

s + 1
)

eτs

s
(

τ2γC
2N

s + 1
)

(τs + 1)
(7)

The two open-loop system responses the Bode
method uses are the magnitude gain in decibels
(20 log10 |G(jω)|) and the phase shift (6 G(jω)) of the
output sinusoid given as functions of input sinusoid
frequency, which for the TCP-ARC system are computed
as follows:

µ(ω, α
d
) = 20 log10 |G(jω)|

= 20 log10

ατ3γ3C3(1+γ)

4dN2

√

(

τω

1+γ

)2
+1

ω

√

(

τ2γCω

2N

)2
+1
√

(τω)2+1

φ(ω) = 6 G(jω)

= tan−1
(

τω

1 + γ

)

− tan−1

(

τ2γCω

2N

)

− tan−1(τω)− 180◦

π
τω − 90◦

Figure 3 shows a Bode plot for an example TCP-
ARC system. Before discussing the characteristics of
the TCP-ARC system described by the Bode plots, we
briefly introduce the Bode stability criteria that states
the following: a closed-loop system is stable when the
magnitude gain of the open-loop system is less than
−6dB for the input frequency that causes a 180◦ phase
lag to the output signal, and also the phase lag is in
between 30◦ and 60◦ for the input frequency that results
in zero magnitude gain. That is, µg < −6 and 30◦ <
φp < 60◦ in Figure 3 where:
{

µg = µ(ωg,
α
d
)

φp = φ(ωp) + 180◦

{

ωg = φ−1(−180◦)
ωp = µ−1(0, α

d
)

5

Using Bode stability criteria to configure a general
PI controller, such as in [3], with two control param-
eter involves deformation of both the magnitude and
phase curves as the parameter values change, adding
complications. And unfortunately, most other available
PI tuning methods are not valid for systems with time
delay. Moreover, the few available PI tuning methods
for time-delayed systems may require expert decisions
and only work for first-order systems [5]. ARC eases
the configuration problems for TCP systems by fixing
the controller constant Tp = 1+γ

τ̂
> 1

τ̂
. This results in

the phase shift response curve of the TCP-ARC system
that is not a function of the α

d
parameter, and thus

fixes the phase shift curve during the tuning process. In
addition, the magnitude gain curve only moves vertically
without deformation as a function of α

d
, easing the tuning

process.
Given the link capacity (C) and the target utilization

(γ), the stability boundary condition of the TCP-ARC
system is characterized by the minimum expected num-
ber of TCP flows (Ň) and the maximum expected round-
trip time of the system (τ̂). These parameters determine
the location of the zero and poles of G(s), characterizing
the system into one of the following three cases:

Case 1 :
2Ň

τ̂2γC
<

1

τ̂
<

1 + γ

τ̂

Case 2 :
1

τ̂
≤ 2Ň

τ̂2γC
<

1 + γ

τ̂

Case 3 :
1

τ̂
<

1 + γ

τ̂
≤ 2Ň

τ̂2γC

Case 1: This system depicted by Figure 3 has phase lags
of φ(0+) = −90◦ and φ(1

τ̂
) < −180◦ indicating that at

least one ωg < 1
τ̂

exists.

φ
(

1
τ̂

)

= tan−1
(

τ̂

1 + γ

1

τ̂

)

− tan−1

(

τ̂2γC

2Ň

1

τ̂

)

− tan−1(1)− 180◦

π
− 90◦

= (45◦ − ε1)− (45◦ + ε2)− 45◦ − 180◦

π
− 90◦

< −180◦

Further examining the shape of φ(ω) using the
derivative dφ(ω)

dω
reveals that φ(ω) is a decreasing

function of ω except for a possible small mound in
the neighborhood of 1+γ

τ̂
. However, since 1

τ̂
< 1+γ

τ̂
,

the smallest (and usually the only) ωg < 1
τ̂

with
dφ(ω)

dω
|ω<ωg

< 0 can always be found. This, plus the
fact that the magnitude gain curve µ(ω, α

d
) is a strictly

decreasing function of ω starting from a positive value
at ω = 0+, guarantees that it is always possible to

find a range of α
d

that makes ωp(
α
d
) < ωg and thus

have a positive φp. If a TCP-ARC system can ever be
stabilized for a given Ň and τ̂ boundary, one should be
able to refine the range of α

d
such that 30◦ < φp < 60◦.

A useful necessary condition for the system stability is
µ(1

τ̂
, 0) < −6.

Case 2 and Case 3: The same analysis used for a
Case 1 system can be applied to Case 2 and Case 3
systems with two differences. The first difference for
both Case 2 and Case 3 systems is that φ(2N

τ̂2γC
) <

−180◦. The second difference for Case 3 systems is
that φ(ω, α

d
) is a strictly decreasing function of ω. It is

always possible to find a range α
d

that makes ωp(
α
d
) < ωg

and have a positive φp, where a necessary condition for
system stability is µ(2N

τ̂2γC
, 0) < −6.

