
WPI-CS-TR-05-07 March 2005
amended, 29 October 2009

Revised-1 Report on the
Kernel Programming Language

(partial draft of 29 October 2009)

John N. Shutt
jshutt@cs.wpi.edu

http://www.cs.wpi.edu/~jshutt/

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

October 29, 2009

Abstract

This report defines the Kernel programming language and documents its
design. Kernel is a statically scoped and properly tail-recursive dialect of Lisp,
descended from Scheme. It is designed to be simpler and more general than
Scheme, with an exceptionally clear, simple, and versatile semantics, only one
way to form compound expressions, and no inessential restrictions on the power
of that one compound form. Imperative, functional, and message-passing pro-
gramming styles (to name a few) may be conveniently expressed in Kernel.

All manipulable entities in Kernel are first-class objects. The primary means
of computation are operatives, which are statically scoped combiners that act
on their unevaluated operands; operatives subsume the roles handled in most
modern Lisps by special forms and macros. Applicatives are combiners that
act on their evaluated arguments, hence are roughly equivalent to Scheme pro-
cedures; but an applicative is merely a facilitator to computation, inducing
evaluation of operands for an underlying operative.

Computer Science Technical Report Series
Worcester Polytechnic Institute
Computer Science Department

100 Institute Road, Worcester, Massachusetts, 01609-2280

1

Contents

0 Introduction 9

0.1 The design of Kernel . 9

0.1.1 Attitude toward language design 9

0.1.2 Principles of language design 11

0.2 About the report . 12

1 Overview 13

1.1 Semantics . 13

1.2 Syntax . 15

1.3 Notation and terminology . 16

1.3.1 Evaluable expressions . 16

1.3.2 Modules and features . 17

1.3.3 Exceptions to normal computation 18

1.3.4 Entry format . 19

1.3.5 Expression equivalences . 20
1.3.6 Evaluation examples . 21

1.3.7 Naming conventions . 21

2 Lexemes 23

2.1 Identifiers . 24

2.2 Whitespace and comments . 24

2.3 Other notations . 25

3 Basic concepts 25

3.1 References . 26

3.2 Environments . 26

3.3 The evaluator . 27

3.4 Encapsulation of types . 28
3.5 Partitioning of types . 30

3.6 External representations . 31

3.7 Diagnostic information . 32

3.8 Mutation . 33

3.9 Self-referencing data structures . 34

3.10 Proper tail recursion . 38

4 Core types and primitive features 39

4.1 Booleans . 39

4.1.1 boolean? . 40

4.2 Equivalence under mutation (optional) 40

4.2.1 eq? . 41

2

4.3 Equivalence up to mutation . 41
4.3.1 equal? . 41

4.4 Symbols . 43
4.4.1 symbol? . 43

4.5 Control . 43
4.5.1 inert? . 44
4.5.2 $if . 44

4.6 Pairs and lists . 45
4.6.1 pair? . 45
4.6.2 null? . 45
4.6.3 cons . 45

4.7 Pair mutation (optional) . 46
4.7.1 set-car!, set-cdr! . 46
4.7.2 copy-es-immutable . 46

4.8 Environments . 48
4.8.1 environment? . 49
4.8.2 ignore? . 49
4.8.3 eval . 49
4.8.4 make-environment . 49

4.9 Environment mutation (optional) . 50
4.9.1 $define! . 50

4.10 Combiners . 53
4.10.1 operative? . 54
4.10.2 applicative? . 54
4.10.3 $vau . 54
4.10.4 wrap . 56
4.10.5 unwrap . 57

5 Core library features (I) 57
5.1 Control . 58

5.1.1 $sequence . 58
5.2 Pairs and lists . 60

5.2.1 list . 60
5.2.2 list* . 61

5.3 Combiners . 62
5.3.1 $vau . 62
5.3.2 $lambda . 63

5.4 Pairs and lists . 64
5.4.1 car, cdr . 64
5.4.2 caar, cadr, . . . cddddr . 65

5.5 Combiners . 66
5.5.1 apply . 66

3

5.6 Control . 67

5.6.1 $cond . 67

5.7 Pairs and lists . 69

5.7.1 get-list-metrics . 69

5.7.2 list-tail . 71

5.8 Pair mutation (optional) . 72

5.8.1 encycle! . 72

5.9 Combiners . 72

5.9.1 map . 72

5.10 Environments . 76

5.10.1 $let . 76

6 Core library features (II) 78

6.1 Booleans . 78

6.1.1 not? . 78

6.1.2 and? . 78

6.1.3 or? . 79

6.1.4 $and? . 80

6.1.5 $or? . 81

6.2 Combiners . 81

6.2.1 combiner? . 81

6.3 Pairs and lists . 82

6.3.1 length . 82

6.3.2 list-ref . 82

6.3.3 append . 83

6.3.4 list-neighbors . 85

6.3.5 filter . 86

6.3.6 assoc . 87

6.3.7 member? . 90

6.3.8 finite-list? . 90

6.3.9 countable-list? . 91

6.3.10 reduce . 91

6.4 Pair mutation (optional) . 94

6.4.1 append! . 94

6.4.2 copy-es . 95

6.4.3 assq . 96

6.4.4 memq? . 97

6.5 Equivalence under mutation (optional) 97

6.5.1 eq? . 97

6.6 Equivalence up to mutation . 98

6.6.1 equal? . 98

4

6.7 Environments . 99
6.7.1 $binds? . 99
6.7.2 get-current-environment 100
6.7.3 make-kernel-standard-environment 101
6.7.4 $let* . 101
6.7.5 $letrec . 102
6.7.6 $letrec* . 103
6.7.7 $let-redirect . 104
6.7.8 $let-safe . 105
6.7.9 $remote-eval . 106
6.7.10 $bindings->environment . 106

6.8 Environment mutation (optional) . 107
6.8.1 $set! . 107
6.8.2 $provide! . 108
6.8.3 $import! . 110

6.9 Control . 110
6.9.1 for-each . 110

7 Continuations 111
7.1 Dynamic extents . 112
7.2 Primitive features . 114

7.2.1 continuation? . 114
7.2.2 call/cc . 114
7.2.3 extend-continuation . 114
7.2.4 guard-continuation . 115
7.2.5 continuation->applicative 117
7.2.6 root-continuation . 121
7.2.7 error-continuation . 121

7.3 Library features . 122
7.3.1 apply-continuation . 122
7.3.2 $let/cc . 123
7.3.3 guard-dynamic-extent . 123
7.3.4 exit . 124

8 Encapsulations 125
8.1 Primitive features . 126

8.1.1 make-encapsulation-type 126

9 Promises 126
9.1 Library features . 127

9.1.1 promise? . 127
9.1.2 force . 128
9.1.3 $lazy . 128

5

9.1.4 memoize . 133

10 Keyed dynamic variables 135
10.1 Primitive features . 136

10.1.1 make-keyed-dynamic-variable 136

11 Keyed static variables 138
11.1 Primitive features . 139

11.1.1 make-keyed-static-variable 139

12 Numbers 140
12.1 Kinds of mathematical numbers . 142
12.2 Inexactness . 143
12.3 Internal numbers . 146

12.3.1 Complex numbers . 146
12.3.2 Exact real numbers . 147
12.3.3 Inexact real numbers . 148

12.4 External representations of numbers 148
12.5 Number features . 150

12.5.1 number?, finite?, integer? 150
12.5.2 =? . 151
12.5.3 <?, <=?, >=?, >? . 152
12.5.4 + . 152
12.5.5 * . 153
12.5.6 - . 153
12.5.7 zero? . 154
12.5.8 div, mod, div-and-mod . 154
12.5.9 div0, mod0, div0-and-mod0 155
12.5.10 positive?, negative? . 155
12.5.11 odd?, even? . 155
12.5.12 abs . 156
12.5.13 max, min . 156
12.5.14 lcm, gcd . 156

12.6 Inexact features . 157
12.6.1 exact?, inexact?, robust?, undefined? 157
12.6.2 get-real-internal-bounds, get-real-exact-bounds 158
12.6.3 get-real-internal-primary, get-real-exact-primary . . . 158
12.6.4 make-inexact . 159
12.6.5 real->inexact, real->exact 160
12.6.6 with-strict-arithmetic, get-strict-arithmetic? 160

12.7 Narrow inexact features . 160
12.7.1 with-narrow-arithmetic, get-narrow-arithmetic? 160

12.8 Rational features . 161

6

12.8.1 rational? . 161

12.8.2 / . 161

12.8.3 numerator, denominator . 161

12.8.4 floor, ceiling, truncate, round 162

12.8.5 rationalize, simplest-rational 162

12.9 Real features . 163

12.9.1 real? . 163

12.9.2 exp, log . 163

12.9.3 sin, cos, tan . 164

12.9.4 asin, acos, atan . 164

12.9.5 sqrt . 164

12.9.6 expt . 164

12.10 Complex features . 164

12.10.1 complex? . 164

12.10.2 make-rectangular, real-part, imag-part 164

12.10.3 make-polar, magnitude, angle 164

13 Strings 165

13.1 Primitive features . 165

13.1.1 string->symbol . 165

13.2 Library features . 165

14 Characters 165

14.1 Primitive features . 165

14.2 Library features . 165

15 Ports 165

15.1 Primitive features . 166

15.1.1 port? . 166

15.1.2 input-port?, output-port? 166

15.1.3 with-input-from-file, with-output-to-file 166

15.1.4 get-current-input-port, get-current-output-port 166

15.1.5 open-input-file, open-output-file 166

15.1.6 close-input-file, close-output-file 166

15.1.7 read . 166

15.1.8 write . 167

15.2 Library features . 167

15.2.1 call-with-input-file, call-with-output-file 167

15.2.2 load . 167

15.2.3 get-module . 167

7

16 Formal syntax and semantics 168
16.1 Formal syntax . 168

16.1.1 Lexemes . 169
16.1.2 Classes of lexemes . 170
16.1.3 Tokens . 170
16.1.4 Expressions . 170

16.2 Formal semantics . 170

A Evolution of Kernel 170
A.1 R5RS to R-1RK . 170
A.2 R-1RK partial drafts . 171
A.3 R-1RK to R0RK . 172
A.4 Beyond R0RK . 172

B First-class objects 173

C De-trivializing the theory of fexprs 175

References 181

Alphabetical index 187

8

0 Introduction

The Kernel programming language is a statically scoped and properly tail-recursive
dialect of Lisp, descended from Scheme. It is designed to be simpler and more general
than Scheme, with an exceptionally clear, simple, and versatile semantics, only one
way to form compound expressions, and no inessential restrictions on the power of
that one compound form. Imperative, functional, and message-passing programming
styles (to name a few) may be conveniently expressed in Kernel.

An important property of Kernel is that all manipulable entities in Kernel are
first-class objects. In particular, Kernel has no second-class combiners; instead, the
roles of special forms and macros are subsumed by operatives, which are first-class,
statically scoped combiners that act directly on their unevaluated operands.

Kernel also has a second type of combiners, applicatives, which act on their evalu-
ated arguments. Applicatives are roughly equivalent to Scheme procedures. However,
an applicative is nothing more than a wrapper to induce operand evaluation, around
an underlying operative (or, in principle, around another applicative, though that
isn’t usually done); applicatives themselves are mere facilitators to computation.

This report describes and defines the Kernel language. It specifies the minimal
criteria necessary for a language processor to qualify as an implementation of Kernel,
criteria for an implementation of Kernel to qualify as supporting or excluding an
optional module of the language; and criteria for an implementation of Kernel to
qualify as comprehensive and/or robust; and it also documents the derivation of
Kernel’s design from basic principles.

The remainder of Section 0 discusses Kernel design principles, and briefly explains
the status of the report itself. Section 1 provides an overview of the language, and
describes conventions used for describing the language. Section 2 describes the lex-
emes used for writing programs in the language. Section 3 explains basic semantic
elements of Kernel, notably the Kernel evaluator algorithm. Sections 4–15 describe
the various modules exhibited by Kernel’s ground environment. Section 16 provides a
formal syntax and semantics for Kernel. Appendix A summarizes past, and suggests
possible future, evolution of Kernel. Appendix B discusses first-class objects in depth.
Appendix C discusses how formal calculi supporting fexprs can avoid a theoretical
pitfall described by Mitchell Wand (in [Wa98]). The report concludes with a list of
references and alphabetical index.

0.1 The design of Kernel

The material in this section is not technical. It addresses the underlying purposes of
the Kernel design, language, and report.

0.1.1 Attitude toward language design

Kernel is meant to be a pure articulation of certain design principles — what [Ka93]

9

calls a “crystalization of style”. The design principles themselves are the subject of
§0.1.2, below.

It is a common fate of such crystalization languages that, over the course of
years and decades, their pure style is gradually compromised in the name of various
practical concerns such as runtime efficiency. The Kernel design posits that the value
of a crystalization language lies in its purity — a sort of resonance, that drops off
precipitously when impurities are introduced.1

From this supposition, it follows that crystalization of style can only be fully
effective if the pure style is one that can be reconciled with practical concerns without
compromise, neither to the style nor to the practicalities. We claim that the Kernel
language model is a pure style of this kind, i.e., one that needn’t be compromised.
Embracing this claim in the language design process means, directly, that we should
focus entirely on pure articulation of the style; and indirectly, that when we find
ourselves being led into compromise, we must conclude that we have strayed from the
pure style.

The latter principle —compromise as symptom of impurity— implies that pur-
suit of the pure style requires patient willingness to go back and correct missteps in
the design; but it offers compounded long-term benefits in exchange, as we expect
each uncorrected compromise would degrade language potency and lead to further
compromises thereafter, i.e., cascading degradation. From our basic claim that the
pure style can be reconciled without compromise, it follows that any given facet of
the language design will eventually be right and never require further adjustment (up
to our choice of paradigm/pure style, anyway). The empirical perception of software
design tinkering as an endless process is, in this context, an artifact of founding one’s
software design on a programming platform that already contains compromises that
are not open for reassessment.

If it isn’t clear what constitutes a compromise, then even if compromise can be
avoided, there is little chance that it will be avoided. Therefore, as this report defines
the Kernel language, it also extensively documents the motivations for the design,
from high-level principles that contribute to the pure style (§0.1.2), to the reasons for
low-level details of types and features. This motive documentation clarifies the extent,
and limitations, of the influence of high-level principles on the entire language design,
facilitating maximization of that influence in both the current and future revisions
of the report. (We expect the benefits of motive documentation to be cumulative, so
that the documentation effort is always worthwhile, even though some motives will be
overlooked because they are too subtle to recognize, or too newly formed, or because
they are simply lost in the crowd.)

Kernel is expected to form the core of language implementations. It is not, in its

1This is a minimal supposition. Although the author further suspects that abstractive power is
a prominent beneficiary of this resonance effect, the Kernel supposition re purity does not depend
on that suspicion. (A formal criterion for abstractive power is proposed in [Sh08]; for a general
discussion of abstractive power, see [Sh09, §1.1].)

10

current revision, a full general-purpose language (what is often —lamentably, from
Kernel’s perspective— called a “full-featured” language); nor does it particularly
aspire to become such a language in any particular time-frame, although it does seek
to evolve in that direction. Pressure to provide additional functionality promptly is a
significant vector for compromise, and so cannot be reconciled with the Kernel design’s
no-compromise policy. Each possible addition to the language must be thoroughly
vetted for subtle inconsistency with the design principles, or the design principles
cannot survive. In particular, compatibility with implemented extensions to one
revision of the Kernel report must not be allowed to skew the decisions on whether
to absorb those extensions into a later revision of the report.

Outside of the current section (§0.1) and the appendices (A–C), design discussion
is isolated from the main text in indented blocks of text headed Rationale:, thus:

Rationale:
While design discussions may contain valuable technical insights, isolating them from

the main text gives the reader due notice of possible subjective/editorial content.

0.1.2 Principles of language design

Programming languages should be designed not by piling feature on top of
feature, but by removing the weaknesses and restrictions that make additional
features appear necessary.

— [Sp+07, p. 3] (the R6RS);
[KeClRe98, p. 2] (the R5RS);

[ClRe91b, p. 2] (the R4RS);
[ReCl86, p. 2] (the R3RS)

The above sentence declares the basic design philosophy of the Scheme program-
ming language. It is also the starting point for the design of the Kernel programming
language, which attempts to carry the philosophy further, creating a language still
smaller, stronger, and more general than Scheme. This abstract strategy would be
difficult to apply directly to specific tactical design decisions (as called for in §0.1.1),
so Kernel refines it with more concrete guidelines.

G1 [uniformity] Special cases should be eliminated from as many aspects of the
language as the inherent semantics allow.

G1a [object status] All manipulable entities should be first-class objects (see
Appendix B).

G1b [extensibility] Programmer-defined facilities should be able to duplicate all
the capabilities and properties of built-in facilities.

G2 [functionality] The language primitives should be capable of implementing all
the advanced features of the R5RS (such as dynamic-wind , here in §7.2.5; or,
for that matter, lambda , here in §5.3.2).

11

G3 [usability] Dangerous computation behaviors (e.g., hygiene violations2), while
permitted on general principle, should be difficult to program by accident.

Guideline G3 was formulated specifically to protect the ideal of ‘removing weaknesses
and restrictions’ from devolving into mere amorphism. It has proven to be a partic-
ularly useful heuristic in practice, being explicitly invoked in the report more often
(at last count) than all the other guidelines put together.

G4 [encapsulation] The degree of encapsulation of a type should be at the discretion
of its designer.

Type encapsulation is in itself a facilitator of G1a, because it allows the programmer
to freely intermix objects of a new type with objects of other types without fear of
losing track of the types. (Cf. encapsulation of type promise, §9.) Selective encap-
sulation is instrumental to G3 , by directly modulating dangerous behaviors. (Cf.
encapsulation of type environment, §4.8, §6.8.2.) Selective encapsulation is comple-
mentary to G1a, by allowing the observable shape of a type to be matched to whatever
abstract value domain the type is intended to represent. (On the connection between
domain representation and first-class-ness, see Appendix B.) The assignment of these
selective capabilities to the type designer is based on the theory that the designer of
a type is responsible for its utility, and so should have the technical ability to address
that responsibility.

The Scheme reports also explicitly identify efficiency as a concern. It is a tenet of
Kernel design philosophy that

G5 [efficiency] Efficient implementation should follow naturally from an elegant
language design, without any compromise of elegance being made to achieve it.