For all cases, we can determine if a TCP-ARC system
can be stabilized for the chosen Ň and τ̂ boundary, and
find the stable operating range of α

d
in two steps:

{

α
d
| µ(ωg,

α
d
) < −6

}

and
{

α
d
| − 150◦ < φ(ωp(

α
d
)) < −120◦

}

(8)

Thus, ARC configuration involves choosing a reasonable
minimum number of flows (Ň) and maximum expected
round-trip time (τ̂) for the system we wish to support,
finding the α

d
range that satisfies the first condition of

Equation 8, and refining the range to satisfy the second
condition of Equation 8. Once the stable range is found,
choosing a sufficiently small d gives the range of α.
The ARC configuration issues of choosing reasonable Ň
and τ̂ stability boundary conditions and the measurement
interval d is discussed in Section III.

We implemented the ARC algorithm shown in Algo-
rithm 2 in NS1 and designed experiments to validate
linearity of the TCP system and verify the correctness
of our model. Linearity of a system can be validated via
simple frequency analysis by introducing a sinusoid into
the system. If a system has linearity, the output of the
system should also be a sinusoid with a possibly altered
magnitude and frequency. We artificially injected a sinu-
soid into a simulated TCP-ARC system representing the
incoming traffic rate estimation error at the congested
ARC router and measured the system throughput. Then,
we compared the simulated throughput with the output
of the analytic TCP-ARC system model.

We used a dumbbell topology for the simulations,
uniformly varying the round-trip times of 35 FTP-TCP
connections from 90ms to 110ms. We set the physical
queue length to 500 packets, where the system used 1
Kbyte packets. For the congested-link, we used C = 8

1The NS homepage is at http://www.isi.edu/nsnam/ns/

6

Algorithm 2 Aggregate Rate Controller
Every d seconds:
1: p← p + α(b − γ(dC − (q − q0)));
2: b← 0;

Every packet arrival:
3: if (uniform(0, 1) ≤ p) then
4: if (mark(packet) == false) then
5: drop(packet);
6: return;
7: end if
8: end if
9: if (enqueue(packet) == false) then

10: drop(packet);
11: return;
12: end if
13: b← b + sizeof(packet);

Functions:
mark(packet): ECN mark the packet. Return false on error.
enqueue(packet): Enqueue the packet. Return false if no room.
drop(packet): Drop the packet.

Variables:
p, q, b

Parameters:
C: link capacity (bytes per second)
γ: target link utilization (γ = C0/C)
q0: target queue length in bytes
d: measurement interval
α: TCP congestion feedback constant

Mbps once with the target utilization γ = 0.95, and
once with γ = 0.50. The ARC control parameters
were set to d = 200 ms and α = 0.112 for the
simulations. For the ARC rate estimation error, we use
a low frequency sinusoid of 0.5 sin(0.1(t − 50)) Mbps,
and a high frequency sinusoid of 0.5 sin(100(t − 50))
Mbps.

Figure 4 compares the throughput of the simulated
systems with that of our analytic model for the two
sinusoidal inputs (top and bottom) under the two dif-
ferent target loads (γ). The simulated results closely
match the output of the TCP-ARC analytical model,
verifying the linearity of the TCP congestion control
system and also the correctness of our TCP-ARC model.
In addition, the ability to meet custom traffic loads
illustrates the configuration flexibility of ARC. More
importantly, the resilient TCP-ARC congestion control
system performance for the low-frequency and high-
frequency traffic rate estimation errors indicates poten-
tially resilient ARC performance in the presence of TCP-
unfriendly, unresponsive and/or short Web traffic.

III. ARC CONFIGURATION

In the previous section, we have shown that the ARC
control parameter α

d
can be found to stabilize a TCP sys-

tem characterized by Ň and τ̂ boundary conditions. This

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

M
bp

s

Seconds

0.5 sin(0.1(t-50))

RTT = 0.1 sec
N = 35
C = 8 Mbps
alpha = 0.014
d = 0.2 sec

Input Noise (Traffic Rate Estimation Error)
Modeled Throughput (Target Load = 0.95)

Simulated Throughput (Target Load = 0.95)
Modeled Throughput (Target Load = 0.50)

Simulated Throughput (Target Load = 0.50)

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500
M

bp
s

Seconds

0.5 sin(100(t-50))

RTT = 0.1 sec
N = 35
C = 8 Mbps
alpha = 0.014
d = 0.2 sec

Input Noise (Traffic Rate Estimation Error)
Modeled Throughput (Target Load = 0.95)

Simulated Throughput (Target Load = 0.95)
Modeled Throughput (Target Load = 0.50)

Simulated Throughput (Target Load = 0.50)

Fig. 4. TCP-ARC Model Validation: Throughput of two systems -
low-frequency (top) and high-frequency (bottom) traffic rate estima-
tion errors are artificially injected into ARC.

section addresses the configuration issue of selecting the
boundary condition epoch length (d) to enable ARC to
be resilient over a wide range of traffic conditions.

Although a PI controller considerably broadens the
range over which a controller with a given configura-
tion can be stable [3], fundamental configuration issues
still remain for ARC or any other PI controll-based
AQM. Consider the case where ARC is configured for
an average-case traffic scenario with a relatively large
number of flows (Ň) and a typical round-trip time τ̂ .
If there are fewer TCP flows than average and/or the
average round-trip time is unusually large, the resulting
TCP-ARC system may become instabile. We will refer
to this configuration as an “overshoot problem”. On the
other hand, if ARC is configured to support a worst-
case scenario with a small number of flows (Ň) and
a large round-trip time (τ̂), the resulting system will
have a significantly larger response time to changes in
congestion when there is the average-case traffic. Thus,
the system will suffer from significant queuing delays
and queue overflows before adapting to any changing
traffic conditions. We will refer to this configuration as
an “undershoot problem”.

Most TCP flows have their maximum bitrates limited
by one or more of: the capacity of the ISP access
points or local networks; the maximum TCP window
sizes; and the sizes of the objects being downloaded [9].
Therefore, the overshoot problem is not a significant
concern for many core routers since backbone routers
are not likely to be congested by a small number of TCP

7

flows. Also flows that traverse the backbone typically
have a relatively low average round-trip time [9], [10],
making them unable to create an overshoot problem.
However, the overshoot problem may occur in enterprise
or access network routers as the traffic load and round-
trip time may vary significantly over the course of a
day. In fact, the overshoot problem is more critical than
the undershoot problem since it can severely degrade
network stability even under light traffic loads. At the
same time, it is desireable to avoid undershoot problems
since that deteriorates the potential benefits of AQM.

We address the overshoot and undershoot configu-
ration problems for ARC by carefully interpreting the
meaning of applying the system stability analysis from
Section II to practical network operations. Finding a
reasonable Ň and τ̂ for the α

d
configuration starts from

the realization that it is inadequate to apply stability
determined through our stochastic system model to a
systems with a small number of TCP flows and a
large average round-trip time (a fragile system). That
is, no matter how well we tune ARC using the model,
it is impossible for an AQM to achieve a high link
utilization and low queuing delay for a fragile system
since the aggregate traffic rate fluctuates due to the
bursty characteristics of TCP. Therefore, tuning ARC,
or any other PI control-based AQM, for a fragile system
is an ineffective use of the controller capability and it
may cause unnecessary queuing delays and overflows
for normal traffic loads. Thus, the ARC configuration
objective is to effectively manage average traffic con-
ditions while avoiding a large overshoot problem that
could significantly degrade network stability.

In order to determine when an overshoot threatens
stability for the fragile lower bound of a system we
wish to support, denoted by Ňmin and τ̂max, we need to
determine the sustainable congestion notification prob-
ability estimation error (δps < 1) in order for the
lower bound system to be least operational. We develop
simple frequency analysis on a TCP plant (P (s)) to
quantify δps. The least operational state of a TCP system
is the following: a TCP system is least operational if
for congestion notification errors in the range [−δps,
δps] introduced to the TCP plant, the output range of
the system is [−γC , γC]. The equivalent mathematical
representation is:

|P (jω)| =

(τ̂max)3γ3C3

4(Ňmin)2
√

ω2
(

(τ̂max)2γC

2Ňmin

)2
+ 1

≤ γC

δps

This inequality always holds for high frequency in-
puts. For low frequency errors in the congestion notifi-

cation probability
(

ω � 2Ňmin

(τ̂max)2γC

)

, we have:

δps ≤ 4(Ňmin)2

(τ̂max)3γ2C2

Applying this statement to the TCP-ARC system, if
ARC makes congestion estimation errors within [−δps,
δps] for the fragile lower bound of the system we wish
to support, the system will be least operational. In order
to accomplish this, it is necessary to set the α

d
parameter

such that ARC increases p sufficiently less than δps

during one τ̂max interval:

α

d
≤ αmax

τ̂max
� δps

This minimum stability condition can be used for ARC
configuration to avoid threatening stability with a large
overshoot problem for the fragile boundary system we
choose to support. We first choose an average TCP-
ARC system to stably support, described by Ň and τ̂ ,
and use the ARC configuration guidelines introduced in
Section II to find the stable α

d
range. Then, we choose the

fragile boundary system described by Ňmin and τ̂max,
and use the minimum stability condition to verify that the
parameter range is safe for the fragile boundary system.

Next, we need to determine the measurement epoch
d to complete the configuration. The stability of back-
bone routers may not be sensitive to the choice of d,
but proper selection of d is critical for enterprise or
access network router configurations. The stochastic TCP
system model may not accurately depict the stability of
the system with a large average round-trip time and a
small number of TCP flows since packets would tend to
arrive at the router in bursts, breaking the assumption
of stochastic packet arrivals. However, we can relax
the stochastic assumption for the TCP-ARC system by
choosing a sufficiently large d, larger or at least equal
to the maximum average round-trip time we wish to
support (τ̂max). In this way, the effect of the traffic
bursts on the ARC control decision can be minimized,
reducing the noise in the incoming traffic rate estimation
caused by the traffic bursts. However, choosing too large
a d will affect the system responsiveness, weakening
the small interval assumption made for the algorithmic
discretization. As a compromise, we recommend setting
the measurement epoch to the maximum expected round-
trip time, or d = τ̂max. According to a recent Internet
measurement study [9], the median of typical median
round-trip times is less than 1 second, and 90% of the
median round-trip times are under 2 seconds. Therefore,
depending on the targeted level of network resilience and
the specific traffic characteristics of the network, setting
τ̂max in between 1 and 2 seconds is appropriate for

8

most enterprise or access network routers. For backbone
routers, selecting an even smaller τ̂max to enhance the
granularity of congestion control may also be effective.