This is a refinement of the no-compromise policy described above in §0.1.1. It really
has two aspects — that elegance shouldn’t be compromised for efficiency; and that
it doesn’t have to be, because efficiency will be a natural beneficiary of design deci-
sions made for other reasons. A key example of the latter, efficiency benefiting from
other factors, is the ability to restrict mutation of ancestral environments, which
is motivated in the Kernel design by G3 (see for example §6.8.2; a more detailed
discussion occurs in [Sh09, §5.3]), but without which Kernel would be substantially
unoptimizable since Kernel source expressions have no fixed semantics, i.e., no special
forms.

0.2 About the report

Permission to copy this report

This report is intended to belong to the programming community, and so permission
is granted to copy it in whole or in part without fee.

2Kernel hygiene is discussed in [Sh09, Ch. 5].

12

Acknowledgements

This report borrows heavily from the R5RS for parts of its overall structure, and
of its text. The R5RS , in turn, borrows heavily from the R4RS , and so on. In a
few instances, the R6RS has also been consulted. The current author is indebted to
everyone who has contributed to Scheme and its descriptions over the years —many
of whom are named in the Introduction of the R5RS— notably to Gerry Sussman
and Guy Steele for creating the Scheme language to begin with ([SusSte75]), and to
Hal Abelson and Gerry Sussman for writing the book on it ([AbSu96]).

The current author has also benefited from in-person discussions with a number
of individuals, many of them members of the NEPLS community;3 and from feed-
back and suggestions on the report, ranging from low-level mechanics to high-level
design principles and concepts, via email from others. To all these, too, the author
is indebted, for broad perspective as well as specific ideas. Where specific ideas have
been absorbed into elements of the language design, the sources are noted in the
rationale discussions for those elements. Consultees in these capacities include —but
are certainly not limited to— Alan Bawden, John Cowan, Herman Ehrenburg, Mike
Gennert, Shriram Krishnamurthi, Jim Miller, Marijn Schouten, and Mitchell Wand.

1 Overview

1.1 Semantics

This subsection gives an overview of Kernel’s semantics. A detailed informal seman-
tics is the subject of §§3–15. For reference purposes, §16.2 provides a formal semantics
of the Kernel evaluator. The main semantic differences from Scheme are summarized
in §A.1.

Following Algol and, especially, Scheme, Kernel is a statically scoped program-
ming language. The body of a compound combiner is always evaluated in the static
environment where the combiner was constructed (rather than in the dynamic envi-
ronment where it is called). Ordinarily, each use of a variable is associated with a
lexically apparent binding of that variable. In the general case, the evaluation en-
vironment may be explicitly computed, making it impossible to identify the binding
of a variable without actually evaluating the program. However, once the evalua-
tion environment of an expression is known, scoping proceeds statically within the
expression.

Kernel has latent as opposed to manifest types. Types are associated with values
(also called objects) rather than with variables. Other languages with latent types
include APL, Snobol, and other dialects of Lisp. Languages with manifest types
include Algol 60, Pascal, and C.

3http://www.nepls.org/

13

All objects created in the course of a Kernel computation have unlimited extent.
No Kernel object is ever destroyed. This abstract behavior need not cause actual
implementations to rapidly exhaust their storage space, because without violating
the required abstract behavior, they can reclaim the storage occupied by an object
if they can prove that the object cannot possibly matter to any future computation.
Other languages in which most objects have unlimited extent include APL and other
Lisp dialects.

Implementations of Kernel are required to be properly tail-recursive. This allows
the execution of an iterative computation in constant space, even if the iterative
computation is described by a syntactically recursive combiner. Thus with a properly
tail-recursive implementation, iteration can be expressed using the ordinary combiner-
call mechanics, so that special iteration constructs are useful only as syntactic sugar.
See §3.10.

Arguments to Kernel applicatives are passed by value, meaning that the operand
expressions are evaluated before the applicative gains control, regardless of whether
or not the applicative needs the result of the evaluation. Scheme, ML, C, and APL

are languages that always pass procedure arguments by value. This is distinct from
the lazy-evaluation semantics of Haskell, or the call-by-name semantics of Algol 60,
where an argument is not evaluated unless its value is needed by the procedure.

Operands to Kernel operatives are passed unevaluated, together in each call with
the dynamic environment from which the call is made. The operative therefore has
complete control over operand evaluation, if any. Consequently, operatives are readily
capable of replacing both special forms and macros. A similar facility was provided in
LISP 1.5 ([McC+62]), and later in Maclisp ([Pi83]), under the name FEXPRs; but his-
torically, FEXPRs were dynamically scoped, and thus enjoyed neither the stability that
Kernel operatives derive from static scoping,4 nor the power that Kernel operatives
accrue through simultaneous access to both static and dynamic environments.

Kernel applicatives are first-class objects. An essentially unrestricted range of ap-
plicatives can be dynamically constructed, stored in data structures, returned as re-
sults of combiners, and so on. Other languages with these properties include Scheme,
Common Lisp, and ML. However, Kernel operatives are also first-class objects, which
is not true of the other languages mentioned.

Continuations, which in most other languages only operate behind the scenes —
Scheme being a notable exception— are first-class objects in Kernel. Continuations
are useful for implementing a wide variety of advanced control constructs, including
non-local exits, backtracking, and coroutines. Kernel continuations are also used in
exception-handling. See §7.

4Stability of this sort manifests formally as strength of equational theory. There has been some
popular misconception, based on overgeneralization of the formal result in Mitchell Wand’s (broadly
titled) 1998 paper “The Theory of Fexprs is Trivial”, [Wa98], that all calculi of fexprs necessarily
have trivial equational theories. Actually, Wand’s formal result applies only to calculi constructed
in a certain way; see Appendix C.

14

Kernel environments are first-class objects as well. Their first-class status is a
sine qua non of Kernel-style operatives, because it allows operatives to be statically
scoped yet readily access their dynamic environments for controlled operand evalua-
tion. Another common use of first-class environments is for the explicit exportation
of specific sets of features (see §6.8).

All objects in Kernel are capable of being evaluated. Objects that are neither sym-
bols nor pairs evaluate to themselves, regardless of the environment. Consequently,
it is possible to construct combiner-calls that can be evaluated even in an empty
environment (i.e., an environment exhibiting no bindings), by building the combiner
itself into the expression rather than using a symbol for it. (See for example §5.3.2.)

Kernel uses explicit evaluation, rather than quotation, as a preferred model for
specifying the selective evaluation of subexpressions. That is, the facilities of the lan-
guage are primarily arranged to specify conservatively which subexpressions should
be evaluated, rather than assuming by default that all subexpressions are to be eval-
uated and introducing quasiquotation operators to suppress evaluation in particular
cases. To facilitate explicit evaluation, Kernel allows applicatives and operatives to
be freely converted into each other by adding and removing wrappers that induce
operand evaluation. Kernel has no standard quasiquotation facilities.5 Most Lisps,
including Scheme, use quasiquotation. MetaML ([Ta99]) is a prominent example of a
non-Lisp language using quasiquotation.

Kernel’s model of arithmetic is designed to provide useful access to different ways
of representing numbers within a computer, while minimizing intrusion of those rep-
resentation choices into the way arithmetic is performed by a program. Every integer
is a rational, every rational is a real, and every real is a complex. Thus the distinction
between integer and real arithmetic, so important to many programming languages,
does not occur. In its place is a distinction between exact arithmetic, which corre-
sponds to the mathematical ideal, and inexact arithmetic on approximations. Exact
arithmetic is not limited to integers. Inexact real numbers have associated exact up-
per and lower bounds, which may be plus and minus infinity if the implementation
provides no bounding information on the approximation.

1.2 Syntax

Kernel, like most dialects of Lisp, employs a fully parenthesized prefix notation for

5It would be technically straightforward to implement quasiquotation using standard Kernel
facilities; the author simply maintains that doing so would be a serious mistake. Quasiquotation is
by nature an implicit-evaluation technology, and as such can only compromise the lucidity of the
explicit-evaluation strategy of Kernel. Moreover, as emerges empirically from the investigation of
hygiene in [Sh09, Ch. 5], use of quotation in Kernel greatly increases the likelihood of unintended
hygiene violations, contrary to Guideline G3 of §0.1.2. Explicit evaluation so permeates the Kernel
design that it has been considered for addition to the list of design Guidelines in §0.1.2; but thus
far, there has been no clear need to further complicate the Guidelines with it since it has not come
up in any particular rationale discussion in the report.

15

data. As noted above in §1.1, all objects are evaluable; hence in theory all data objects
are programs. An important consequence of this simple, uniform representation is
the susceptibility of Kernel programs and data to uniform treatment by other Kernel
programs.

The read applicative performs syntactic as well as lexical decomposition of the
data it reads; see §15.1.7. Since all objects are evaluable, there is no such thing as a
syntactically invalid program. Once a program text has been converted to an object
(as by read), any further errors —such as an unbound variable, or a combination
whose car doesn’t evaluate to a combiner— are semantic errors, and consequently
will not occur until and unless the object is evaluated.

Since all objects are potentially programs, the terms “expression” and “object”
are used interchangeably throughout the report.

The formal syntax of Kernel is described in §16.1. Note in particular that the
syntax “(a . (· · ·))” is interchangeable with “(a · · ·)”.

1.3 Notation and terminology

1.3.1 Evaluable expressions

A symbol to be evaluated is a variable (occasionally called a symbolic variable to
distinguish it from the keyed variable devices of §§10–11).

A pair to be evaluated is a combination. The unevaluated car of the pair is
an operator ; its unevaluated cdr is an operand tree; and in the usual case that the
operand tree is a list, any elements of that list are operands. In the common case
that all the operands are evaluated, and all other actions use the results rather than
the operands themselves, the results of evaluating the operands are arguments. The
result of evaluating the operator is (if type-correct) a combiner, because it specifies
how to evaluate the combination. A combiner that acts directly on its operands
is an operative (or in full, an operative combiner). A combiner that acts only on
its arguments is an applicative (in full an applicative combiner), because the apply

combiner (§5.5.1) requires an applicative rather than an operative.

Rationale:
Most of these basic terms are adopted from [AbSu96, §1.1]; those not found there are

operand tree, combiner, applicative, and operative.
The term procedure is avoided by Kernel because its use in the literature is ambiguous,

meaning either what is here called an applicative (in discussions of Scheme), or what is
here called a combiner (in discussions involving both applicatives and operatives). There
is an adjective call-by-text in the literature meaning what is here called operative; but
the Kernel term applicative has no equivalent of the form call-by-X. Adjectives call-by-X
are used in general to specify when the operands are evaluated to arguments, as call-by-
value (eager) or call-by-name (lazy) ([CrFe91]); but applicative is intended to mean only
that the combiner depends on the arguments, without any implication as to when the
arguments are computed.

16

The terms combiner and operative were favored for their mnemonic value. Ap-
plicative was chosen for its mnemonic semi-symmetry with operative (see also [Ba78,
§2.2.2]); more stringent symmetry would have analogized operand/operative with argu-
ment/argumentative, but the term argumentative was too distracting to use.

1.3.2 Modules and features

The features (i.e., bindings) exhibited by the ground environment of Kernel (§3.2) are
grouped into modules. Each module contains features supporting a particular aspect
of the language, most often an object type or types. Each module may be explicitly
specified to assume certain other modules. Some modules may be marked as being
optional ; modules not so marked are required. A required module never assumes an
optional module.

An implementation cannot claim to support a module M unless it both (1) sup-
ports all of the features in M , and (2) supports all of the modules assumed by M .
Every implementation of Kernel supports all required modules; any system that
does not do so is not an implementation of Kernel. An implementation of Kernel
is comprehensive if it supports all optional modules.

All modules that are supported, and all features that are supported even if the
modules containing them are not supported, must conform to their descriptions here.
Implementations are permitted to add extensions, provided the extensions are con-
sistent with the language presented here. (See the discussion of encapsulation in
§3.4.)

An implementation of Kernel can claim to exclude a module M iff (“iff” = “if and
only if”) it both (1) omits all of the features in M , and (2) does not add any extension
that provides a capability provided in the report by M . The latter condition will be
clarified in §3.4.

Within each module, features are either primitive or library. Library features
could be implemented using the primitive features of their own module and other
modules (possibly including modules not assumed; see, for example, the derivation of
$binds?, §6.7.1). Code for implementing library features in the ground environment
(§3.2) is usually included with their descriptions; that is, given availability of suitable
primitives, evaluating the provided code in the ground environment (which Kernel
programs are not permitted to do) would mutate the ground environment so that
it would exhibit those features. The derivation code is not considered part of the
definition of the feature, so implementations are not expected to duplicate the exact
behavior of the code. However, the code is meant to conform to the description of the
feature, so that in principle it could be used internally by a (non-robust, per §1.3.3)
implementation of Kernel.

Rationale:

The purpose of optional modules is to allow aspects of the language to be standardized
without requiring them to be implemented in situations where those aspects are irrelevant.

17

Optionality of modules should be reserved for that purpose: not to make the implementor’s
life easier, nor because the design of some module is tentative (either it’s worth including
in the report or it isn’t), but because requiring the module simply wouldn’t make sense in
some of the situations where Kernel might reasonably be implemented. Which modules
ought to be optional is thus a reflection of the range of situations toward which the
language is targeted.

The assumption relation between modules serves two purposes. It documents depen-
dencies in the language design, and it constrains when an implementation can claim to
support a module. The design dependency is considered dominant; when an implemen-
tation claims to support a module M , it is asserting its own compliance to the design of
M , and so design assumptions of M are encompassed within the assertion. When the
assumed module is required, the assumption has no immediate significance beyond design
documentation — though it might gain significance later if the assumed module were
later made optional. If the assumed module were optional but the assuming module were
required, the assumption would be tantamount to requiring the assumed module, and so
we avoid pointless confusion by disallowing this case.

1.3.3 Exceptions to normal computation

Errors

When speaking of an error situation, this report uses the phrase “an error is signaled”
to indicate that implementations must detect the error and report it. The specifics of
error signaling are described in §7. If such wording does not appear in the discussion of
an error, then implementations are not required to detect or report the error, though
they are strongly encouraged to do so. An error situation that implementations are
not required to detect is referred to simply as “an error.”

For example, it is an error for a combiner to be passed an object (operand or
argument) that the combiner is not explicitly specified to handle, even though such
domain errors are seldom mentioned in the descriptions of the combiners. In most
cases, implementations are permitted to fail to detect and signal such errors.

An implementation of Kernel is robust if it signals all errors described in this
report for all features that it supports.

In an error situation that is not required to be signaled, implementations that
do not signal the error should not provide any deliberately useful behavior: no im-
plemented behavior should detect these situations except to signal them, and the
implementor should not choose any facet of the implemented behavior for the sake of
non-signaling error behavior.

Conversely, whenever an implementation provides an extension not described in
this report (as discussed in §3.4), it is strongly encouraged to provide the extension
under a name that is not used for any feature in this report. (In some cases the report
may expand the domain of a primitive feature by later introducing a library feature
of the same name, as with the two versions of $vau in §§4.10.3 and 5.3.1. This is not
meant to be a paradigm for implementing extensions to the language, but rather to

18

illustrate the derivative nature of the library feature.)

Rationale:

Deliberately useful behavior in a no-signal-required error situation is literally an in-
vitation to write one of the most anti-portable kinds of code: implementation-dependent
code that isn’t readily identifiable because the nonstandard feature it uses is camouflaged
under the name of a standard feature. Of course, all behavior can be made use of; the
point here is that since it’s bad programming practice, the implementor shouldn’t be
promoting it.

Serious consideration was given to simply requiring all errors to be signaled. This ex-
treme measure was not taken only because it was felt implementations should have leeway
with which to prevent eager error-checking from becoming burdensome. Notably, the pro-
vided derivations of library features in the report are sometimes lax in non-required error
signaling — mostly because those derivations also serve as supplementary illustrations of
how the features work, and additional error-checking would make the code significantly
less readily understandable.

Implementation restrictions

This report uses the phrase “may report a violation of an implementation restriction”
to indicate circumstances under which an implementation is permitted to report that
it is unable to continue execution of a correct program because of some restriction im-
posed by the implementation. Implementation restrictions are of course discouraged,
but implementations are required to report violations of implementation restrictions.

For example, an implementation may report a violation of an implementation
restriction if it does not have enough storage to run a program.

Rationale:

An implementation restriction pertains to a permissible incapability that should not
disqualify the implementation from being “comprehensive”; otherwise, the permissible
incapability would be more appropriately treated as an optional module (§1.3.2).

1.3.4 Entry format

Sections 4–15 consist mostly of entries, each entry describing one language feature.
Each entry begins with one or more template lines showing supported formats for
using the feature.

If the feature is not a combiner, there is just one template, which is simply the
name of the object. The template line is followed by an explanation of the feature
and its purpose.

Throughout the report, literal text is written in monospace lettering. In the
template for a feature, the name of the feature appears as literal text. Library feature
derivations are also presented as literal text. The object bound to a name (in the
environment of interest, most often a Kernel standard environment) is indicated by

19

writing the name in italicized monospace lettering . Thus, for example, symbol
cons is bound in a standard environment to object cons .

In the template for an operative, indefinite components are written using angle
brackets; for example, 〈expression〉, 〈symbol〉. In the template for an applicative,
indefinite components are italicized. In either case, the components always stand for
actual objects to be substituted into the template. The description specifies any type
restrictions on the components, immediately following the template line(s). Type
restrictions pertain to the values that are actually passed to the combiner; thus,
type restrictions for an operative refer to the (unevaluated) operands, while type
restrictions for an applicative refer to the (evaluated) arguments.

It is an error for a combiner to be presented with an object (operand or argument)
that it is not specified to handle. For succinctness, if a component name is also the
name of any type defined in any module of this report (§§4–15), optionally followed
by one or more digits (e.g., number2), then that object must be of the named type. If
a component name is the plural of the name of any type defined in any module of this
report (e.g., strings), then that object must be a list of objects of the named type.
Type list will be defined in §3.9. Type object is understood to include all first-class
objects; so component name objects implies the same type constraint as component
name list.

When an entry extends the behavior of a previous entry, both entries refer to each
other, but the extending entry does not repeat templates from the earlier entry.

1.3.5 Expression equivalences

The semantics of a language feature are sometimes clarified, or even defined, in its
entry by specifying that two expressions are equivalent. For example, the semantics
of applicative list* are defined, in §5.2.2, by the equivalences

(list* arg1) ≡ arg1
(list* arg1 . more-args) ≡ (cons arg1 (list* . more-args))

Broadly speaking, the two expressions in such an equivalence are interchangeable
in any situation where they would be evaluated; but certain pathological cases are
excepted. Interchangeability means that evaluating either of the two expressions in
the same environment, starting from the same state of the entire runtime platform,
will have the same consequences — both resultant value (if any) and side-effects.
Unless otherwise stated, there are four pathological cases excepted:

• Subexpressions (operands or arguments) are assumed to have the correct types
for the combiners on the left side of the equivalence (or the first side, if the sides
are presented on separate lines). The right/second side of the equivalence may
place weaker constraints on the subexpression types, but the equivalence isn’t
guaranteed under the weaker constraints.

20

• The expressions themselves are assumed not to be mutated before their struc-
ture is used in evaluation. For example, the second equivalence above for list*
doesn’t cover situations where evaluation of arg1 causes mutation to more-args.

• If the expression evaluations involve subsidiary argument evaluations, then the
equivalence only holds if either (1) the argument evaluations don’t have side-
effects, or (2) the argument evaluations are performed in the same order for
both sides of the equivalence. This is significant because, when an expression
contains nested combinations, Kernel’s eager argument evaluation may prohibit
some orderings. For example, in the second equivalence above for list* , the
arguments to list* on the left may be evaluated in any order at all, while in
the nested expression on the right, arg1 will be evaluated either before all of
the other arguments or after all the other arguments.

• If some named subexpression occurs multiple times on one side of an equivalence,
evaluating that subexpression multiple times is assumed to produce identically
the same object each time, without side-effects from the redundant evaluation.
This arises, for example, in an equivalence for the rationale discussion of map,
§5.9.1.

If the conditions of a particular equivalence vary from these defaults, the variance
should be specified along with the equivalence.

1.3.6 Evaluation examples

The symbol “=⇒” used in program examples should be read “evaluates to”. For
example,

(* 5 8) =⇒ 40

means that the expression (* 5 8) evaluates to the expression 40. Or, more precisely:
an object represented externally by the sequence of characters “(* 5 8)” evaluates,
in a standard environment, to an object represented externally by the sequence of
characters “40”. See §3.6 for a discussion of external representations of objects.

1.3.7 Naming conventions

By convention, the names of operatives always begin with “$”. (This was originally
meant to be a stylized letter s, for special form.)

By convention, the names of combiners that always return a boolean value always
end in “?”. Such combiners are called predicates.

By convention, the names of combiners whose purpose is to modify previously ex-
isting objects always end in “!”. Such combiners are called mutators. By convention,
the value returned by a mutator is inert (§4.5).

21

By convention, “->” appears within the names of combiners whose purpose is
to take an object of one type and return an analogous object of another type. For
example, continuation->applicative (§7.2.5) takes a continuation and returns an
applicative that passes its argument list to that continuation.

Rationale:

Latent typing together with clear typing-based naming conventions promote design
Guideline G3 of §0.1.2, that dangerous actions should be permitted but difficult to do
by accident. (Cf. the rationale for partitioning of types, §3.5.) Hence, to maximize their
design value the conventions should be chosen for quick and accurate recognition. To
that end, all the basic conventions use non-alphanumeric characters, as in Scheme and
unlike most other Lisps. The Kernel conventions have also been simplified from Scheme
by eliminating exceptions; notably, the names of Kernel boolean operations (§6.1) and
number comparison predicates (§12) all end with ?.

Quick and accurate recognition also dictates that the number of basic naming conven-
tions should not be increased without genuine need. Experience with an early prototype
implementation of Kernel forcefully demonstrated that, while a small number of special
forms may simply be learned by rote, and macros may be marginally infrequent enough
to handle likewise, a language that grants full first-class status to compound operatives
genuinely needs a naming convention to keep track of which combiners are meant to be
operative and which applicative.

The uniformity Guideline (G1 of §0.1.2) is not applied directly to symbolic names of
features. The point of uniformity is, broadly, that it promotes free interactions between
language elements; but the symbolic names of features are targeted at a human audience,
and as such their interactions take place within the murky realm of natural language.
Discerning just what promotes free interactions within that realm seems scarcely less
formidable than full-blown automated natural-language translation; it is, for example,
a noted phenomenon in the field of conlanging (the artificial construction of pseudo-
natural languages) that excessive superficial uniformity of symbolic names can actually
promote mistakes6 — contrary to the usual synergism that, based on their behavior in
programming-language semantics, we would expect between properly applied G1 and
G3 . Given this murkiness, the uniformity Guideline has been judged for the current
work to be uninformative, and symbolic names of features are addressed directly through
accident-avoidance Guideline G3 (as above).

Specialized Kernel operations involving a particular type are often given names that
contain (or at least strongly suggest) the name of the type involved —in some non-core
modules, most or all symbolic names follow this pattern— but the practice is applied

6This is a standard criticism of the constructed language Ro, which was begun in 1904. The
vocabulary of Ro is arranged taxonomically, building words from sequences of sounds in much the
same way that the Dewey Decimal System builds library classification numbers — which, unfortu-
nately, maximizes the likelihood of confusion between words for which distinguishing clues are least
likely to be provided by context. (For example, words starting with bofo- are colors; red is bofoc,
orange bofod, yellow bofof, green bofog, and so on.) Ro was sponsored for some years by, among
others, Doctor Melvil Dewey, creator of the Dewey Decimal System.

22

selectively, as judged to best promote accident-avoidance on a case-by-case basis. Type-
based names are usually inappropriate to generic operations (for most of which type
names would have to be invented anyway),7 and usually inappropriate to ubiquitous
features (whose names the programmer presumably needs no help remembering, and for
which type names would create a significant burden of verbosity). Natural languages
tend to a similar pattern, with regularity and length being more pervasive in less common
vocabulary. At the extreme of the pattern for natural languages, typically the handful of
most basic, general-purpose words are the most irregular and shortest, such as English be,
do, go, have. Lisp also exhibits this extreme case of the pattern: the most basic operators,
across the entire Lisp family, are lambda, cons, car, and cdr. This also has, one suspects,
a psychological feedback effect, akin to the raised dots commonly placed on the F and J

keys of qwerty keyboards, which serve as an aid to touch typists: language users are
cued to the key elements of the language by where terseness and irregularity are most
concentrated.

2 Lexemes

This section gives an informal account of the syntax of lexemes used in writing Kernel
programs. For a formal syntax of Kernel, see §16.1.

Upper and lower case forms of a letter are never distinguished except within
character and string constants. For example, Foo is the same identifier as FOO, and
#x1AB is the same number as #X1ab.

Rationale:
The R6RS breaks from a long-standing Scheme tradition by making identifiers case-

sensitive.8 The Kernel design principles (§0.1.2) are not readily consistent with identifier
case-sensitivity. Distinguishing long identifiers by case alone is error-prone, hence contrary
to G3 . Such confusions could be forcibly prevented by requiring that identifiers bound by
the same environment must differ by more than case, but that approach would clash with
the removal-of-restrictions design philosophy (a clash that would manifest as difficulty
in arranging the lookup behavior of multi-parented environments, §3.2). Alternatively,
one might require all identifiers to conform to an unambiguous casing policy, which would
eliminate any difficulty in arranging multi-parent environment lookup since two identifiers
could never differ only by case; this alternative could only be philosophically acceptable if
the policy could not be made simpler, and there are exactly two maximally simple policies
of this kind: either all letters in identifiers must be lower-case, or all letters in identifiers
must be upper-case. Of these two, lower-case would be preferred since it is known to
be the less error-prone of the two; but, at least for the current revision of the report,
case-insensitivity has been retained from the R5RS .

7On the desirability of generic operations, see [Sus07].
8Prior to the R6RS , identifier case-insensitivity had been explicitly specified by every Scheme

report back to the R2RS ([KeClRe98, §2], [ClRe91b, §2], [ReCl86, §2], [Cl85, §I.1]). The first two
Scheme reports apparently have Scheme built on Maclisp, which was case-insensitive on most but
not all platforms ([Pi07, Introduction]).

23

It might be argued that short —say, single-letter— identifiers differing only by case
might be mistakenly treated as different. (This differs qualitatively from the confusion
induced by long identifiers differing only by case, in that the long-identifier confusion would
be due to overlooking particular details, whereas the short-identifier confusion would be
due to overlooking a general policy.) Accepting this argument about short identifiers
would put case-insensitivity, too, on the wrong side of G3 . The same policy is used for
short and long identifiers, per G1 ; so if the case-insensitive policy is also ruled out, only
the one-case policy would remain.

2.1 Identifiers

Most identifiers allowed by other programming languages are also acceptable to
Kernel. A sequence of letters, digits, and “extended alphabetic characters” that
begins with a character that cannot begin a number is an identifier. In addition, +
and - are identifiers. Here are some examples of identifiers:

$lambda q

list->vector soup

+ V17a

<=? a34kTMNs

the-word-recursion-has-many-meanings

Extended alphabetic characters may be used within identifiers as if they were letters.
The following are extended alphabetic characters:

! $ % & * + - . / : < = > ? @ ^ _ ~

See §16.1.3 for a formal syntax of identifiers.
Identifiers in Kernel are external representations of symbols.

2.2 Whitespace and comments

Whitespace characters are spaces and newlines. (Implementations may provide ad-
ditional whitespace characters, such as tab or page break.) Whitespace is used for
improved readability, and as necessary to separate tokens from each other, a token
being an indivisible lexical unit such as an identifier or number; but whitespace is oth-
erwise insignificant. Whitespace may occur between any two tokens, but not within
a token. Whitespace may also occur inside a string, where it is significant.

A semicolon (;) indicates the start of a comment. The comment continues to the
end of the line on which the semicolon appears. Comments are invisible to Kernel, but
the end of the line is visible as whitespace. This prevents a comment from appearing
in the middle of an identifier or number.

;;; The FACT procedure computes the factorial

;;; of a non-negative integer.

24

($define! fact

($lambda (n)

($if (=? n 0)

1 ;Base case: return 1

(* n (fact (- n 1))))))

2.3 Other notations

For a description of the notations used for numbers, see §12.

. + - These are used in numbers, and may also occur anywhere in an identifier
except as the first character. A delimited plus or minus sign by itself is also an
identifier. A delimited period (not occurring within a number or identifier) is
used in the notation for pairs (§4.6).

() Parentheses are used to delimit lists (§4.6).

" The double-quote character is used to delimit strings (§13).

\ Backslash is used in the syntax for character constants (§14) and as an escape
character within string constants (§13).

Sharp sign is used for a variety of purposes depending on the character that
immediately follows it:

#t #f These are the boolean constants (§4.1).

#ignore This is the ignore constant (§4.8).

#inert This is the inert constant (§4.5).

#\ This introduces a character constant (§14).

#e #i #b #o #d #x These are used in the notation for numbers (§12.4).

[] { } | Left and right square brackets and curly braces and vertical bar are
reserved for possible future use in the language.

’ ‘ , ,@ Single-quote character, backquote character, comma, and the sequence
comma at-sign are reserved as illegal lexemes in Kernel, to avoid confusion with
their use in other Lisps for quasiquotation.

3 Basic concepts

This section describes basic semantic elements of Kernel, notably its evaluator algo-
rithm.

25

3.1 References

An object may, depending on its type, contain one or more references to other objects.
All references are given initial referents (choices of object referred to) when the object
is created. The referent of a reference may sometimes be set at some time after object
creation; the reference refers thereafter to the new referent, until the next time, if any,
that the referent of that reference is set. The act of setting the referent of a reference
after object creation constitutes a mutation of the object containing the reference
(§3.8), regardless of whether the new referent is the same as the old referent.

3.2 Environments

A binding is an association of a symbol with a reference to a value. The symbol is
said to be bound to the value, or the value bound by the symbol.

An environment consists of a set of bindings, and a list of zero or more references
to other environments called its parents. The transitive closure of the parent relation
is ancestor ; the reflexive transitive closure is improper ancestor.

When a symbol s is looked up in an environment e, a depth-first search is con-
ducted on the improper ancestors of e, taking the parents in listed order, to find a
binding of s to some value. The first such value found is returned as the result of the
search; if no such value is found, an error is signaled. (See also §4.8.4.)

The bindings that are actually part of an environment are local to it (they locally
bind their symbols to values). Those bindings that may provide the result of a symbol
lookup in an environment are visible in it (visibly bind, or simply bind, symbols to
values). An environment contains its local bindings, and exhibits its visible bindings.

One environment is assumed to exist: the ground environment. The ground en-
vironment exhibits all the language features that the implementation supports (min-
imally, all features of all required modules in this report). Implementations are ex-
pressly forbidden to provide any means by which a Kernel program could capture
(e.g., §6.7.2) or attempt to mutate (§§3.8, 4.9) any improper ancestor of the ground
environment.

An environment is standard if it is a child of the ground environment, and contains
no local bindings.

Rationale:
It is both formally convenient to assume, and practically convenient to provide, a

single ancestor for all standard environments: because the ground environment cannot
be mutated, it need only be constructed once, and standard environments can then be
created at will (§6.7.3) with, in principle, no more overhead than an ordinary compound
combiner call.

The ability to construct an environment with multiple parents (§4.8.4) could be used
to merge the exported facilities of several separate modules, and make them all visible
to the internal environment of another module that depends on them (similarly to Java’s
import).

26

Kernel symbol lookup uses depth-first search because (1) depth-first search respects
the encapsulation of the parent environments, not requiring the child to know its parents’
ancestry, and (2) exactly because depth-first search respects the encapsulation of the
parents, it is the simplest algorithm for searching a tree, in accordance with Kernel’s
design philosophy.

3.3 The evaluator

The Kernel evaluator algorithm refers to the following data types:

• An environment maps symbols to values. (§§3.2, 4.8)

• A pair contains (i.e., references) two values, called its car and cdr. (§4.6)

• An operative takes an object and an environment as input, and produces an
object as output. (§4.10)

• An applicative is simply a wrapper around another combiner, called its under-
lying combiner. (§4.10)

The environment passed to an operative is the dynamic environment in which the
combiner was invoked (as opposed to the static environment in which, if compound, it
was constructed). The purpose of passing the dynamic environment to the operative
is so that, if it chooses to evaluate any or all of its operands, it may use the dynamic
environment to do so.

The Kernel evaluator uses the following algorithm to evaluate an object o in
an environment e. The algorithm is simplified here only in that it doesn’t mention
continuations (§7). Top-level expressions, such as those input to an interactive Kernel
interpreter, are evaluated in an initially standard environment (‘initially’ because, as
evaluations proceed, it may be mutated).

1. If o isn’t a symbol and isn’t a pair, the evaluator returns o.

2. If o is a symbol, the evaluator returns the value bound by o in e.

3. Otherwise, o is a pair. Let a and d be the car and cdr of o. a is evaluated in e;
call its result f .

(a) If f is an operative, then f is called with input object d and input envi-
ronment e, and the result is the result of the combination.

(b) Otherwise, f must be an applicative, and d must be a list (§3.9). Let f ′

be the underlying combiner of f . The elements of list d are evaluated in
e; let d′ be a list of their values. The cons of f ′ with d′ is evaluated in e,
and the result is the result of the combination.

27

In Step 2, if o is not bound in e, an error is signaled. In Step 3, if f is neither an
applicative nor an operative, an error is signaled. In Step 3b, if d is not a list, an
error is signaled.

In Step 3b, the operands d may be evaluated in any order (provided the results
end up back in the correct order in d′); and the case of cyclic operand lists will
be addressed in §3.9. The evaluated arguments list d′ is constructed using mutable
pairs (although any of the elements of the list could be immutable; mutation will be
addressed in §3.8). The cons of f ′ with d′ is evaluated as a tail context (§3.10).

It is a noteworthy property of this evaluation algorithm that operatives do all the
work, while applicatives, which are a fairly close analog of Scheme procedures, are
nothing more than wrappers, doing of themselves no direct work at all.

Rationale:
Consideration was given to the alternative of constructing argument list d′ with im-

mutable pairs. This, however, would have introduced an irregularity into the properties
of operand trees as seen by compound operatives (on the uniformity of which, see under
$define!, §4.9.1); and also would have gratuitously introduced an otherwise unavailable
language capability (see the rationale for copy-es-immutable , §4.7.2).

Eager argument evaluation, and sequencing of expressions in the body of a compound
operative, are ubiquitous devices for the programmer to impose order on subsidiary com-
putations. (See §5.1.1.) The only similarly ubiquitous device for expressing indifference
to order of subsidiary computations is the evaluation of multiple arguments to an applica-
tive. Thus, not specifying the order of argument evaluation is key to the expressiveness
of the language. (See also the rationale for §3.9.)

3.4 Encapsulation of types

This report specifies that certain of the object types presented here are “encapsu-
lated”. This means, in essence, that implementations are not permitted to support
any operation on objects of that type that wouldn’t be supported by a comprehensive
implementation without extensions.

The concept of encapsulation is rather slippery, especially when dealing with a
language as flexible as Kernel. Some further amplification is therefore appropriate as
to what constitutes a violation of encapsulation. The following is an exhaustive list
of kinds of features that do not violate the required encapsulation of the language.
(Here, features are counted regardless of whether they are provided by the ground
environment or elsewhere. To emphasize: any system that supports an operation not
included in this list is not an implementation of Kernel.)

1. A feature is permitted if it is presented here, and provides only facilities pre-
sented here.

2. A feature is permitted if it is not presented here, and does not involve any
encapsulated object type presented here. Referencing an object, as is done when

28

storing it in a data structure (see §3.1 and Appendix B), does not “involve” the
referent’s type, only the fact that the referent is first-class; so mere reference is
always permitted. (Note that extension types must also satisfy the partitioning
requirements of §3.5.)

3. A feature is permitted if it could in principle be implemented using only features
covered under (1) and (2), without such implementation causing modification
of any non-error behavior, nor any required error-signaling behavior, of any
feature covered under (1). The features that would be used to implement it
needn’t be included in the actual implementation; however, even if the features
that would be used are themselves omitted, the implementation cannot claim
to exclude the module that contains them (§1.3.2).

4. Subtypes. A type predicate is permitted for a new subtype (that is, a subtype
not described in this report) of an encapsulated type, provided that none of the
features described in this report, behaving as described in this report, constructs
any object of the new subtype. All the operations on the encapsulated supertype
must behave normally (as specified in this report) on objects of the new subtype;
but for purposes of permitting additional operations, the new subtype is treated
as a separate type.