Summarizing our analysis for configuring ARC over
a wide range of traffic loads, we present the final
guidelines that are recommended along with Equation 8:

d = τ̂max and α� 4(Ňmin)2

(τ̂max)3γ2C2
(9)

IV. EVALUATION

This section compares the performance of ARC with
that of PI [3], AVQ [4], SFC [2] and Drop-Tail through
detailed simulations varying number of flows, round-trip
times and bottleneck link capacity, with competing back-
ground Web traffic and 2-way traffic (which can result in
ack compression). We also simulate Web flash crowds to
stress-test the AQM controllers and multiple congestion
bottlenecks to provide a more realistic Internet traffic
environment. For all evaluations, we use the IP packet
simulator NS. NS includes source code for PI and AVQ
and we implement SFC based on [2] and extend NS to
support ARC.2

Unless otherwise noted, a dumbell network topology
is used with a bottleneck link capacity of 10 Mbps and
a maximum packet size of 1000 bytes. Round-trip link
delays are randomly uniformly distributed over the range
[60:1000], based on measurements in [9]. The physical
queue limit for each AQM and the drop-tail queue is
set to 500 Kbytes, which is approximately equal to the
bandwidth-delay product for the mean round-trip time.

The settings for the parameters of the various AQMs
are based on the recommendations by their authors. The
target utilization, γ, for AVQ is set to 0.98 and the
damping factor, α, is set to 0.15 according to Theorem
1 in [4]. The parameters for SFC are k1 = 0.0005 and
k2 = 0.2, as used in [2]. The parameters for PI are
α = 1.822 × 10−5, β = 1.816 × 10−5 and sampling
frequency w = 170, as in [3]. The settings for ARC have
the measurement epoch d = 1 seconds, α = 1.42×10−5 ,
the target utilization γ = 0.98 and the target queue
q0 = 0. The ARC control parameters are chosen in order
to effectively support the system with τ̂ = 500ms and
Ň = 50, and to satisfy the minimum stability condition
assuming the fragile boundary system has τ̂max = 2sec
and Ňmin = 10.

In all simulations, we use ECN enabled NewReno
TCP for both long-lived FTP flows and short-lived Web
sessions. Each simulation has a number, specified in each

2The ARC code is available at http://perform.wpi.edu/downloads/-
arc/.

experiment subsection, of forward and backward direc-
tion bulk transfer FTP flows. Also, each simulation has
300 background Web-like sessions (using the Webtraf
code built into NS) that start evenly distributed during
the first 30 seconds. Based on results from [11], [12],
each Web session requests pages with 2 objects drawn
from a Pareto distribution with a shape parameter of 1.2
and an average size of 5 Kbytes. The Web sessions have
an exponentially distributed think time with a mean of 7
seconds, which results in an average utilization of 0.25
of the 10 Mbps capacity, a typical fraction of Internet
traffic as reported by [13].

A. Long-Lived TCP Flows

This experiment compares the performance of ARC,
PI, AVQ, SFC and Drop-Tail over a range of traffic
loads with long-lived TCP flows. Each simulation begins
with 10 forward direction FTP flows with start times
uniformly randomly distributed over [0:50] seconds, and
is accompanied by 300 background Web sessions and
50 backward direction FTP flows. After 200 seconds,
an additional 40 FTP flows are added with start times
uniformly randomly distributed over the subsequent 50
seconds. The total number of FTP flows doubles every
200 seconds thereafter, resulting in 100 flows at time
400, 200 flows at time 600, 400 flows at time 800 and
800 flows at time 1000. For each new interval, the FTP
start times are uniformly randomly distributed over a 50
second range. We ran ARC twice, once with the settings
specified earlier (d = 1 and α = 1.42 × 10−5) and then
with d = 2 (and α = 2.84 × 10−5 to preserve the α/d
ratio), in order to test the sensitivity of ARC to the rate
measurement interval.

Figure 5 (top) depicts the queue dynamics for the
four AQMs with drop-tail (DT) shown as a reference.
Drop-tail exhibits the expected large queue oscillations
when there are few flows and stable, but large, queue
sizes when there are many flows. SFC has stable queue
dynamics for all numbers of flows. However, without
an integral control component, SFC exhibits a steady
increase in the average queue size as the number of flows
increases, approaching the physical queue limit when
there are 800 FTP flows. AVQ exhibits unstable queue
dynamics when there are few flows but stabilizes with
relatively low queues once there are 200 or more FTP
flows. PI and ARC (d = 1 and d = 2) are similar, with
stable queue dynamics for all numbers of flows, and with
only short-term queue size increases each time a large
group of flows arrives. Comparing ARC with d = 1 to
ARC with d = 2 shows that ARC is not very sensitive
to the selection of the measurement interval.