An important example of encapsulation is that of compound operatives (§4.10.3).
Data type operative is encapsulated, and the features described in this report do not
provide a way to extract the static environment of a compound operative — nor do
they even provide any way to determine whether a given operative is compound. So
an implementation of Kernel is not permitted to provide facilities to do either of these
things. Moreover, even if an implementation exercises its right to provide a subtype
of compound operatives whose static environments can be determined, none of the
primitive features described in this report will construct compound operatives of the
new subtype.

The prohibition against extracting static environments is commonly used to create
combiners with local state that only they can access. See for example the derivation
code for promises in §9.1.3. Permitting an extension that extracts the static environ-
ments of arbitrary compound combiners would thus undermine a key information-
hiding device of the language.9

Rationale:

Encapsulation of built-in types is the base case of Guideline G4 of §0.1.2, which awards
regulation of type access to the designer of the type.

By extensibility Guideline G1b of §0.1.2, the programmer should be able to create new
types that (1) are encapsulated, (2) do not satisfy any of the built-in type predicates, §3.5,

9MIT/GNU Scheme, [MitGnu], provides a procedure procedure-environment for determining
the static environment of a non-compiled compound procedure.

29

and (3) are supported by customized behavior of the standard operations on first-class
objects — centrally, read §15.1.7, write §15.1.8, eq? §4.2.1, and equal? §4.3.1.

Facility (1), by itself, can be achieved by various techniques using just the core mod-
ules; all such techniques ultimately involve operatives, because operatives are the only
compound objects in the core modules that can be freely distributed without granting
direct access to their contents. Facilities (1) and (2) together can be achieved using the
Encapsulations module, §8. (Actually, with a good deal of fancy footwork, the primitives
of the Encapsulations module could be derived as library features — using exception-
handling from the Continuations module, §7, but building ultimately on the access re-
strictions of, again, type operative.)

Facility (3) is not directly supported by the report. The report could have been ex-
tended to support it in a variety of ways — for example, customizations could be attached
either to operations, to types, or to instances of types— but supporting it in any one way
would seem to lack generality, while supporting it in several ways would lack simplic-
ity. However, facility (3) is supported indirectly in that, while Kernel does not provide
support within the scope of the ground environment, it provides ready means for the
programmer to create variant languages that do provide direct support, in whatever way
the programmer chooses. Creation of such variant languages is quite straightforward in
Kernel (and, BTW, incurs little overhead even in a fairly naive implementation), because
of Kernel’s mixture of first-class environments and first-class operatives. With exclusively
first-class operatives, nearly all the language semantics are derived from the ground en-
vironment; and with articulate support for first-class environments, the programmer can
readily construct alternatives to the ground environment. Consequently, sweeping seman-
tic variations of the language that, in Scheme, would require the programmer to write an
explicit meta-circular evaluator, may be straightforwardly achieved in Kernel by applying
the built-in evaluator algorithm with a different environment.

3.5 Partitioning of types

In each module, certain of its primitive applicatives are identified as primitive type
predicates. Each of these predicates takes zero or more arguments, and returns true iff
all of its arguments have the type tested by that predicate. (Thus, on zero arguments
the predicate returns true.)

The primitive type predicates must partition all possible objects; that is, every ob-
ject must satisfy exactly one primitive type predicate. The primitive type predicates
described in this report partition all objects described in, and all objects constructible
by means described in, this report. While an extension of Kernel (§3.4) may introduce
objects that do not satisfy any primitive type predicate described here, it must intro-
duce sufficient additional primitive type predicates to partition the objects possible
under the extension.

Rationale:

Kernel’s typing policy is an exercise in balancing the two halves of guideline G3 of
§0.1.2 — that dangerous behaviors should be tolerated but not invited. Tolerance rules

30

out traditional manifest typing, whose basic purpose is to proactively exclude from the
language behaviors that might later lead to illegal acts. Partitioning latently typed objects
by primitive type promotes the ‘not invited’ half of the equation, by clarifying the role of
each object at the level of the base language, so that ambiguities of purpose only occur if
they are deliberately introduced by the programmer.

The canonical illustration of the single-role principle is type boolean, whose essential
purpose in the language is to serve as the result of a conditional test (as for operative
$if, §4.5.2). Most Lisps, including R5RS Scheme, provide a boolean type for this purpose,
but actually allow any object whatever to occur as a conditional test result, the evident
purpose of this convention being that the programmer will omit the explicit predicate
in conditional tests where the value to be predicated is #f exactly when the predicate
would return false. This deliberate muddling of object roles in the base language leaves
it vulnerable to the accidental use of an expression as a conditional test that was never
intended to fill such a role, and cannot in fact ever produce a false result; in such an
accidental use, an illegal act actually has been performed, but is not detected. Requiring
a boolean result —which Kernel does— would presumably cause the error to be pinpointed
the first time the code is run, rather than lying dormant until it must be laboriously hunted
down when the code is discovered to misbehave; and (not forgetting the permissive half of
the equation), the programmer is neither prevented nor even significantly inconvenienced
from any activity since all it takes to guarantee a boolean result is that the programmer
explicitly state his intention in the form of a predicate.

In principle, primitive type predicates could be defined to be unary, and then gener-
alized to zero or more arguments as library features. That, however, would significantly
increase the number of library features for the sake of a single derivation technique that
would simply be repeated on each type predicate. Instead we merely note here that, given
a unary predicate foo?, its generalization to zero or more arguments could be defined by
the following expression, using the unary predicate, and primitive and library features of
the core modules. (Re the behavior on zero arguments, see the rationale for applicative
and?, §6.1.2.)

($define! foo?

($let ((foo? foo?)) ; save the unary predicate

($lambda args

(apply and? (map foo? args)))))

3.6 External representations

An important concept in Kernel (and Lisp generally) is that of the external representa-
tion of an object as a sequence of characters. For example, an external representation
of the integer 28 is the sequence of characters “28”, and an external representation
of a list consisting of the integers 8 and 13 is the sequence of characters “(8 13)”.

The external representation of an object is not necessarily unique. The integer
28 also has representations “#e28.000” and “#x1c”, and the list in the previous
paragraph also has the representations “(08 13)” and “(8 . (13 . ()))”.

31

External representations can be used for input and output. The applicative read

(§15.1.7) parses all external representations, and cannot parse anything that is not
an external representation. Program source files are always parsed (e.g., by applica-
tive load , §15.2.2) as if by read , so that each program source file is just a series
of external representations. The applicative write (§15.1.8) generates external rep-
resentations whenever possible, that is, whenever the object to be written has an
external representation.

An external representation might not capture all available information about the
object, but all external representations of an object capture the same information
about the object, and this information is preserved by applicatives read and write .
When different external representations of an object are read, or when the same
external representation of an object is read multiple times, all the generated objects
will be equal? (§4.3.1) to each other; and if all these generated objects are then
written and the external representations are read in again, the newly generated objects
will be equal? to the previously generated objects.

Many objects have external representations, but some, such as combiners and en-
vironments, do not. However, all objects are legal arguments to applicative write ;
in those cases where the object does not have an external representation, the se-
quence of characters generated by write is an output-only representation. When
read attempts to parse an output-only representation, an error is signaled; thus,
representations by write may be rejected or consistently parsed by read , but never
misparsed.

The representations generated by write are also subject to a constraint similar
to (but, in this instance, stronger than) the rules governing encapsulation from §3.4:
the representation of an object o by write cannot reveal any information about o
that couldn’t be determined without write .

A clear distinction must be observed between the object represented by an external
representation, and the object that results from evaluating the represented object.
The sequence of characters “(+ 2 6)” is not an external representation of the integer
8. Rather, it is an external representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Similarly, the sequence of characters
“($lambda x x)” is an external representation of a three-element list whose first
element is the symbol $lambda and whose second and third elements are both the
symbol x.

The syntax of external representations of various types of objects accompanies the
descriptions of the types in the modules that support them, in §§4–15.

3.7 Diagnostic information

Another important concept in Kernel is that of limiting what information is accessible
from within a Kernel program. Such limits are imposed notably by Kernel’s type
encapsulation (§3.4), and the limits are in turn used to constrain Kernel’s treatment

32

of output representations (§15.1.8) and object equivalence (§§4.2.1, 4.3.1).
Because implementations must only match the abstract behavior described in

this report, there is nothing to keep them from maintaining additional information
internally, as long as it isn’t accessible from within a program. Moreover, by the
same reasoning, this additional information can be shared with the user of the Kernel
system, as long as it remains unavailable to the program. For example, objects parsed
from a source file could be tagged with their source positions, and the tags could be
used to generate diagnostic messages that pinpoint the source locations of errors,
even though objects with different source-position tags might be eq? (that is, when
observed from within the Kernel system they might be the same object).

Rationale:
This report does not currently include a way for a Kernel program to run its own

implementing platform as a subprocess. If it did include such a facility (as some future
revision of the report might conceivably wish to do), it could in principle capture diagnostic
messages from the subsidiary process and extract encapsulated information from them.
Such a practice might be admissible, under the Kernel design guideline that ‘dangerous
things should be difficult to do by accident ’ (G3 of §0.1.2), but admitting it without
undermining the definition of type encapsulation would be a neat trick. Since no such
facility is currently provided, for the moment this subsection merely points out admissible
uses of internal information.

3.8 Mutation

In some cases (e.g. in §4.10.3), the description of a Kernel combiner may stipulate
that an object constructed by that combiner is immutable. Constructed objects are
always mutable unless otherwise stipulated. If an attempt is made to mutate an
immutable object, an error is signaled.

Because objects can be designated immutable, there is a need to clearly delineate
what constitutes mutation. Most mutations consist of setting the referent of a ref-
erence after creation of the referring object (§3.1); other actions described in §§4–15
constitute mutations only when explicitly specified.

Note that mutation of the object referred to by a reference does not, in itself,
constitute mutation of the referring object (unless they’re the same object, of course).
For example, suppose p is a list (1 2 3). Then (set-car! p 4) mutates object p.
However, while (set-car! (cdr p) 5) mutates the object referred to by the cdr of
p, it does not mutate p itself.

Rationale:
Kernel objects can have two different kinds of internal state, with different purposes

and different characteristic hazards.

• Some internal state represents potential resultant data; there is no reason to suppose,
in general, that such state will ever reach a final result. Mutable pairs (§4.7) are the
archetype for objects with this kind of state.

33

• Other internal state represents the administrative status of some activity; often
this will include one or more “dead” states, which indicate that the activity cannot
proceed. Ports (§15) are the archetype for objects with this kind of state: once a
port object is closed, trying to perform i/o on it is an error.

For each of these two kinds of state, there are situations in which further evolutions of the
state should not occur. For administrative state, these situations are determined by the
state itself (as with a closed port, which cannot be read/written); while for data state,
the difference is whether the state is intended to be final. Managing dead administrative
states is discussed in the rationale at the beginning of §15. Managing final data states is
the purpose of the immutability device, which identifies objects whose data state is final
so that the Kernel system knows to signal an error when they are mutated. The purpose
of designating certain operations as mutations is to identify them as evolutions that im-
mutability should prohibit. Accordingly, operations that evolve only administrative state
of an object —such as the read operation on ports (§15.1.7)— are not considered muta-
tions of that object. If an object were to have state with separable components of both
kinds, operations affecting data components of state would be mutation while operations
affecting only administrative components of state would not.

3.9 Self-referencing data structures

By a data structure we will mean, precisely: a collection of objects, with some set
of the references they contain (§3.1) designated as internal and referring to objects
of the structure, and one of the objects of the structure designated as the starting
object. References contained in the objects but not internal are external, and may
refer to objects outside the structure.

An example of particular interest is the class of list structures (see also §6.3.9). The
empty list has just one object, nil, and thus has no internal (nor external) references.
A nonempty list starts with a pair. Its objects are the start, all pairs reachable
from the start through cdr references, and nil if reachable through cdr references.
Its internal references are the cdr references of its pairs. For this to constitute a
data structure under the definition, internal references must refer to objects of the
structure, so the cdr of each pair of the list must refer either to nil or to a pair of the
list.

A data structure is self-referencing (or, cyclic) if there is some object o within
the structure from which, by following a nonempty chain of internal references, one
can get to o. For example, one could create a self-referencing list by evaluating the
sequence:

($define! foo (list 1 2 3))

(append! foo foo)

The resulting list data structure would consist of three pairs, with the cdr of the third
pair referring back to the first:

34

foo q

1

q q

2

q q

3

q

Self-referencing structures are sometimes used to represent infinite abstract structures
(and the actual structures may then be elliptically called “infinite”). The above list
foo could be used as a finite representation of the infinite list (1 2 3 1 2 3 ...).

Note that the designation of internal references can determine whether a data
structure qualifies as self-referencing. For example, the following is an acyclic, a.k.a.
finite, list exactly because the car references in a list are external. The same objects
with different internal reference designations could constitute a cyclic data structure;
but that structure wouldn’t be a list.

($define! bar (list 1))

(set-car! bar bar)

bar q q ()

Kernel combiners that involve data structure traversal, such as predicate equal?

(§4.3.1), are required to terminate and give correct results in the presence of cycles
unless specifically otherwise stated.

Discussions of behavior on self-referencing structures often use the auxiliary con-
cept of isomorphically structured data structures. Data structures S and S ′ are struc-
turally isomorphic iff there is a one-to-one correspondence between objects of S and
objects of S ′, and between references from corresponding objects, such that (1) the
starting object of S corresponds to the starting object of S ′, (2) corresponding ob-
jects have the same type, (3) corresponding internal references refer to corresponding
objects, and (4) corresponding external references refer to objects that correspond
under some relation that is specified as part of the isomorphism. If no relation is
specified between corresponding external referents, they are unconstrained (i.e., all
objects are related).

For example, the following two cyclic lists are equal?, and have the same number
of pairs, but are not structurally isomorphic.

($define! x (list 1 1))

(append! x x)

($define! y (list 1 1))

(append! y (cdr y))

x q

1

q q

1

q y q

1

q q

1

q

35

If the combiner of a combination is applicative, and the cdr of the combination is
not a list, an error is signaled. However, in general the operand list is not required
to be acyclic. Given a cyclic operand list to an applicative, the evaluator algorithm
(§3.3) is required to evaluate the referent of the car of each pair of the list once, (that
is, the number of operand evaluations is exactly equal to the number of pairs in the
list,) and construct an argument list structurally isomorphic to the operand list. For
example:

($define! foo (list (list display "*")))

($define! foo (cons (car foo) foo))

(append! foo foo)

(eval (cons list foo) (get-current-environment))

In the last expression, the operand list foo of applicative list is a cyclic list of
two pairs, whose two elements are both identically the same object (display "*").
That object is evaluated twice, once for each time it occurs in the list. Exactly two
asterisks are displayed, and the result returned is a cyclic list of two pairs whose
elements are both #inert (the value returned by display).

operand list: q q q q

q

display

q q

"*"

q ()

argument list: q

#inert

q q

#inert

q

Rationale:
The R5RS specifically allows Scheme’s equal? predicate to not terminate when

comparing self-referencing structures. This presents a danger when working with self-
referencing structures, since forgetfully using equal? may cause the program to diverge.
Such pitfalls inhibit the programmer’s free use of self-referencing structures, degrading
the practical status of self-referencing structures as first-class objects (G1a of §0.1.2).

Given that robust structure-traversal algorithms are provided in Kernel, there is a
temptation to provide naive traversal algorithms as well, because naive traversal is faster
in those cases where it works. (The time penalty for robust structure-traversal is actually
just a constant factor, i.e., linear in the structure size, provided the objects in the structure
can be temporarily marked during the traversal.) Since the motivation for providing naive
traversal as well is efficiency, G5 of §0.1.2 will forbid it if it compromises any other design
principle.

After studying several possible approaches to simultaneous support for both naive and
robust traversal, it was judged that such support would, in fact, compromise two different
design principles. One compromise is to G3 of §0.1.2. Naive traversal algorithms are
dangerous; and, inevitably, the more readily available naive traversal algorithms become,
the more readily the programmer can use them by accident. So, whatever measures
are used to reduce the additional risk, there is an additional risk, and the guideline is
perturbed.

36

The second compromise is more elemental. The basic design philosophy (top of §0.1.2)
precludes unnecessary features.10 But the introduction of a naive-traversal feature isn’t
necessary. In those cases where a tightly coded robust traversal isn’t fast enough, and the
compiler is unable to prove acyclicity and substitute a naive traversal, the programmer can
hand-code naive traversals; as explicitly coded algorithms go, naive depth-first traversals
are quite simple — in contrast to the robust traversal algorithms which, if omitted from
the standard language, would be quite troublesome for the programmer to hand-code.

There are three ways for a list-handling combiner to address a cyclic list.

• The combiner may treat the cyclic list as a type error (which might not be signaled in
a non-robust implementation). This should be done iff the action of the combiner is
naturally undefined when the list is cyclic (e.g., a cyclic list as a non-final argument
to applicative append , §6.3.3).

• The combiner may traverse the cyclic list indefinitely, until and unless its termination
criterion, if any, is met. This should be done iff the action of the combiner does not
require a list termination point, and entails stepping through the list, in order, with
a potential for side-effects from the steps (e.g., the list of operands to operative
$and?, §6.1.4).

• The combiner may process the cyclic list in finite time (modulo nontermination of
subsidiary computations, over which the combiner has no control). This should be
done iff the action of the combiner does not require a list termination point, and
does not entail processing the list side-effect-fully in order (e.g., the association-list
argument to applicative assoc , §6.3.6).

The governing principle in all three cases is G3 of §0.1.2, that dangerous activities
should be permitted but difficult to undertake by accident. It is presumed that, when
cycles occur in lists, they are usually the result of deliberate action rather than accident;
therefore, error-signaling is limited to cases where the action of the combiner would be
undefined, rather than merely unlikely to be useful (so as not to second-guess a deliberate
decision by the programmer). On the other hand, accidents with cyclic lists may still
occur if a combiner’s behavior contradicts the programmer’s expectation; hence, surprises
are avoided by ensuring that all combiners in the report adhere strictly to the simple
policy presented above.

Under this policy, the assertion that a combiner will process some list in no particular
order is a substantial statement. That is, it makes a positive contribution to the design,
by determining the behavior of the combiner when the list is cyclic. This means that, to
preserve the integrity of the language design, implementations of Kernel must refrain from
endorsing any particular order of processing for the combiner, regardless of whether they
use any particular order. (This is in contrast to Scheme, where particular implementations
routinely “extend” the RxRS by specifying order of processing in cases where the RxRS
doesn’t.)