9

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

ARC(d=1)
ARC(d=2)

PI
AVQ
SFC

DT

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200

B
yt

e
Lo

ss
 (

%
)

Seconds

ARC(d=1)
ARC(d=2)

PI
AVQ
SFC

DT

Fig. 5. Network Statistics: Increasing the number of FTP flows

Figure 5 (middle) depicts the throughput for the AQMs
and drop-tail. Once the number of FTP flows is 50 or
more, each queue management scheme is able to obtain
a throughput of more than 9.5 Mbps. With more than
200 FTP flows, drop-tail has the highest throughput and
SFC has a throughput nearly equal to that of drop-
tail. However, drop-tail has the lowest utilization when
there are only 10 FTP flows. For 50+ FTP flows, AVQ
and ARC keep their throughput close to their target
utilization, and PI and AVQ achieve nearly the same
throughput for all numbers of flows. Overall, PI and AVQ
have less control over the queue length than does ARC
with a correspondingly slightly higher throughput than
ARC.

Figure 5 (bottom) depicts the loss rates, where most
of the losses seen for AQMs at the lower range of traffic
load are due to packets that cannot be ECN marked
such as the reverse traffic acknowledgments. The figure
verifies that AQM can significantly reduce data losses for
ECN traffic over drop-tail queue management as long as

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

ARC
PI

AVQ
SFC

DT

Fig. 6. Network Statistics: Increasing the average round-trip time

AQM can avoid or minimize buffer overflows. However,
when there are consistent buffer overflows, as in SFC for
high traffic loads, the benefits of AQM quickly diminish.
A case where an AQM (AVQ, in this case) can incur
even greater data losses than drop-tail is illustrated in
Section IV-C.

B. Round-Trip Time

The next experiment illustrates behavior of the differ-
ent queue mechanisms over a range of round-trip times,
from about 0.3 to 2.4 seconds. In order to simulate the
effects of a range of round-trip time in one experimental
run, we gradually increase the round trip link delay
(RTLD) of the congested link by 300 ms every 200 simu-
lation seconds. We have run multiple sets of simulations,
all with 300 background Web sessions but a different
numbers of forward and backward FTP flows to observe
the effect of round-trip time on different levels of load.
For brevity, we show the results for 5 forward FTP flows
and 10 backward FTP flows, but the overall performance
trends are similar for other numbers of flows.

The queue dynamics in Figure 6 (top) show that
ARC, PI and SFC keep queue size low and dampen
queue oscillations, while AVQ and drop-tail have poor
control over the queue. The throughput comparisons
in Figure 6 (middle) show that PI under-utilizes link
capacity far more than the other queue management
schemes. This inefficiency is due to PI’s method of
determining the traffic rate by sampling the queue with

10

high frequency. When the system becomes fragile and
the traffic arrives in bursts, the frequent queue samples
introduce a large estimation noise in the estimation of
the incoming traffic rate. ARC and SFC3 avoid this noise
by directly measuring traffic rate over 1 second intervals
and so can more accurately estimate incoming traffic rate
than can PI. AVQ’s packet-paced method of traffic rate
measurement is also compatibly accurate.

C. Congested Link Capacity

For the next set of simulations, we increase the bottle-
neck link capacity initially set to 10 Mbps by 10 Mbps
every 200 simulation seconds up to 50 Mbps, with 200
forward and 50 backward direction FTP flows and 300
background Web sessions. During the capacity increases,
we do not change the AQM parameter settings. This has
two effects: increasing the capacity makes the system
more fragile and also brings out the undershoot problem
(described in Section III) of an AQM slowly responding
to network congestion. Thus, this experiment illustrates
control parameter sensitivity of ARC, PI, AVQ and SFC.

Figure 7 illustrates the queue dynamics, throughput
and data loss rates. AVQ is very sensitive to the initial
control parameters. While AVQ is able to maintain
throughput close to its target utilization, it does not effec-
tively control queue oscillations and incurs even greater
data losses than does drop-tail queue management.

PI again produces under-utilization and a sluggish
response as the capacity increases, showing another
drawback of queue-based rate estimation. As the traffic
load decreases due to the capacity increase, PI cannot
efficiently estimate the traffic rate, since the queue os-
cillations tell little about the underlying traffic rate.

Both ARC and SFC effectively control queue oscilla-
tion and achieve high throughput over the range of traffic
loads. Yet, when the link capacity increases to 40 Mbps
and over, SFC is not able to achieve as high a throughput
as ARC due to its traffic load dependent control behavior.
However, SFC is still able to achieve throughput at about
the level of drop-tail.

D. Web Flash Crowd

In this experiment, we stress-test the AQMs with a
realistic Web flash crowd. For this simulation, we have
25 forward and 50 backward direction FTP flows as
background traffic, and an initial 300 Web sessions. After

3SFC [2] does not specify how its rate estimation mechanism
should be implemented nor recommend a range of values for the
measurement epoch. We used ARC’s rate estimation mechanism to
implement SFC in NS, and set the measurement epoch to 1 second
as in ARC.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

ARC
PI

AVQ
SFC

DT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
Lo

ss
 (

%
)

Seconds

ARC
PI

AVQ
SFC

DT

Fig. 7. Network Statistics: Increasing the bottleneck link capacity

a warm up period of 100 seconds, 1000 more Web
sessions are uniformly randomly injected during the first
6000 simulation seconds and then detached during the
next 6000 simulation seconds, giving a Web flash rate
of 10 sessions per minute. Thus, we have a peak load of
1300 Web sessions, providing an offered load of about
1.35.