10In effect, the design philosophy is itself a refinement of the principle of necessity, the medieval
scholastic principle that “Entities should not be multiplied unnecessarily.” Toward the end of the
scholastic period, William of Occam used the principle of necessity so effectively in cutting his
opponents’ arguments to ribbons, that today the principle is commonly called Occam’s Razor.

37

The behavior of the evaluator algorithm on a cyclic operand list to an applicative is
largely determined by the general policy: arguments don’t have to be evaluated in any
particular order (§3.3), so a cyclic operand list must be handled in finite time. (So too, in
accordance with the above reasoning, implementations should refrain from endorsing any
particular order of argument evaluation.) Details of the semantics are chosen to be the
same as if argument evaluation were done using map (§5.9.1). For example, the following
two expressions are equivalent.

(apply (wrap list) operands (get-current-environment))

(map (wrap ($vau (x) e (eval x e))) operands)

3.10 Proper tail recursion

Implementations of Kernel, like implementations of Scheme, are required to be prop-
erly tail recursive.

A combiner call is active if the called combiner may still return. This includes
calls that may be returned from either by the current continuation or by continuations
captured earlier (such as by call/cc , §7.2.2) that are later invoked. In the absence
of captured continuations, calls could return at most once and the active calls would
be those that had not yet returned.

Within a combiner call, an expression may be evaluated as a tail context. The
evaluator algorithm specifies one tail context (§3.3), and the descriptions of Kernel
combiners in §§4–15 specify some additional tail contexts. Implementations may
recognize other tail contexts in addition to those specified; but no expression can be
evaluated as a tail context unless its result will be trivially returned as the result of
the containing combiner call (i.e., returning the result to the containing call has no
consequences except to return it from the containing call).

A tail call is a combiner call that is evaluated as a tail context. A Kernel im-
plementation is properly tail-recursive iff it supports an unbounded number of active
tail calls.

A formal definition of proper tail recursion in Scheme can be found in [Cl98].
Proper tail recursion is more straightforward in Kernel because of the absence of
special forms.

Rationale:
Intuitively, no space is needed for an active tail call because the continuation that is

used in the tail call has the same semantics as the continuation passed to the combiner
containing the call. Although an improper implementation might use a new continuation
in the tail call, a return to this new continuation would be followed immediately by a return
to the continuation of the original combiner call. A properly tail-recursive implementation
returns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and Sussman’s original
version of Scheme. Their first Scheme interpreter implemented both functions and actors.
Control flow was expressed using actors, which differed from functions in that they passed

38

their results on to another actor instead of returning to a caller. In the terminology of
this section, each actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the code for dealing with
actors was identical to that for functions and thus there was no need to include both in
the language. [SusSte75, p. 40]

4 Core types and primitive features

The most fundamental features of Kernel are grouped into ten core modules, support-
ing nine primitive types (unevenly distributed amongst the modules). Three of the
core modules are optional (Equivalence under mutation, Pair mutation, and Environ-
ment mutation, §§4.2, 4.7, 4.9). All modules in the report assume all the required core
modules; only optional and non-core assumptions will be specified under particular
modules.

This section describes the primitive types and primitive features of all the core
modules. §§5–6 describe the associated library features.

Rationale:
The rough criteria for a module to be considered core are that (1) nontrivial Kernel

programming can’t be done without it, or (2) the Kernel evaluator algorithm can’t be
understood without it. Optional modules Pair mutation and Environment mutation were
judged to fall within the close penumbrae of their respective core types. The two most
notable omissions from the core are modules Continuations and Numbers (§§7 and 12);
they were judged not to meet either criterion for core modules, although module Con-
tinuations is used in the library derivation of core operative $binds? for error-handling
(§6.7.1), and module Numbers is formally assumed by core module Pairs and lists for list
measuring and indexing.

The division of the required language core into modules is somewhat arbitrary, and is
chosen for clarity of presentation. We also wish to present the core library features in such
an order that none of their derivations depends on another that occurs later in the report;
and this causes some difficulty for both the modular division and the presentation, because
it leads us to present several of the most basic core library features in a rather scrambled
order, with little respect for the data types involved. In order to minimize —and clarify
the character of— this perturbation, the language core is cross-cut into three sections of
the report: the type descriptions and primitive features are in §4 (here); the perturbed
basic library features are in §5; and the remaining majority of library features are in §6.
This arrangement allows §§4 and 6 to be ordered for presentation, while showcasing the
minimality of the core primitives, and the ubiquity of certain core library features (in §5).

4.1 Booleans

The boolean data type consists of two values, which are called true and false, and have
respectively external representations #t and #f. There are no possible mutations of
either of these two values, and the boolean type is encapsulated.

39

A combiner that always returns a boolean value is called a predicate. Conversely,
specifying that a combiner is a predicate means that it always returns a boolean value.
By convention, the names of predicates always end in “?”.

Library features associated with type boolean will be described in §6.1.

Rationale:
The essential purpose of boolean values in the language is to serve as the results of

conditional tests, for which purpose only boolean values are permitted by Kernel. (See
rationale under Partitioning of types, §3.5.)

4.1.1 boolean?

(boolean? . objects)

The primitive type predicate for type boolean.
Because there are only two values in the type, predicate boolean? could be con-

structed as a library combiner. However, designating it a primitive type predicate
satisfies the requirements for partitioning of types from §3.5.

4.2 Equivalence under mutation (optional)

Rationale:
Kernel has two general-purpose equivalence predicates, whereas R5RS Scheme has

three. The two Kernel predicates correspond to the abstract notions of equivalence up to
mutation (equal?, §4.3), and in the presence of mutation (eq?, in this module). Scheme
assigns the abstract notion of equivalence in the presence of mutation to an intermediate
predicate eqv?, and uses predicate eq? for the technically stronger equivalence between
objects whose eqv? -ness can be verified especially quickly in any particular implemen-
tation. In language design terms, Scheme introduces a third equivalence predicate for
the express purpose of promoting implementation-dependent intrusion of concrete perfor-
mance issues on the abstract semantics of the language — which directly violates Kernel’s
principles on simplicity and generality as well as its guideline on efficiency (G5 of §0.1.2).

The criterion for another module to assume this one is that the assuming module
supports mutation that could cause objects to be equal? but not eq? . For example,
Pair mutation assumes this module, but Environment mutation does not.

For cross-implementation compatibility, the behavior of eq? is defined in terms of a
comprehensive implementation of Kernel. For example, two pairs returned by different
calls to cons are not eq?, even if they have the same car and cdr and the implementa-
tion doesn’t support pair mutation; and two empty environments returned by different
calls to make-environment are not eq?, even if the implementation doesn’t support en-
vironment mutation. The latter case shows how the implementation-independence can
impact implementations even if they don’t support eq?, since the behavior of required
predicate equal? on environments is tied to that of eq? (which is, in turn, why module
Environment mutation does not require this module).

40

4.2.1 eq?

(eq? object1 object2)

Predicate that returns true iff object1 and object2 are effectively (§3.7) the same
object, even in the presence of mutation. The following universal rules constrain, but
do not uniquely determine, its behavior. Its behavior for objects of a particular type
described in this report may be further constrained in the description of the type.

1 The eq? predicate must be reflexive, symmetric, and transitive.

2 If the two objects (object1 and object2) are non-interchangeable in any way that
could affect the behavior of a Kernel program, using any features in the imple-
mentation or the report, but without first postulating that eq? distinguishes
them, eq? must return false. For example:

– If the two objects are observably not of the same type, eq? must return
false.

– If one of the objects is mutable and the other is immutable, eq? must
return false.

– If both objects are mutable, and mutating one will not necessarily cause
the same mutation to the other, eq? must return false.

– If the objects have different external representations (as do, for example,
the two boolean values), eq? must return false.

3 For any particular two objects, the result returned by eq? is always the same.

This applicative will be generalized to handle zero or more arguments in §6.5.1.

4.3 Equivalence up to mutation

4.3.1 equal?

(equal? object1 object2)

Predicate that returns true iff object1 and object2 “look” the same as long as
nothing is mutated. This is a weaker predicate than eq? ; that is, equal? must
return true whenever eq? would return true. The following universal rules constrain,
but do not uniquely determine, the behavior of equal? . Its behavior for objects of
each type described in this report will be uniquely determined, modulo the behavior
of eq?, by further constraints as necessary in the description of the type.

1 The equal? predicate must be reflexive, symmetric, and transitive.

2 If eq? would return true, equal? must return true.

41

3 If the two objects (object1 and object2) are non-interchangeable in any way that
could affect the behavior of a Kernel program that (a) performs no mutation
and (b) doesn’t use eq? (neither directly nor indirectly), then equal? must
return false. For example:

– If the two objects are observably not of the same type, equal? must return
false.

– If the objects have different external representations, equal? must return
false.

– If the objects are both numbers, and numerically equal, but have different
inexactness bounds (e.g., one is exact and the other isn’t; §12.2), equal?
must return false.

4 If equal? is not required to return false by the preceding rule, and this fact
can be determined with certainty by a (correct) Kernel program that (a) is
independent of the objects (they don’t refer to it and it only refers to them as
parameters), (b) examines the objects only passively (doesn’t use them or parts
of them as combiners in evaluation), (c) performs no mutation, and (d) always
terminates (provided the quantity of actual data within the runtime system is
finite), then equal? must return true. For example,

– Suppose variables x and y are set up by evaluating the following sequence
of expressions.

($define! x (list 1))

($define! y (list 1 1))

(append! x x)

(append! y y)

Then (equal? x y) would evaluate to #t.

x q

1

q y q

1

q q

1

q

5 For any particular two objects, the result returned by equal? is always the
same during a period of time over which no mutation occurs.

It is generally recommended that equal? return false in all cases where these rules
do not require it to return true.

This applicative will be generalized to handle zero or more arguments in §6.6.1.

Rationale:

The Kernel predicate equal?, unlike its Scheme counterpart, has to terminate for all
possible arguments (since it isn’t given dispensation to do otherwise). The set of cases in

42

which equal? is required, by Rule 3 above, to return false is formally undecidable; that
doesn’t interfere with termination of equal?, but does guarantee that the terminating
predicate returns false in some cases where it isn’t required to. (Terminating predicate eq?
must similarly return false in some unrequired cases; see §4.10.) The set of cases in which
equal? is required to return true, by Rule 4 above, might appear at first glance to be
undecidable but, in practice, it is unproblematically decidable. Because Rule 4 stipulates
that the determining program can only examine the objects passively, the determining
program cannot get bogged down in comparing the formally undecidable active behavior of
algorithms; degree of encapsulation doesn’t actually matter to this point, as, for example,
if the body of a compound combiner were made publicly visible so that it could be used
in the determination, different algorithms that do the same thing would be un-equal?
(hence un-eq?) exactly because the combiners could by supposition be distinguished via
their syntactically distinct bodies.

4.4 Symbols

Two symbols are eq? (§4.2.1) iff they have the same external representation. Symbols
are immutable, and the symbol type is encapsulated.

The external representations of symbols are usually identifiers (§2.1). However,
symbols with other external representations may be created; see §13.1.1.

Rationale:

Symbols are useful as lookup keys for environments (§§3.2, 4.8), thus providing the
base case for nontrivial evaluation (§3.3), exactly because they are isomorphic to their
external representations.

4.4.1 symbol?

(symbol? . objects)

The primitive type predicate for type symbol.

4.5 Control

The inert data type is provided for use with control combiners. It consists of a
single immutable value, having external representation #inert. The inert type is
encapsulated.

Library features of the core Control module will be described in §§5.1, 5.6, and 6.9.

Rationale:

Some combiners are called for their side effects, not their results. In the C family of
languages, functions called for effect have return type void . The later Scheme reports
describe the results of for-effect procedures as ‘unspecified’, which is a politically neces-
sary hedge because different Scheme implementations already in place follow a variety of

43

conventions concerning the return values of such procedures. Unfortunately, some Scheme
implementations allow for-effect procedures to return useful information, which creates a
temptation for programmers to write anti-portable code by using the result. Kernel avoids
this regrettable turn of events by explicitly requiring the result of each for-effect combiner
to be inert. Since the inert type is encapsulated, its one instance doesn’t carry any usable
information beyond its identity and type, which are isomorphic. (But see §3.7.)

Merely replacing “unspecified” with “inert” in the descriptions of standard combiners
would violate the spirit of G1b of §0.1.2, which calls for duplicability of built-in facilities
by the programmer. Hence the inert value must also have a full external representation
(as opposed to an output-only representation, §3.6), to facilitate explicit programmer
declaration of for-effect combiners.

4.5.1 inert?

(inert? . objects)

The primitive type predicate for type inert.

4.5.2 $if

($if 〈test〉 〈consequent〉 〈alternative〉)

The $if operative first evaluates 〈test〉 in the dynamic environment (that is, the
environment in which the ($if ...) combination is evaluated). If the result is not of
type boolean, an error is signaled. If the result is true, 〈consequent〉 is then evaluated
in the dynamic environment as a tail context (§3.10). Otherwise, 〈alternative〉 is
evaluated in the dynamic environment as a tail context.

Rationale:

On the exclusion of non-boolean results from conditional tests, see the rationale under
Partitioning of types, §3.5.

In R5RS Scheme, the 〈alternative〉 operand to if is optional; and if it is omitted,
and 〈test〉 evaluates to false, the result is ‘unspecified’ — which would mean, in Kernel,
that the result would be inert. For consistency with the design purpose of #inert —
which is to convey no information— two-operand $if ought to return #inert regardless
of whether 〈consequent〉 is evaluated; but at that point, it becomes evident that the two-
and three-operand operations are really separate, and by rights ought not to be lumped
into a single operative (which lumping doesn’t square well with the uniformity guideline,
G1 of §0.1.2, anyway); instead, if both operations are supported they should be given
different names. The two-operand form, though, is just a specialized shorthand; so both
clarity (thus accident-avoidance, G3 of §0.1.2) and simplicity are against its inclusion in
the language. (Similar issues arise for $cond , §5.6.1.)

44

4.6 Pairs and lists

A pair is an object that refers to two other objects, called its car and cdr. The Kernel
data type pair is encapsulated.

The null data type consists of a single immutable value, called nil or the empty
list and having external representation (), with or without whitespace between the
parentheses. It is immutable, and the null type is encapsulated.

If a and d are external representations of respectively the car and cdr of a pair p,
then (a . d) is an external representation of p. If the cdr of p is nil, then (a) is also
an external representation of p. If the cdr of p is a pair p2, and (r) is an external
representation of p2, then (a r) is an external representation of p.

When a pair is output (as by write , §15.1.8), an external representation with the
fewest parentheses is used; in the case of a finite list, only one set of parentheses is
required beyond those used in representing the elements of the list. For example, an
object with external representation (1 . (2 . (3 . ()))) would be output using,
modulo whitespace, external representation (1 2 3).

Combiners for mutating pairs will be presented in a separate, optional Pair mu-
tation module (§4.7). Otherwise, library features associated with these types will be
described in §§5.2, 5.4, 5.7, and 6.3.

This module assumes the Numbers module (§12). (See §§5.7, 6.3.)

Rationale:

The Numbers module is used to measure and index lists.

4.6.1 pair?

(pair? . objects)

The primitive type predicate for type pair.

4.6.2 null?

(null? . objects)

The primitive type predicate for type null.

4.6.3 cons

(cons object1 object2)

A new pair object is constructed and returned, whose car and cdr referents are
respectively object1 and object2 .

45

Note that the general laws governing mutation (§3.8: constructed objects are mu-
table unless otherwise stated) and the general laws governing eq? (§4.2.1: indepen-
dently mutable objects aren’t eq?) conspire to guarantee that the objects returned
by two different calls to cons are not eq? .

4.7 Pair mutation (optional)

This module consists of those standard combiners that either mutate pairs, or are only
needful when pair mutation is possible. It assumes the Equivalence under mutation
module (§4.2), and the Numbers module (§12). Library features of the module will
be described in §§5.8 and 6.4.

Rationale:

The Equivalence under mutation module is assumed because pairs may be equal?

without being eq? . The Numbers module is used to index lists.

4.7.1 set-car!, set-cdr!

(set-car! pair object)
(set-cdr! pair object)

These applicatives set the referent of, respectively, the car reference or the cdr
reference of pair to object . The result of the expression is inert.

Recall, from §3.1, that the act of setting the referent of a reference after object
creation constitutes a mutation of the object containing the reference; and from §3.8,
that when an attempt is made to mutate an immutable object, the error must be
signaled.

4.7.2 copy-es-immutable

(copy-es-immutable object)

The short description of this applicative is that it returns an object equal? to
object with an immutable evaluation structure. The “-es-” in the name is short for
“evaluation structure”.

The evaluation structure of an object o is defined to be the set of all pairs that
can be reached by following chains of references from o without ever passing through
a non-pair object. The evaluation structure of a non-pair object is empty.

If object is not a pair, the applicative returns object . Otherwise (if object is a
pair), the applicative returns an immutable pair whose car and cdr would be suitable
results for (copy-es-immutable (car object)) and (copy-es-immutable (cdr

object)), respectively. Further, the evaluation structure of the returned value is

46

isomorphic (§3.9) to that of object at the time of copying, with corresponding non-
pair referents being eq? .

These constraints imply that the result returned by copy-es-immutable must be
initially equal? to object . They also imply that if object is a mutable pair, then the
result is not eq? to object . However, if object is an immutable pair, then (given that
there is no way in Kernel for a mutable pair to be the car or cdr of an immutable pair)
the result may or may not be eq? to object at the discretion of the implementation.
(This is in contrast to library applicative copy-es, §6.4.2, which always returns a
non-eq? pair when given a pair as argument.)

Rationale:

Whenever unexpected operand capturing occurs (i.e., an unevaluated operand is ac-
quired by a combiner that the caller thought was applicative), there is a risk of unexpected
operand mutation. Most algorithms, however, are intended by the programmer to be im-
mutable, and therefore, when an object is primarily meant to represent an algorithm,
mutating it is a dangerous activity that ought to be difficult to do by accident (G3 of
§0.1.2). The notion of the ‘evaluation structure’ of an object is meant to correspond to the
algorithm that the object represents. Combiners that are used particularly to construct
representations of algorithms acquire immutable copies of the given evaluation structures:
$vau (§4.10.3) and load (§15.2.2) do this; but eval (§4.8.3) does not, since it should be
able to induce arbitrary evaluations, and arbitrary evaluations must admit mutable struc-
tures (else one could never pass an argument for mutation, as to set-car! and set-cdr!,
§4.7.1). Applicative copy-es-immutable empowers the programmer to duplicate these
built-in Kernel facilities (G1b of §0.1.2).

Symbols aren’t copied by the applicative because, although they clearly play a direct
role in specifying algorithms, they are immutable so there is never any need to make
immutable copies. Alternatively, one could claim that they are copied, but because they
are immutable, the copies are eq? to the originals.

The possibility was considered of providing a primitive applicative cons-immutable ,
which would return an immutable pair with given car and cdr. However, cons-immutable
would support an altogether different capability from copy-es-immutable . On one hand,
cons-immutable would not support library derivation of copy-es-immutable , which can
handle self-referencing structures that cannot be copied one pair at a time without mutat-
ing some pair after construction to create a cycle. On the other hand, cons-immutable
would empower the programmer to create an immutable pair whose car or cdr refer-
ent is a mutable pair, which cannot be done with copy-es-immutable . The selective
power of cons-immutable would thus allow much more intricate patterns of structure
immutability, and ought not to be introduced into a simplicity-oriented language without
a compelling reason; the Kernel design calls for generality in the service of simplicity, not
generality for its own sake.

Strictly speaking, copy-es-immutable could have been listed as a library feature.
It can be derived using $vau , by exploiting the fact that $vau immutably copies the
evaluation structures of the bodies of compound operatives. We prefer to list copy-es-

immutable as a primitive prior to $vau , so that we can explain and discuss immutable

47

copies of evaluation structure separately from the more central aspects of $vau . For
perspective, though, here is a derivation of copy-es-immutable .

($define! copy-es-immutable

($lambda (object)

(((wrap $vau) ()

#ignore

(cons (unwrap list) object)))))

4.8 Environments

An environment consists of a set of bindings, and a list of zero or more references
to other environments called its parents; detailed terminology, the symbol lookup
algorithm, and the ground environment were explained in §3.2.

Changing the set of bindings of an environment, or setting the referent of the
reference in a binding, is a mutation of the environment. (Changing the parent list,
or a referent in the list, would be a mutation of the environment too, but there is no
facility provided to do it.)

The Kernel data type environment is encapsulated. Among other things, there
is no facility provided for enumerating all the variables exhibited by an environment
(which is not required, after all, to be a finite set), and no facility for identifying the
parents of an environment.

Two environments are equal? iff they are eq? (§§4.2.1, 4.3.1).
Combiners for mutating environments will be presented in a separate, optional

Environment mutation module (§4.9). Otherwise, library features associated with
type environment will be described in §§5.10 and 6.7.

An auxiliary data type used by combiners that perform binding is ignore. The
ignore type consists of a single immutable value, having external representation
#ignore. The ignore type is encapsulated.

Rationale:

First-class environments offer a tremendous amount of control over what can be ac-
cessed from where — but only if there are limitations carefully placed on what can be
done without explicit permission. In particular, whenever a combiner is called, it has
the opportunity, in principle, to mutate the dynamic environment in which it was called.
This power is balanced by omitting any general facility for determining the parents of a
given environment, and also omitting any other general facility for mutating the parents,
or other ancestors, of a given environment. (For an example of articulate environment-
access control, see $provide!, §6.8.2.)

The behavior of equal? is tied to that of eq? to forestall the possibility of an im-
plementation compromising the encapsulation of the type by allowing a program to de-
termine, in finite time, that all bindings for one environment are the same as those for
another. (Cf. the rationale discussion for the derivation of library predicate $binds?,
§6.7.1.)

48

Type ignore is provided specifically for use in parameter matching; see §4.9.1, below.
(Contrast type inert, §4.5, also an encapsulated type with a single value, but provided
specifically for non-use.)

4.8.1 environment?

(environment? . objects)

The primitive type predicate for type environment.

4.8.2 ignore?

(ignore? . objects)

The primitive type predicate for type ignore.

4.8.3 eval

(eval expression environment)

The eval applicative evaluates expression as a tail context (§3.10) in environment ,
and returns the resulting value.

Rationale:

The eval applicative provides two notable facilities to the language: the useful facility
of evaluating an expression twice, i.e., evaluating the result of evaluating the operand,
and the essential facility of explicitly specifying what environment will be used for (the
second) evaluation. Evaluating twice could be be achieved without eval , by wrapping an
applicative (§4.10.4); but eval is the only primitive combiner in the core modules that
supports explicit specification of the evaluation environment. Without that facility, user-
defined operatives would be unable to effectively regulate evaluation of their operands.

4.8.4 make-environment

(make-environment . environments)

The applicative constructs and returns a new environment, with initially no local
bindings, and parent environments the environments listed in environments. The
constructed environment internally stores its list of parents independent of the first-
class list environments, so that subsequent mutation of environments will not change
the parentage of the constructed environment. If the provided list environments is
cyclic, the constructed environment will still check each of its parents at most once,
and signal an error if no binding is found locally or in any of the parents.

49

As with the cons applicative (§4.6.3), the general laws governing mutation (§3.8)
and eq? (§4.2.1) conspire to guarantee that the objects returned by two different
calls to make-environment are not eq? .

Rationale:
Symbol lookup in an environment is by depth-first search of the environment’s im-

proper ancestors (§3.2). If there is no local binding for the symbol, the parents are
searched; and if at least one of the parents exhibits a binding for the symbol, the binding
is used whose exhibiting parent occurs first on the list of parents. Because searching a
parent has no side-effects (i.e., nothing is mutated by the search), the ordered search of
the parents must terminate in finite time even if the list of parents is cyclic (per the
rationale discussion in §3.9); cf. assoc , §6.3.6.

4.9 Environment mutation (optional)

This module consists of just those standard combiners that mutate environments.
Library features of the module will be described in §6.8.

Rationale:
There is no need for this module to assume the Equivalence under mutation module,

because environments are eq? iff they are equal? .
It isn’t clear to what extent one can do serious Kernel programming without mutating

environments; but separating the mutators into an optional module allows language im-
plementors to explore this question within the bounds of Kernel specified by this report.
In the absence of environment mutators as such, the programmer would presumably fall
back on Kernel’s rich vocabulary of environment constructors (notably the $let family,
as §5.10.1), which the report does not class as mutators, although environment initializa-
tion is routinely described in terms of adding bindings. (See especially the definition of
$letrec , in §6.7.5.)

Per §3.4, language extensions are judged against features described in the report rather
than against features actually supported by the extending implementation; so, failure to
support features in the Environment mutation module as a whole does not prevent a
non-comprehensive implementation from providing alternative means for doing some of
the same things.

For an example of the subtle interplay between environment mutation, recursion, and
sequencing, see the derivation of $sequence , in §5.1.1.

4.9.1 $define!

($define! 〈definiend〉 〈expression〉)

〈definiend〉 should be a formal parameter tree, as described below; otherwise, an
error is signaled.

The $define! operative evaluates 〈expression〉 in the dynamic environment (that
is, the environment in which the ($define! ...) combination is evaluated), and

50

matches 〈definiend〉 to the result in the dynamic environment, binding each symbol
in 〈definiend〉 in the dynamic environment to the corresponding part of the result;
the matching process will be further described below. The ancestors of the dynamic
environment, if any, are unaffected by the matching process, as are all bindings, local
to the dynamic environment, of symbols not in 〈definiend〉. The result returned by
$define! is inert.

A formal parameter tree has the following context-free structure.

〈ptree〉 → 〈symbol〉 | #ignore | () | (〈ptree〉 . 〈ptree〉)

That is, a formal parameter tree is either a symbol, or #ignore, or nil, or a pair
whose car and cdr referents are formal parameter trees.

A formal parameter tree must also be acyclic, and no one symbol can occur more
than once in it. It is not an error for a pair in the tree to be reachable from the
root by more than one path, as long as there is no cycle; but if any particular symbol
were reachable from the root by more than one path, that would count as occurring
more than once. Thus, if a pair is reachable by more than one path, there must be
no symbols reachable from it.

Matching of a formal parameter tree t to an object o in an environment e proceeds
recursively as follows. If the matching process fails, an error is signaled.

• If t is a symbol, then t is bound to o in e.

• If t is #ignore, no action is taken.

• If t is nil, then o must be nil (else matching fails).

• If t is a pair, then o must be a pair (else matching fails). The car of t is matched
to the car of o in e, and the cdr of t is matched to the cdr of o in e.

Rationale:
In R5RS Scheme, define can only be used in certain contexts. No attempt was

made in Kernel to imitate this context-sensitivity, as it was considered philosophically
incompatible with making the $define! combiner first-class.

Formal parameter trees were first developed for Kernel’s $vau operative (§4.10.3),
as a generalization of the formal parameter lists of Scheme’s lambda operative. Formal
parameter trees are permitted uniformly in every situation (G1 of §0.1.2) where a definiend
is given, i.e., where binding is specified.11 By empowering versatile interaction between
the separately versatile devices of pair-based data structures and first-class environments,

11For the natural-linguistically curious: The suffix -end in English mathematical terms such as
addend, dividend, etc., is a simple shortening of the Latin gerundive suffix -endum. From addere to
add, addendum thing to be added; from subtrahere to take away, subtrahendum thing to be taken
away; dividere to divide, dividendum thing to be divided. The preceding are all -ere Latin verbs,
though. For -ire verbs the gerundive suffix is -iendum; hence, from definire to define, definiendum
thing to be defined.

51

the uniform generalization of definiends expands the practical versatility of both. A case
in point —as well as a notable effect in its own right— is the convergence of consequences
by which uniform generalized definiends in Kernel eliminate the motivation for one of the
more semantically baroque features of many Lisps: so-called “multiple-value returns”.

The idea of multiple-value returns is to view the basic functional model of computa-
tion, which says that each function call returns a value, as a special case of the ostensibly
more general notion that a function call may return a sequence of values. The Kernel
design is inconsistent with the illusion that multiple-value returns are more general than
single-value returns. The inconsistency engages, in itself, several of the most primal se-
mantic differences between Kernel and Scheme. In Scheme, the syntax for passing value
x to captured continuation c is “(c x)”, in which the argument tree of applicative c is
actually (x) — a list of length one whose sole element is x . In the spirit of removing arbi-
trary restrictions, one naturally wonders what would happen if c were given an argument
list of some other length, and the answer is, essentially, “multiple-value return”. How-
ever, this Scheme scenario has another arbitrary restriction built into it, because Scheme
requires the argument tree of c to be a list. Since Kernel eliminates this restriction (ra-
tionale in §4.10.5), one must then ask what would happen if c were given an argument
tree that isn’t a list at all — and in that case, one is back to passing just one value, an
argument tree. Since one is passing a single value to c either way, the question of whether
to allow multiple-value returns is effectively reduced to whether the superficial syntax for
single-value return should be “(c x)”, which make single-value return a special case of
multiple-value return; or “(apply c x)”, which makes multiple-value return a special
case of single-value return. (See also the first rationale discussion in §7.2.5.)

Multiple-value return has long been part of Common Lisp ([Ste90, §7.10]), and was
more recently added to Scheme ([KeClRe98, Notes]). The usual practical argument
against multiple-value return is that there is no reason to complicate the functional model
with it, because the model already allows one to simply return, as a single value, a data
structure containing however many values are to be returned; but this argument has of-
ten failed to convince because, in most languages, it is syntactically clumsy to return a
data structure and then decompose it to get at the multiple values within. By the use
of Kernel’s generalized formal parameter trees, especially in conjunction with operatives
of the $let family (§5.10.1), one can bind variables directly to the parts of a structure
as it is returned, rather than returning it first and then decomposing it in a separate
operation. For example, one might call get-list-metrics (§5.7.1), which returns a list
of four values, by:

($let (((p n a c) (get-list-metrics 〈exp〉)))
〈body〉)

The $define! operative is most often used with a single symbol as definiend, but the
ability to use more general definiends at will sometimes considerably simplifies algorithmic
expressions, and is occasionally quite powerful; see for example the derivation of $letrec ,
§6.7.5.

The convenience of generalized formal parameter trees, while it allows car , cdr , cadr ,
etc. to be conveniently derived as library features (§§5.4.1, 5.4.2), also greatly reduces the
demand for them; see for example the derivations of operative $cond , §5.6.1.

52

The use of #ignore in formal parameter trees is partly a matter of uniformity (G1
of §0.1.2) with the 〈eformal〉 operand of $vau (first rationale discussion in §4.10.3); but
it also serves to retard accidents (G3 of §0.1.2), in two ways: it improves clarity of code
by explicitly acknowledging that certain information will not be used (see §§5.4.1, 5.4.2);
and, it eliminates an opportunity for careless errors by not providing a name with which
to access data that is not intended to be accessed.

The possibility of allowing duplicate formal parameter names was considered. The
matching algorithm would require that all instances of a given name match the same
object, thus guaranteeing that there is just one unambiguous choice of value for the binding
of the duplicated name. However, it was deemed more likely that duplicate names would
occur by accident. (Duplicates could be particularly badly behaved in the case of $vau ,
since they could not be treated as errors when the compound operative is constructed, and
so would instead manifest later as peculiar dynamic errors when the compound operative
is called.) Moreover, even if the duplicates did occur deliberately, they might easily be
overlooked when studying the code. It would therefore be both clearer and less error-
prone to require distinct symbol names and, when eq? -ness is needed, explicitly test for
it.

Cyclic formal parameter trees were also considered. Unlike duplicate names, cyclic
trees are unlikely to be accidental; the programmer would likely have to go to some
trouble to arrange such a thing, and the arrangements would likely be obvious to anyone
reading the program. However, while the fact of a cyclic formal parameter tree may be
evident, its meaning is not (as the author discovered in successive attempts to develop a
credible matching algorithm for cyclic formal parameter structures); and, barring some
kind of additional features introduced for specifying elaborate structural patterns, none of
the semantics considered for cyclic formal parameter structures were observed to provide
capabilities of much use to a programmer. So it was decided that clarity would be better
served by forbidding cycles and letting the programmer explicitly check for any elaborate
patterns.

Scheme provides syntactic sugar for defineing procedures, in which a compound
definiend is a template for combinations, with its operator being the simple definiend
〈symbol〉, and its operands the formal parameters of an implicit lambda expression. Thus,

(define (square x) (* x x))

⇒ (define square (lambda (x) (* x x)))

This syntactic sugar is, evidently, omitted from Kernel since it is incompatible with uni-
form support of formal parameter trees.

4.10 Combiners

There are two types of combiners in Kernel, operative and applicative. Both types
are encapsulated. Their roles in evaluation are described in §3.3.

All combiners are immutable. Two applicatives are eq? iff their underlying com-
biners are eq? . However, eq? -ness of operatives is only constrained by the general

53

rules for eq?, §4.2.1, which leave considerable leeway for variation between imple-
mentations. The only relevant constraints are, in fact, that eq? must be reflexive
symmetric and transitive, and that operatives cannot be eq? if they can ever exhibit
different behavior. The following expressions, for example, may evaluate to true or
false depending on the implementation.

(eq? ($vau (x) #ignore x) ($vau (x) #ignore x))

(eq? ($vau (x) #ignore x) ($vau (y) #ignore y))

Two combiners are equal? iff they are eq? (§§4.2.1, 4.3.1).
Library features associated with these types will be described in §§5.3, 5.5, 5.9,

and 6.2.

Rationale:
The stipulation that combiners are equal? iff eq? avoids a loophole in the general

rules for predicate equal? . The general rules do not require the predicate to distinguish
objects of the same type unless they can be otherwise observably distinguished by a
program that doesn’t perform any mutation (Rule 3 of §4.3.1); but the only way to
distinguish between two operatives is to call them, so under the general rules, if each
of several operatives would immediately cause mutation when called, predicate equal?

would be permitted to equate all of them.

4.10.1 operative?

(operative? . objects)

The primitive type predicate for type operative.

4.10.2 applicative?

(applicative? . objects)

The primitive type predicate for type applicative.

4.10.3 $vau

($vau 〈formals〉 〈eformal〉 〈expr〉)

〈formals〉 should be a formal parameter tree, as described for the $define! op-
erative, §4.9.1. 〈eformal〉 should be either a symbol or #ignore.

If 〈formals〉 does not have the correct form for a formal parameter tree, or if
〈eformal〉 is a symbol that also occurs in 〈formals〉, an error is signaled.

A vau expression evaluates to an operative; an operative created in this way is
said to be compound. The environment in which the vau expression was evaluated
is remembered as part of the compound operative, called the compound operative’s

54

static environment. When the compound operative is later called with an object
and an environment (as per §3.3), here called respectively the operand tree and the
dynamic environment,

1. A new, initially empty environment is created, with the static environment as
its parent. This will be called the local environment.

2. A stored copy of the formal parameter tree 〈formals〉 is matched in the local
environment to the operand tree, locally binding the symbols of 〈formals〉 to
the corresponding parts of the operand tree. (The matching process was de-
fined in §4.9.1, for operative $define! .) 〈eformal〉 is matched to the dynamic
environment; that is, if 〈eformal〉 is a symbol then that symbol is bound in the
local environment to the dynamic environment.

3. A stored copy of the expression 〈expr〉 is evaluated in the local environment as
a tail context (§3.10).

(On the copying of objects 〈formals〉 and 〈expr〉, see under Immutability, below.)
This operative will be generalized to allow an arbitrary list of expressions to be

evaluated sequentially in the local environment in §5.3.1.

Rationale:

Without the ability to ignore the dynamic environment, every compound combiner
application would create a local environment containing a reference to the dynamic en-
vironment of the combination. Consequently, the dynamic environment of a tail call
wouldn’t become garbage (in a straightforward implementation) until the call returned.
Proper tail recursion would thus be undermined.

The central constructor of compound combiners for Kernel was named with a classical
Greek letter in imitation of the traditional Lisp constructor lambda . The letter vau
was originally chosen because it is the immediate ancestor of the Roman letter f, as in
special form, and also in part because, in comparison to other classical Greek letters, it is
relatively unencumbered by competing uses. Oddly, it was not observed until long after
the Kernel nomenclature had stabilized that, since the $ prefix was originally a stylized
s as in special form, the entire name $vau of Kernel’s “constructor of special forms” is
itself a roundabout acronym for special form.

Immutability

When the $vau operative constructs a compound operative, it stores in that com-
pound operative references to

• The dynamic environment in which $vau was invoked, which becomes the static
environment of the compound operative, as explained above.

• 〈eformal〉.

55

• An immutable copy of the evaluation structure of 〈formals〉, as by applicative
copy-es-immutable (§4.7.2).