We use the Web flash rate of 10 sessions per minute
based on the peak Web flash rate seen during FIFA World
Cup 98 [11]. The peak flash rate (both increase and
decrease) went from 2 to 10 million requests per hour
in 2 hours during the France-Croatia game. This means
an acceleration of about 1,110 requests/min2 from the
minimum object request rate of 33,333 requests/min
(= 2 million requests/hour).

The initial 300 Web sessions in our simulation offer
an average utilization of about 0.25, a typical fraction of
Internet traffic reported in [13], with the minimum object
request rate of 5,143 requests/min (300× 2 objs/click
× 60/7 clicks/min). This is about 15% of the FIFA
98 base request rate. In order to get the proportional
acceleration rate for our simulated minimum request rate,

11

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 2000 4000 6000 8000 10000 12000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

ARC
PI

AVQ
SFC

DT

 0

 1

 2

 3

 4

 5

 6

 2000 4000 6000 8000 10000 12000

B
yt

e
Lo

ss
 (

%
)

Seconds

ARC
PI

AVQ
SFC

DT

Fig. 8. Network Statistics: Web flash crowd

 0

 0.5

 1

 1.5

 2

 2.5

 2000 4000 6000 8000 10000 12000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

ARC
PI

AVQ
SFC

DT

Fig. 9. Average Service Time: Objects less than 12 Kbytes

we take 15% of the FIFA 98 acceleration rate, that is
about 170 requests/min2 or 10 sessions per minute,
and use it as our flash rate.4

Figure 8 depicts the network statistics including queue
dynamics, throughput and data loss rate. In order to
better understand the performance of the AQMs on Web
traffic, we also analyzed the average object service time.
Figure 9 plots average service time for objects less than
12 Kbytes (95% of the all generated Web objects), which

4We also tried the absolute flash rate of the FIFA 98 trace (1,110
requests/min2 = 60 sessions per minute) and received simular
overall results.

Fig. 10. Multiple Bottleneck Simulation: Setup

can be transmitted in about 4 round-trip times in the best
case.

In general, the queue dynamics shown in Figure 8
(top) are very similar to those of Figure 5 (top). Like-
wise, Figure 8 (middle) shows that all AQMs achieve a
throughput of around 9.4 Mbps or higher throughout the
simulation. However, in Figure 8 (bottom), the data loss
rates for AQMs are significantly increased (compared
with Figure 5 (bottom)) for the traffic dominated by Web
traffic due to the increased number of TCP-SYN packets
that cannot by ECN marked. This illustrates that AQM
gains for ECN traffic is significantly reduced for short-
lived Web traffic.

Drop-tail performs the worst overall having the highest
data losses, queuing delay and object service times. All
AQMs performed well under the offered Web traffic load
of 0.9 (before 4,000 seconds or after 10,000 seconds),
except AVQ which has average service times, consis-
tently higher than those of other AQMs because of its
queue oscillations.

As the Web traffic load further increases over 0.9, SFC
performs slightly better than other AQMs by stabilizing
the queue higher than the other AQMs, thus achieving the
overall highest throughput and the lowest data loss rate.
ARC and PI perform very similarly in all performance
aspects. Beyond the offered load of 0.9, AVQ starts
to gain control over queue oscillations and performs
comparably to ARC and PI.

E. Multiple Bottleneck Congestion

Figure 10 shows the network topology for the multiple
bottleneck simulations. The simulated network has 5
bottleneck links (numbered 0 to 4) with capacities of
10 Mbps and a transmission delay of 20 ms. The edge
links are 100 Mbps with 20 ms of transmission delay.
Each striped arrow in Figure 10 represents 25 FTP flows
plus 150 Web sessions, and each solid arrow represents
25 backward FTP flows.

Figure 11 depicts the queue dynamics of all congested
links for ARC, PI, AVQ, SFC and drop-tail for the
first 300 seconds. ARC has the best control over queue
oscillations followed by PI, SFC and then AVQ. In

12

Fig. 11. Multiple Bottleneck Simulation: Queue dynamics

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 1 2 3 4

T
hr

ou
gp

ut
 (

M
bp

s)

Link ID

100 to 600 Seconds Average ARC
PI

AVQ
SFC

DT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4

B
yt

e
Lo

ss
 (

%
)

Link ID

100 to 600 Seconds Average

ARC
PI

AVQ
SFC

DT

Fig. 12. Multiple Bottleneck Simulation: Throughput and loss

addition, all bottleneck queues are behaving stably and
similarly to one another indicating that ARC and other
AQM systems are globally stable. Figure 12 show the
average throughputs and the average data loss rates of
the bottleneck links, where all the AQM routers achieve
a high throughput and a low data loss rate, consistent
with previous single bottleneck analysis.

V. EXTENTION TO SUPPORT FAST

The ARC we have presented expects TCP with
an additive increase multiplicative decrease (AIMD)
source/network utility/congestion control protocol. This
section discusses extending ARC to seamlessly sup-
port other similar utility control protocols, in particular,
FAST [14] proposed to overcome the inefficiency of
AIMD for high bandwidth-delay product networks.