• An immutable copy of the evaluation structure of 〈expr〉.

Rationale:
Immutable copies of the evaluation structures of 〈formals〉 and 〈expr〉 freeze the se-

mantics of the compound operative when it is constructed. This provides stability —hence
predictability— of behavior, facilitating both effective software engineering practice, and
efficient implementation of calls to the compound operative after construction. Copying
will often incur no additional cost at runtime, because objects loaded from a source file
already have immutable evaluation structures. If an operative with mutable behavior is
desired, that is readily accomplished by means of bindings in its static environment.

Encapsulation of compound operatives

Because compound operatives are not a distinct type in Kernel, they are covered
by the encapsulation of type operative. In particular, an implementation of Ker-
nel cannot provide a feature that supports extracting the static environment of any
given compound operative,12 nor that supports determining whether or not a given
operative is compound.

Rationale:
It’s common practice to limit access to privileged information by exporting combiners

from a local environment (§6.8.2). The exported combiners then have exclusive access
to the information, because there is no way for anyone else to determine their static
environment. This limitation is broadly dual to the limitation on the environment data
type, noted in the rationale in §4.8, that a combiner cannot in general affect the parent
of its dynamic environment. (That is, encapsulation of operative protects the called from
the caller, while encapsulation of environment protects the caller from the called.)

For an example of the use of static environments to hide local state, see the rationale
in §6.8.2.

4.10.4 wrap

(wrap combiner)

The wrap applicative returns an applicative whose underlying combiner is com-
biner .

Rationale:
As the primitive constructor for type applicative, wrap has the virtue of orthogonal-

ity with the primitive constructor for type operative ($vau , §4.10.3); whereas the more
commonly used library constructor $lambda (§5.3.2) mixes concerns from both types.

12MIT Scheme provides a primitive procedure procedure-environment for extracting the static
environment of a compound procedure.

56

4.10.5 unwrap

(unwrap applicative)

If applicative is not an applicative, an error is signaled. Otherwise, the unwrap

applicative returns the underlying combiner of applicative.

Rationale:

It is almost possible to simulate the behavior of type applicative using only operatives,
thus bypassing wrap and unwrap altogether. Given an operative O, one would simulate
(wrap O) by constructing a new operative O′ that requires a list of operands, evaluates
the operands in its dynamic environment, and passes them on to O.

The flaw in the simulation arises when one then attempts to simulate (unwrap O′).
One could construct an operative O′′ that requires a list of operands, quotes them all,
and passes them on to O′. When O′ evaluates its operands, their evaluation removes the
quotes, and the operands passed from O′ to O are the same ones that were originally
passed in to O′′.

If O requires a list of operands, then O′′ has the same behavior as O, modulo eq? -
ness of the pairs in the operand list. However, operatives do not necessarily require a list
of operands. An applicative combination must have a list of operands, but that is only
because the operands must be evaluated singly to produce arguments; there is no reason
it should be inherent to the underlying operative, and Kernel maintains orthogonality be-
tween these two issues — evaluator handling of an applicative combination, and operative
handling of its operand tree. The difference between the two is evident in the following
example using the apply applicative (whose principal advantage is, as noted in §5.5.1,
that it overrides the usual rule for evaluating arguments).

(apply ($lambda x x) 2)

In Kernel, this expression evaluates to the value 2. Scheme disallows the expression (using
lambda instead of $lambda, of course); but to do so it must artificially constrain either
apply or the procedure type itself, neither of which has any inherent interest in the form
of the second argument to apply , diverting responsibility for the constraint away from
the rule for applicative combination evaluation, where the limitation really is inherent.
(Why would ($lambda x x), internally, care about the form of the value bound to x?)

5 Core library features (I)

This section describes some of the most basic library features of the core modules.
They are presented in an order that allows each to be derived from those that precede
it. The resulting order does not well respect the grouping of features into modules by
type. Once these features have been derived, the remaining majority of core library
features can and will be ordered by module in §6.

57

Rationale:
On the division of the language core into sections, see the rationale discussion at the

beginning of §4.

5.1 Control

5.1.1 $sequence

($sequence . 〈objects〉)

The $sequence operative evaluates the elements of the list 〈objects〉 in the dy-
namic environment, one at a time from left to right. If 〈objects〉 is a cyclic list,
element evaluation continues indefinitely, with elements in the cycle being evaluated
repeatedly. If 〈objects〉 is a nonempty finite list, its last element is evaluated as a tail
context. If 〈objects〉 is the empty list, the result is inert.

Rationale:
We prefer the name $sequence for this operative, as a forthright and precise descrip-

tion of what it does. The operative has had a variety of names in other Lisps. In standard
Scheme, it has been called begin since the R2RS ([Cl85]), before which it was called block

([SteSu78, SusSte75]); but these names have mnemonic value primarily in reference to the
Algol family of languages, from which we prefer to remain independent. In Common
Lisp ([Ste90]) it is (and in MacLisp it was) called progn, because it returns the result of
evaluating its nth operand, as opposed to, e.g., prog2 which also evaluates the operands
left-to-right but then returns the result from the 2nd operand. The mnemonic value of
progn is thus largely dependent on its belonging to a set of similar names; and Kernel,
which prefers to minimize its set of primitives, doesn’t include any of the other opera-
tives in the set. The name sequence was used in the first edition of the Wizard Book
([AbSu85]; but it was changed to begin in the second edition, [AbSu96], for compatibility
with standard Scheme).

Derivation

The following expression defines $sequence using only previously defined features
(which at this point means only core primitives).

($define! $sequence

((wrap ($vau ($seq2) #ignore

($seq2

($define! $aux

($vau (head . tail) env

($if (null? tail)

(eval head env)

($seq2

(eval head env)

58

(eval (cons $aux tail) env)))))

($vau body env

($if (null? body)

#inert

(eval (cons $aux body) env))))))

($vau (first second) env

((wrap ($vau #ignore #ignore (eval second env)))

(eval first env)))))

Operative $seq2 takes two operands and evaluates them in order from left to right,
by exploiting eager argument evaluation, which guarantees that the expression (eval

first env) in its body will be evaluated strictly prior to evaluation of (eval second

env). The capability to sequence two evaluations is then leveraged to create a recur-
sive operative $aux , by defining it locally using $define! and then calling it; and
$aux evaluates its arguments left-to-right, also by using $seq2 .

This derivation has the useful property that every instance of symbol $vau in it is
looked up at the time the derivation is evaluated. Consequently, when symbol $vau
is rebound by the derivation of compound $vau in §5.3.1, that derivation can use this
derived operative $sequence without causing infinite recursion.

For perspective, here is how the same derivation might be paraphrased if $let,
$letrec , $lambda , and apply (§§5.10.1, 6.7.5, 5.3.2, 5.5.1) were available.

($define! $sequence

($let (($seq2 ($vau (first second) env

(($lambda #ignore (eval second env))

(eval first env)))))

($letrec ((aux (wrap ($vau (head . tail) env

($if (null? tail)

(eval head env)

($seq2

(eval head env)

(apply aux tail env)))))))

($vau body env

($if (null? body)

#inert

(apply aux body env))))))

Note that the use of $letrec eliminates a mixture of sequencing with explicit call to
$define! (which are the two devices that will be used to define $letrec in §6.7.5).

Rationale:

Eager argument evaluation affords unencumbered sequencing: operative

59

($vau (first second) env

((wrap ($vau #ignore #ignore (eval second env)))

(eval first env)))

is reasonably construed to require only that the two arguments be evaluated sequentially
in the dynamic environment, and the second result be returned. Sequencing can also be
extracted from primitive operative $if, as via

($vau (first second) env

(eval ($if (null? (eval first env)) second second) env))

but this carries the additional conceptual burden of requesting an irrelevant test on the
result of the first operand evaluation.

Lazy argument evaluation was originally rejected for Scheme because when naively
implemented it undermines proper tail recursion [SusSte75, p. 40]. For Kernel, this overtly
practical consideration is still indirectly relevant, as naivety is preferred as a protection
against accidents (G3 of §0.1.2) in a language with side-effects.

5.2 Pairs and lists

5.2.1 list

(list . objects)

The list applicative returns objects .
The underlying operative of list returns its undifferentiated operand tree, re-

gardless of whether that tree is or is not a list. The behavior of the applicative is
therefore determined by the way the Kernel evaluator algorithm evaluates arguments;
see §3.9.

Rationale:
Specifically excluding the underlying operative from the list constraint guarantees

equivalence

(apply list x) ≡ x

(See also the rationale discussion for unwrap, §4.10.5).

Derivation

The following expression defines the list applicative, using only previously defined
features.

($define! list (wrap ($vau x #ignore x)))

Recall that mutability of constructed argument lists is guaranteed by the evaluator
algorithm (§3.3), thus providing the correct behavior for this derivation without need
for explicit use of cons.

60

The implementation would be even simpler if $lambda (§5.3.2) were available:

($define! list ($lambda x x))

5.2.2 list*

(list* . objects)

objects should be a finite nonempty list of arguments. The following equivalences
hold:

(list* arg1) ≡ arg1
(list* arg1 arg2 . args) ≡ (cons arg1 (list* arg2 . args))

For example,

(list* 1) =⇒ 1

(list* 1 2) =⇒ (1 . 2)

(list* 1 2 3) =⇒ (1 2 . 3)

(list* 1 2 3 ()) =⇒ (1 2 3)

Rationale:
It is fairly common —it happens several times in the library derivations in this report—

that one wants to construct a list by prepending several elements onto the front of an
existing list. We could write an expression such as

(append (list x y z) list)

This is a rather indirect way to express the intended operation, since we really have no
interest in constructing a list of the elements x, y, z. Alternatively, we could write

(cons x (cons y (cons z list)))

This is more direct, but harder to read; we have lost sight of the unity of the overall
operation we are performing.

R5RS Scheme provides a shorthand for such a construction in the special case that the
intended use of the new list is to apply a procedure to it. The shorthand uses combinations
of the form

(apply proc x y z list)

From a Kernel design perspective, this shorthand has two basic drawbacks. It complicates
the semantics of apply , thus lacks simplicity; while, as primary support for multiple-
prepend, it lacks generality. Kernel cleanly separates the operations of application and
multiple-prepend, by eliminating the extended form of apply from the R5RS and intro-
ducing instead the list* applicative.

list* requires a finite nonempty list of arguments because its behavior is defined
by the way it treats its last argument differently (per the rationale discussion in §3.9;
contrast applicative list, §5.2.1).

61

Derivation

The following expression defines the list* applicative, using only previously defined
features.

($define! list*

(wrap ($vau args #ignore

($sequence

($define! aux

(wrap ($vau ((head . tail)) #ignore

($if (null? tail)

head

(cons head (aux tail))))))

(aux args)))))

This could be implemented more cleanly if $lambda (§5.3.2) and apply (§5.5.1) were
available:

($define! list*

($lambda (head . tail)

($if (null? tail)

head

(cons head (apply list* tail)))))

Rationale:
Like many library derivations in the report, this one (written either way) isn’t robust,

because it fails to signal a type error; in this case, if the argument list is cyclic the
compound applicative will loop through it indefinitely (until the implementation runs out
of memory, or, perhaps, until somebody decides the program has hung and kills it).

5.3 Combiners

5.3.1 $vau

($vau 〈formals〉 〈eformal〉 . 〈objects〉)

This operative generalizes primitive operative $vau , §4.10.3, so that the con-
structed compound operative will evaluate a sequence of expressions in its local en-
vironment, rather than just one.
〈formals〉 and 〈eformal〉 should be as for primitive operative $vau . If 〈objects〉

has length exactly one, the behavior is identical to that of primitive $vau . Otherwise,
the expression

($vau 〈x〉 〈y〉 . 〈z〉)

is equivalent to

($vau 〈x〉 〈y〉 ($sequence . 〈z〉))

62

Derivation

The following expression defines the $vau library operative using only previously
defined features.

($define! $vau

((wrap ($vau ($vau) #ignore

($vau (formals eformal . body) env

(eval (list $vau formals eformal

(cons $sequence body))

env))))

$vau))

This could be implemented somewhat more cleanly if $let (§5.10.1) were available:

($define! $vau

($let (($vau $vau)) ; save the primitive

($vau (formals eformal . body) env

(eval (list $vau formals eformal

(cons $sequence body))

env))))

5.3.2 $lambda

($lambda 〈formals〉 . 〈objects〉)

〈formals〉 should be a formal parameter tree as described for operative $define!,
§4.9.1.

The expression

($lambda 〈formals〉 . 〈objects〉)

is equivalent to

(wrap ($vau 〈formals〉 #ignore . 〈objects〉))

Rationale:

In ordinary Kernel programming, applicatives that care about their dynamic environ-
ment are rare. Moreover, such applicatives pose a potential hazard to proper tail recursion
(as noted in §4.10.3); so, in the interest of making dangerous things difficult to do by acci-
dent (G3 of §0.1.2), $lambda constructs compound applicatives that ignore their dynamic
environments, encouraging the programmer to flag out the rare dynamic applicatives by
explicit use of wrap and $vau . See, for example, §6.7.2.

63

Derivation

The following expression defines the $lambda operative, using only previously defined
features.

($define! $lambda

($vau (formals . body) env

(wrap (eval (list* $vau formals #ignore body)

env))))

5.4 Pairs and lists

5.4.1 car, cdr

(car pair)
(cdr pair)

Both applicatives require pair to be a pair, else an error is signaled. They return,
respectively, the car and cdr of pair .

Rationale:

Feature names car/cdr are sometimes criticized on grounds of non-mnemonicity.
These names are among the most universally supported in the Lisp language family,
currently supported by all the Scheme versions (including R6RS) and Common Lisp.
The non-mnemonicity criticism is therefore somewhat dubious within the context of the
Lisp language family. Even the objection that they have no meaning outside the Lisp
community is somewhat undermined by their occasional occurrence, as common nouns,
in discussions of lists in non-Lisp languages. General ergonomic/psychological properties
of these names are placed in the broader context of linguistic vocabularies by the rationale
discussion in §1.3.7.

Specific possible alternative names typically have mnemonicity problems of their own.
For example, either first/rest or head/tail would be a conceptual type error, because
they suggest parts of a list — which may be the data type that pairs are most often
used to represent, but in fact the features described here are accessors for type pair, not
type list. At an opposite extreme, left/right are so general in meaning that they are
probably best left available for local use in specific situations.

Derivation

The following expressions define the car and cdr applicatives, using only previously
defined features.

($define! car ($lambda ((x . #ignore)) x))

($define! cdr ($lambda ((#ignore . x)) x))

64

5.4.2 caar, cadr, . . . cddddr

(caar pair)
· · ·
(cddddr pair)

These applicatives are compositions of car and cdr , with the a’s and d’s in the
same order as they would appear if all the individual car’s and cdr’s were written
out in prefix order. Arbitrary compositions up to four deep are provided. There are
twenty-eight of these applicatives in all.

Rationale:

These tools are an asset when one wants to explicitly access components of a tree
(here, any subtree in the first four generations below the root). They compactly and
straightforwardly articulate element selections that, if expressed as compositions of car

and cdr , would be quite bulky. The tools are therefore well worth including in the
language — but, interestingly enough, they are not often wanted, nor are car and cdr

themselves. Experience programming in Kernel suggests that Kernel formal parameter
trees (in various constructs, especially $let) are a more lucid idiom for many of the
situations where a Scheme programmer might resort to explicit tree selectors. See for
example the derivations of $cond , §5.6.1; for perspective, contrast the derivation of $let,
§5.10.1.

Derivation

There are a couple of obvious ways to define caar . . . cddddr using previously defined
features. The naive way would be by explicit compositions, as follows.

($define! caar ($lambda (x) (car (car x))))

($define! cadr ($lambda (x) (car (cdr x))))

· · ·
($define! cddddr ($lambda (x) (cdr (cdr (cdr (cdr x))))))

The more sophisticated alternative is to use deep formal parameter trees, as in the
derivations of car and cdr in §5.4.1:

($define! caar ($lambda (((x . #ignore) . #ignore)) x))

($define! cadr ($lambda ((#ignore x . #ignore)) x))

· · ·
($define! cddddr ($lambda

((#ignore #ignore #ignore #ignore . x)) x))

65

5.5 Combiners

5.5.1 apply

(apply applicative object environment)
(apply applicative object)

When the first syntax is used, applicative apply combines the underlying com-
biner of applicative with object in dynamic environment environment , as a tail con-
text. The expression

(apply applicative object environment)

is equivalent to

(eval (cons (unwrap applicative) object) environment)

The second syntax is just syntactic sugar; the expression

(apply applicative object)

is equivalent to

(apply applicative object (make-environment))

Derivation

The following expression defines apply using only previously defined features.

($define! apply

($lambda (appv arg . opt)

(eval (cons (unwrap appv) arg)

($if (null? opt)

(make-environment)

(car opt)))))

Rationale:
The apply applicative is designed to guarantee equivalence between the following two

expressions, for all choices of 〈operator〉 that do not cause an error when evaluating either
expression.

(〈operator〉 . 〈operands〉)

(apply 〈operator〉 (list . 〈operands〉) (get-current-environment))

In order for the first expression to evaluate without error, 〈operator〉 must evaluate to a
combiner. If it evaluates to an operative, in the first expression 〈operands〉 will be passed
to it unevaluated; but in the second expression, the operands are always evaluated. So
these two expressions cannot be equivalent unless the first argument to apply is an

66

applicative, and the behavior of apply is defined such that a type error in the first
argument must be signaled.

Although the above equivalence is a useful litmus test for the well-behavedness of
apply , the principle advantage of apply is that it provides a convenient way to override
the usual rule for evaluating arguments (§3.3) with an arbitrary alternative computation.
There is no similar advantage to an analogous operate applicative for use with operatives,
because the operands of an operative aren’t evaluated anyway, so there is no usual rule
to override. Looking at it from another angle, if there were an operate applicative, its
litmus test would be equivalence of expressions

(〈operator〉 . 〈operands〉)

(operate 〈operator〉 ($quote 〈operands〉) (get-current-environment))

(where $quote ≡ ($vau (x) #ignore x)), and the general behavior of operate would
be defined by stipulating that

(operate c t e)

is equivalent to

(eval (cons c t) e)

which in turn is equivalent to

(apply (wrap c) t e)

The general equivalence is true for all combiners c, and the natural behavior for operate
would make the litmus equivalence true for all combiners as well. So nothing about the
behavior of operate is specific to operatives, and it really ought to be called combine ;
but at that point, why bother with it at all? It isn’t the analog for operatives of apply

for applicatives, and its implementation is so simple that using it would only serve to
slightly obscure what is actually being done.