Utility/congestion control protocols can either have a
network centric control design, where network nodes
explicitly determine utility (i.e., transmission rate) of
individual traffic sources as in the eXplicit Congestion
Protocol (XCP) [15], or have a distributed control design,
where each individual traffic source determines its own
utility using a demand function implicitly or explicitly
chosen by the protocol and utility price of its network
path implicitly or explicitly notified by the network. Most
congestion control protocols proposed for the Internet,
including various versions of TCP, TFRC [16], TCP
Vegas [17] and FAST [14] are in the latter category.

Utility prices are determined based on a type of queu-
ing delay along the network path: physical queuing delay
for protocols with no explicit utility control support,
and virtual queuing delay for protocols that assume the
network provides the utility price. For example, in TCP

13

or TFRC systems, utility price of a congested drop-tail
link given in form of packet drop rate is determined
implicitly by average queuing delay [18]. TCP Vegas,
on the other hand, explicitly measures estimated queuing
delay of congested drop-tail links in a network path
for its utility price of the path. The utility price of
a congested ARC or other PI-based AQM link, given
in ECN marking probability, is computed based on
the virtual queuing delay. Similarly, FAST, which has
a demand control mechanism for traffic sources and
a utility/congestion controller at network routers, uses
virtual queuing delay over the virtual capacity at each
link as the estimated price of the congested link.

The network utility price computation requirements
being fundamentally the same for most distributed utility
control protocols – a function of the network queuing de-
lay – provides an opportunity for a single network to con-
currently support similar distributed utility/congestion
control protocols with little overhead. To illustrate this,
we make a simple modification to the original ARC in
Algorithm 2 to concurrently support FAST, which can
be deployed in the current Internet without modification
to IP specifications, as well as TCP.

Algorithm 3 shows the FAST-extended ARC, where
qv is an implementation of a virtual queue after physical
queue error correction. The extended ARC uses α × qv

as the link utility price for TCP traffic, which is basi-
cally the same implementation with the original ARC
logic, and qv/(γC) for FAST traffic. The only minor
difference between this FAST utility price computation
from [14] is that while the original FAST algorithm uses
pure virtual queuing delay with no physical queue error
control (i.e. uses an integral controller) this new version
considers physical queue error control as well and uses
a PI utility/congestion controller. Replacing the integral
utility controller with the PI controller should have little
effect on stability of the FAST system, since adding a
proportional control, in general, does not significantly
affect stability of a system.

For congestion notification, TCP uses a plain ECN
marking or packet dropping communication scheme. In
contrast, FAST uses REM [6] encoding/decoding, an
alternative way to use the single ECN bit in the IP
header for congestion communication. In Algorithm 3, φ
is the REM communication constant shared by all FAST
sources and FAST-enabled routers in the system.

Thus, by keeping track of the fundamentally com-
patible link utility prices with the support for the two
different congestion communication methods, this ex-
tended ARC can simultaneously support both TCP and
FAST with little overhead. In order to make ARC support
a distributed utility control without an explicit utility

Algorithm 3 FAST-Extended ARC
Every d seconds:
1: qv ← qv + (b− γ(dC − (q − q0)));
2: ptcp = α× qv;
3: pfast = φ−qv/(γC);
4: b← 0;

Every packet arrival:
5: if (typeof(packet) == fast) then
6: p = pfast;
7: else
8: p = ptcp;
9: end if

10: if (uniform(0, 1) ≤ p) then
11: if (mark(packet) == false) then
12: drop(packet);
13: return;
14: end if
15: end if
16: if (enqueue(packet) == false) then
17: drop(packet);
18: return;
19: end if
20: b← b + sizeof(packet);

Functions:
mark(packet): ECN mark the packet. Return false on error.
enqueue(packet): Enqueue the packet. Return false if no room.
drop(packet): Drop the packet.

Variables:
p, ptcp, pfast, qv , q, b

Parameters:
C: link capacity (bytes per second)
γ: target link utilization (γ = C0/C)
q0: target queue length in bytes
d: measurement interval
α: TCP congestion feedback constant
φ: REM [6] communication constant shared by all FAST sources

control at network routers, an extra step is required
to modify the protocol to adapt a compatible network-
evaluated link price instead of the source-estimated link
price. The conversion issues are not discussed further,
since it is out of scope of this paper. Also, we leave
stability analysis and evaluation of the modified FAST
system as future work.

VI. CONCLUSION

In this paper, we present Aggregate Rate Controller
(ARC), a reduced parameter proportional-integral con-
troller for Internet traffic. ARC resolves configuration
difficulties that have limited deployment of past AQM
approaches by taking a stable and efficient proportional-
integral controller design for AQM, carefully reducing
the control parameters based on a sound understanding
of Internet congestion control, and providing practical
configuration guidelines though control engineering for
resilient performance over a wide range of traffic condi-
tions. Also, by using a low frequency, direct rate-based

14

measurement of traffic load rather than an indirect queue-
based measurement, ARC significantly reduces control
noise while providing flexible QoS to fulfill the needs
of various Internet applications. Thus, ARC eases the
difficulties in the configuration of proportional-integral
control for PI [3] and REM [6], optimizes performance
through an efficient rate-based method for detecting
congestion, and, with configuration guidelines that match
network operator knowledge, is a step towards practical
deployment.

Our simulations demonstrate that by complying with
the configuration guidelines, ARC can efficiently support
a wide-range of traffic conditions, dampening queue
oscillations, keeping average queues low and throughput
high, even when the configuration is not optimized for
the current traffic. ARC out-performs PI [3], AVQ [4]
and SFC [2] when taken over all tested conditions in
terms of queue dynamics, throughput, data loss rate
and Web object service time. PI is shown to have
underutilization for lightly loaded conditions, the norm
for many Internet routers, as well as underutilization
for sudden traffic load changes, owning to PI’s high
frequency queue-based controller design. AVQ is shown
to have poor control of queue oscillations in lightly
loaded conditions owning to AVQ’s virtual queue mark-
ing mechanism, and is sensitive to control parameter
settings. SFC is shown to have queue lengths that are
a function of the traffic load, owning to SFC’s lack of
integral control, making it ineffective over a wide range
of load conditions.

In addition to TCP support, ARC can be eas-
ily extended to support other similar distributed util-
ity/congestion control protocols with little overhead,
since most of the protocols use queuing delay-based link
utility price estimation methods that are fundamentally
compatible with one another. As an example, we extend
ARC to concurrently support TCP and FAST [14], an IP
compatible distributed utility control protocol proposed
to overcome the inefficiency of AIMD for high capacity
networks.

We leave stability analysis and evaluation of the FAST-
extended ARC system as future work. Other future work
includes extending ARC to dynamically adapt the con-
troller parameters to the current traffic conditions. Such
extensions would require additional stability and imple-
mentation analysis. In addition, extensive investigation of
incremental deployment issues would be needed before
adoption of ARC into the current Internet architecture.

REFERENCES

[1] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition
of Explicit Congestion Notification (ECN) to IP,” RFC-3168,

September 2001.
[2] Yuan Gao and Jennifer Hou, “A State Feedback Control

Approach to Stabilizing Queues for ECN-Enabled TCP Con-
nections,” in Proceedings of IEEE INFOCOM, San Francisco,
CA, USA, Apr. 2003.

[3] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong,
“On Designing Improved Controllers for AQM Routers Sup-
porting TCP Flows,” in Proceedings of IEEE INFOCOM, 2001,
pp. 1726–1734.

[4] Srisankar Kunniyur and R. Srikant, “Analysis and Design of
an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue
Management,” in Proceedings of ACM SIGCOMM, San Diego,
CA, USA, August 2001.

[5] G. Silva, A. Datta, and S. P. Bhattacharyya, “PI Stabilization of
First-Order Systems with Time Delay,” Automatica, December
2001.

[6] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe
Yin, “REM: Active Queue Management,” IEEE Network, vol.
15, no. 3, pp. 48–53, May/June 2001.

[7] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A
Control Theoretic Analysis of RED,” in Proceedings of IEEE
INFOCOM, 2001, pp. 1510–1519.

[8] Katsuhiko Ogata, Modern Control Engineering, Fourth Edition,
Prentice Hall, Upper Saddle River, New Jersey, USA, 2002.

[9] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim
Kurose, and Don Towsley, “Inferring TCP Connection Char-
acteristics Through Passive Measurements,” in Proceedings of
IEEE INFOCOM, Hong Kong, March 2004.

[10] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Pa-
pagiannaki, and Christophe Diot, “Analysis of Point-To-Point
Packet Delay in an Operational Network,” in Proceedings of
IEEE INFOCOM, Hong Kong, March 2004.

[11] Martin Arlitt and Tai Jin, “Workload Characterization of the
1998 World Cup Web Site,” Tech. Rep. HPL-1999-35R1, HP
Laboratories Palo Alto, September 1999.

[12] F. Hernandez-Campos, K. Jeffay, and F.D. Smith, “Tracing
the Evolution of the Web Traffic: 1995-2003,” in Proceedings
of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), Orlando, FL, USA, Oct. 2003.

[13] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D.
Gribble, and Henry M. Levy, “An Analysis of Internet Content
Delivery Systems,” in Usenix Operating Systems Design and
Implementation (OSDI), Boston, MA, USA, Oct. 2002, pp. 315
– 327.

[14] F. Paganini, Z. Wang, S. H. Low, and J. C. Doyle, “A
New TCP/AQM for Stable Operation in Fast Networks,” in
Proceedings of IEEE INFOCOM, San Francisco, CA, USA,
April 2003.

[15] Dina Katabi, Mark Handley, and Charlie Rohrs, “Congestion
Control for High Bandwidth-Delay Product Networks,” in
Proceedings of ACM SIGCOMM, Pittsburgh, PA, USA, August
2002.

[16] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Wid-
mer, “Equation-Based Congestion Control for Unicast Applica-
tions,” in Proceedings of ACM SIGCOMM, Stockholm, Sweden,
August-September 2000, pp. 43–56.

[17] L. Brakmo and L. Peterson, “TCP Vegas: End to End Conges-
tion Avoidance on a Global Internet,” IEEE Journal on Selected
Areas in Communication, pp. 1465–1480, October 1995.

[18] Jae Chung and Mark Claypool, “Analysis of Active Queue
Management,” in Proceedings of The 2nd IEEE International
Symposium on Network Computing and Applications (NCA),
Cambridge, MA, USA, April 2003.