The use of an empty environment as the default for apply is motivated by accident
avoidance (G3 of §0.1.2). (On avoiding environment-capture, see also $provide!, §6.8.2.)

5.6 Control

5.6.1 $cond

($cond . 〈clauses〉)

〈clauses〉 should be a list of clause expressions, each of the form (〈test〉 . 〈body〉),
where 〈body〉 is a list of expressions.

The expression

($cond (〈test〉 . 〈body〉) . 〈clauses〉)

67

is equivalent to

($if 〈test〉 ($sequence . 〈body〉) ($cond . 〈clauses〉))

while the expression ($cond) is equivalent to #inert.

Rationale:

Because evaluation of test expressions may have side-effects, the policy on handling of
cyclic lists (rationale in §3.9) requires that, if 〈clauses〉 is a cyclic list, $cond will continue
looping through it indefinitely until some test evaluates to true. Note how this policy
harmonizes with the assumption that, if a cyclic list of clauses is passed to $cond , it was
done deliberately. The programmer would hardly go to such trouble to induce a dynamic
error; and if $cond were simply going to terminate after testing each clause once, that
could be achieved far more easily with a finite list of clauses. So the only reason to use a
cyclic list of clauses would be to induce indefinite looping.

In R5RS Scheme, the test on the last clause of a cond expression may be replaced
by the keyword else. This is something like a local second-class special form operator
(flouting G1a of §0.1.2); and, moreover, it would encourage the embedding of unevaluated
symbols in expressions constructed for evaluation, and thus (indirectly) the likelihood of
accidental bad hygiene (flouting G3 of §0.1.2); so Kernel omits it. The same effect can
be achieved at least as clearly, and more uniformly, by specifying #t as the 〈test〉 on the
last clause.

In the no-clause base case (which comes into play whenever 〈clauses〉 is acyclic and all
the 〈test〉’s evaluate to false), the Kernel analog of traditional Lisp (particularly, Scheme)
behavior is to return #inert; while the most straightforward alternative would be to
signal an error. When $cond is called for effect, the programmer would prefer the former;
when for value, the latter. If the language provided two separate operatives for those
cases, $cond-for-effect would always return #inert, regardless of whether any clause
is fired; while $cond-for-value would require at least one clause, and signal an error if
no clause is fired.

However, if $cond were split in two for effect/value, uniformity of design would suggest
splitting every standard operative that performs a 〈body〉, starting with $vau , and notably
including the entire $let family, bloating the language vocabulary. Returning #inert

for value is dangerous, and relatively easy to do if it’s the base case for $cond (hence,
disfavored by G3 of §0.1.2); but that base-case behavior does have the virtue of admitting
both for-effect and for-value use. So, until some major new insight recommends itself, we
prefer to follow the traditional behavior.

Derivation

The following expression defines the $cond operative, using only previously defined
features.

($define! $cond

($vau clauses env

68

($define! aux

($lambda ((test . body) . clauses)

($if (eval test env)

(apply (wrap $sequence) body env)

(apply (wrap $cond) clauses env))))

($if (null? clauses)

#inert

(apply aux clauses))))

The auxiliary applicative aux could be cleanly eliminated if $let (§5.10.1) were
available:

($define! $cond

($vau clauses env

($if (null? clauses)

#inert

($let ((((test . body) . clauses) clauses))

($if (eval test env)

(apply (wrap $sequence) body env)

(apply (wrap $cond) clauses env))))))

5.7 Pairs and lists

5.7.1 get-list-metrics

(get-list-metrics object)

By definition, an improper list is a data structure (per §3.9) whose objects are its
start together with all objects reachable from the start by following the cdr references
of pairs, and whose internal references are just the cdr references of its pairs. Every
object, of whatever type, is the start of an improper list. If the start is not a pair,
the improper list consists of just that object.

The acyclic prefix length of an improper list L is the number of pairs of L that a
naive traversal of L would visit only once. The cycle length of L is the number of pairs
of L that a naive traversal would visit repeatedly. Two improper lists are structurally
isomorphic (§3.9) iff they have the same acyclic prefix length and cycle length and, if
they are terminated by non-pair objects rather than by cycles, the non-pair objects
have the same type.

Applicative get-list-metrics constructs and returns a list of exact integers of
the form (p n a c), where p, n, a, and c are, respectively, the number of pairs in,
the number of nil objects in, the acyclic prefix length of, and the cycle length of, the
improper list starting with object . n is either 0 or 1, a + c = p, and n and c cannot

69

both be non-zero. If c = 0, the improper list is acyclic; if n = 1, the improper list is
a finite list; if n = c = 0, the improper list is not a list; if a = c = 0, object is not a
pair. (Lists are defined in §3.9.)

Rationale:

The classical Lisp idiom of cdr ing down a list is inadequate if the list may be cyclic
and must be processed in finite time. Often, the programmer can be insulated from the
danger of cycles by intermediate-level tools, such as map (§5.9.1), that handle cyclic lists
robustly (as in the derivation of combiner?, §6.2.1). get-list-metrics is a lower-level
tool for those contingencies that the intermediate-level tools don’t cover. It provides a
complete characterization of the shape of the list, in a format suitable for detailed analysis
(as in the derivation of length , §6.3.1, or, most elaborately, in the derivation of map).

Actually, most of the (by intent, very few) contingencies that escape the intermediate-
level tools will only need to bound their list traversal by the number of pairs in the list, and
won’t even care whether the list is cyclic. Some will care about the prefix/cycle breakdown,
though; and in the acyclic case, it’s trivial for get-list-metrics to determine whether
or not the terminator is nil, whereas fetching the same information later would require
more effort.

In theory, get-list-metrics doesn’t provide any capability that the programmer
wouldn’t be able to reproduce without it (i.e., it’s a library feature); but in practice, the
programmer caught without it would find it troublesome to reimplement from scratch
(easy to get wrong, thus contrary to the spirit of G3 of §0.1.2).

Derivation

The following expression defines the get-list-metrics applicative, using previously
defined features, and number primitives (§12).

($define! get-list-metrics

($lambda (ls)

($define! aux

($lambda (kth k nth n)

($if (>=? k n)

($if (pair? (cdr nth))

(aux ls 0 (cdr nth) (+ n 1))

(list (+ n 1)

($if (null? (cdr nth)) 1 0)

(+ n 1)

0))

($if (eq? kth nth)

(list n 0 k (- n k))

(aux (cdr kth) (+ k 1) nth n)))))

70

($if (pair? ls)

(aux ls 0 ls 0)

(list 0 ($if (null? ls) 1 0) 0 0))))

Rationale:

For expository purposes, the above derivation has two merits: it’s (relatively) simple,
and it works. Unfortunately, it also takes quadratic time in the number of pairs in the
list, because it compares each pair to all of its predecessors before moving on to the next
pair.

A linear-time (but also more complicated) alternative is to compare the nth pair only
to the (2⌊log2

(n−1)⌋)th element. (Thus, element 2 is compared to element 1, elements 3–4
to element 2, 5–8 to 4, etc.) Any cycle will eventually be detected along with its exact
length, though perhaps not until after the traversal has been looping through it for a
while; and we can then go back to the beginning of the list and work forward, knowing
the cycle length, to find the point where the cycle is first entered.

Other kinds of cycle-handling traversal may achieve asymptotic speed-up by tem-
porarily marking visited objects, but list traversal doesn’t need marking to achieve linear
time because the structure being traversed is innately linear. The non-marking algorithm
outlined above might even be faster than marking, since cache considerations can make
writing memory much more expensive than reading it.

5.7.2 list-tail

(list-tail object integer)

integer should be exact and non-negative. The list-tail applicative follows
integer cdr references starting from object . Thus, object must be the start of an
improper list containing at least integer pairs. The following equivalences hold:

(list-tail object 0) ≡ object
(list-tail object (+ k 1)) ≡ (list-tail (cdr object) k)

Derivation

The following expression defines the list-tail applicative, using previously defined
features, and number primitives (§12).

($define! list-tail

($lambda (ls k)

($if (>? k 0)

(list-tail (cdr ls) (- k 1))

ls)))

71

5.8 Pair mutation (optional)

5.8.1 encycle!

(encycle! object integer1 integer2)

integer1 and integer2 should be exact and non-negative. The improper list start-
ing at object must contain at least integer1 + integer2 pairs.

If integer2 = 0, the applicative does nothing. If integer2 > 0, the applicative
mutates the improper list starting at object to have acyclic prefix length integer1 and
cycle length integer2 , by setting the cdr of the (integer1 + integer2)th pair in the list
to refer to the (integer1 + 1)th pair in the list.

The result returned by encycle! is inert.
Cf. get-list-metrics, §5.7.1.

Rationale:
This tool complements get-list-metrics . The general idiom for using them is to

measure the input with get-list-metrics, perform one’s operations (whatever they are)
robustly by counting pairs rather than expecting a null terminator, assemble an acyclic
list of output elements, and encycle the output list just before returning it. If it were really
that simple, of course, the client programmer would be using map, §5.9.1, instead of fussing
with list metrics. encycle! isn’t provided to the programmer to manage an anticipated
situation; it’s provided in the hope that, by naturally complementing get-list-metrics,
it will help to manage unanticipated situations.

Derivation

The following expression defines the encycle! applicative, using previously defined
features, and number primitives (§12).

($define! encycle!

($lambda (ls k1 k2)

($if (>? k2 0)

(set-cdr! (list-tail ls (+ k1 k2 -1))

(list-tail ls k1))

#inert)))

5.9 Combiners

5.9.1 map

(map applicative . lists)

lists must be a nonempty list of lists; if there are two or more, they must all have
the same length (§6.3.1). If lists is empty, or if all of its elements are not lists of the
same length, an error is signaled.

72

The map applicative applies applicative element-wise to the elements of the lists
in lists (i.e., applies it to a list of the first elements of the lists, to a list of the second
elements of the lists, etc.), using the dynamic environment from which map was called,
and returns a list of the results, in order. The applications may be performed in any
order, as long as their results occur in the resultant list in the order of their arguments
in the original lists.

If lists is a cyclic list, each argument list to which applicative is applied is struc-
turally isomorphic to lists . If any of the elements of lists is a cyclic list, they all
must be, or they wouldn’t all have the same length. Let a1 . . . an be their acyclic
prefix lengths, and c1 . . . cn be their cycle lengths. The acyclic prefix length a of the
resultant list will be the maximum of the ak, while the cycle length c of the resultant
list will be the least common multiple of the ck. In the construction of the result,
applicative is called exactly a + c times.

Cf. applicative for-each , §6.9.1.

Rationale:
The map applicative is designed to guarantee equivalence between the following two

expressions, for n > 0 and m ≥ 0.

(map c (list a1,1 . . . a1,m)
...

(list an,1 . . . an,m))

≡
(list (c a1,1 . . . an,1)

...

(c a1,m . . . an,m))

This equivalence implies that the first argument to map must be an applicative, never
an operative, by the same reasoning as for apply , §5.5.1. It also requires map to use
its own dynamic environment for the applications it performs, since that is the dynamic
environment of the combinations in the second half of the equivalence.

The decision that map will not work with an operative does not cause any practical
difficulty because, in the unusual but certainly conceivable event that the programmer
wants to combine an operative element-wise with the elements of one or more lists, this
effect is readily achieved by simply wrapping the operative, thus:

(map (wrap operative) . lists)

The treatment of dynamic environments differs from that of apply . Both behaviors
are based on the governing principle of accident avoidance (G3 of §0.1.2); in differentiating
the two, the decisive factor was whether there would be a danger of contradicting the
programmer’s expectation. map is conceptually a way of constructing a series of ordinary
applicative combinations, and ordinary applicative combinations can access their dynamic
environments. apply , on the other hand, is principally a vehicle for calling applicatives
abnormally, overriding the usual rule for argument evaluation. Hence, the programmer

73

who uses apply does not have an expectation of normalcy; in fact, in derivations in this
report, apply is rarely called without specifying its optional environment argument. The
default behavior for apply is therefore treated as a conscious decision, by definition not
an accident, and is chosen for safety on that basis. (See the rationale for apply .)

When the list arguments are cyclic, the metrics (acyclic prefix length, cycle length)
of the result list are chosen so that the result list will have the smallest number of pairs
that will produce the correct infinite sequence of application results — if the mapped
applicative is well-behaved, always producing the same result when applied to the same
arguments.

As a simple example of the treatment of cyclic list metrics, consider mapping applica-
tive + onto the following two cyclic lists.

($define! x (list 1 2 3))

(append! x (cdr x))

($define! y (list 1 2 3))

(append! y (cddr y))

x q

1

q q

2

q q

3

q y q

1

q q

2

q q

3

q

($define! z (map + x y))

z q

2

q q

4

q q

6

q q

5

q

The infinite sequences represented by these lists are:

x : (1 2 3 2 3 2 3 ...)

y : (1 2 3 3 3 3 3 ...)

z : (2 4 6 5 6 5 6 ...)

If map were to allow its list arguments to have different lengths, there are a bewildering
variety of ways it might handle that case. Quite a lot of them were considered for Kernel,
starting with those that preserve the formulae developed for cyclic lists: maximum of
acyclic prefix lengths, least common multiple of cycle lengths. However, each approach was
found to have anomalies in its behavior, and eliminating one anomaly usually produced
several others. It was finally decided that, since the behavior of map is really well-defined
only when the list arguments are congruent, generalizations beyond that behavior should
be viewed with extreme skepticism. The handling of uniformly cyclic list arguments is
not too much of a stretch, since the result list can still preserve the sequence of results in
the unbounded parallel traversal of the list arguments, as noted above; but when one of
the lists runs out of elements while another does not, any behavior other than signaling
an error is potentially unexpected, hence facilitates accidents (G3 of §0.1.2).

74

Having decided to disallow differently lengthed list arguments, we have the invariant
that the length of the result list is the length of each of the list arguments; but then,
if no list arguments are provided, there is no way to choose a result length that will be
compatible with all nontrivial cases: the result length would have to be simultaneously
equal to every nonnegative integer, and to positive infinity as well. Hence the requirement
that map signal an error when given fewer than two arguments.

Derivation

The following expression defines map using previously defined features, and number
features (§12; not all are primitive, but there is no circular dependency). Note that
this is, easily, the most complicated derivation in the language core.

($define! map

(wrap ($vau (appv . lss) env

($define! acc

($lambda (input (k1 k2) base-result head tail sum)

($define! aux

($lambda (input count)

($if (=? count 0)

base-result

(sum (head input)

(aux (tail input) (- count 1))))))

(aux input (+ k1 k2))))

($define! enlist

($lambda (input ms head tail)

($define! result (acc input ms () head tail cons))

(apply encycle! (list* result ms))

result))

($define! mss (cddr (get-list-metrics lss)))

($define! cars ($lambda (lss) (enlist lss mss caar cdr)))

($define! cdrs ($lambda (lss) (enlist lss mss cdar cdr)))

($define! result-metrics

(acc lss mss (cddr (get-list-metrics (car lss)))

($lambda (lss) (cddr (get-list-metrics (car lss))))

cdr

($lambda ((j1 j2) (k1 k2))

(list (max j1 k1)

75

($cond ((=? j2 0) k2)

((=? k2 0) j2)

(#t (lcm j2 k2)))))))

(enlist lss

result-metrics

($lambda (lss) (apply appv (cars lss) env))

cdrs))))

This applicative cannot be constructed using $lambda , because it needs to access its
dynamic environment.

The required error signaling has been arranged without explicit use of error con-
tinuations by tweaking the algorithm for computing the cycle length of the result, so
that map is certain to run off the end of some list unless they are all the same length.
If two finite lists have different lengths, the acyclic prefix length will be at least the
greater of them; and if one list is finite while another is cyclic, the cycle length will
be non-zero and map will try to build a nontrivial cycle following an acyclic prefix at
least as long as the finite list (due to the way lcm , §12.5.14, treats zeros).

For readers with a passing familiarity with category theory, it may be of interest to
note that auxiliary applicative acc is approximately the counit of the usual adjunction
from Set to Mon — of which map is, approximately, the unit.

Rationale:
There are two reasons to include a library feature in this section (§5). The first reason

is that a number of other library features scattered through the core modules cannot
readily be derived without it, so that trying to fit the feature into §6 would interfere
with the modular presentation of that section. The second reason is that it facilitates
the derivation of another feature with a prior reason to be included in this section. (For
purposes of inclusion we treat the entire family of applicatives caar . . . cddddr , §5.4.2, as
a single feature.)

map is the focal point for both of these reasons for inclusion. Every other feature
in this section contributes, directly or indirectly, to its derivation — except for $let ,
§5.10.1, which would have facilitated a number of the earlier features if only it had been
available. $let is probably more ubiquitous than any other feature in this section except
$lambda ; it is left to the end of the section only because, owing to the way it handles
cyclic binding lists, its derivation would be far more disarranged by not being able to use
map, than earlier derivations are by not being able to use $let . But once map has been
implemented, everything else is “easy”.

5.10 Environments

5.10.1 $let

($let 〈bindings〉 . 〈objects〉)

76

〈bindings〉 should be a finite list of formal-parameter-tree/expression pairings,
each of the form (〈formals〉 〈expression〉), where each 〈formals〉 is a formal parameter
tree as described for the $define! operative, §4.9.1, and no symbol occurs in more
than one of the 〈formals〉.

The expression

($let ((〈form1〉 〈exp1〉) ... (〈formn〉 〈expn〉)) . 〈objects〉)

is equivalent to

(($lambda (〈form1〉 ... 〈formn〉) . 〈objects〉) 〈exp1〉 ... 〈expn〉)

Thus, the 〈expk〉 are first evaluated in the dynamic environment, in any order;
then a child environment e of the dynamic environment is created, with the 〈formk〉
matched in e to the results of the evaluations of the 〈expk〉; and finally the subexpres-
sions of 〈objects〉 are evaluated in e from left to right, with the last (if any) evaluated
as a tail context, or if 〈objects〉 is empty the result is inert.

Rationale:
Because the 〈expk〉 are evaluated in the dynamic environment of the call to $let but

matched in a child of that environment, the 〈expk〉 can’t see each other’s bindings; and
if any 〈expk〉 is a $vau or $lambda expression, the resulting combiner can’t be recursive
because it can’t see its own binding.

These constraints may sometimes be intended, or at least unproblematic. For occa-
sions when they are not wanted, three variants are provided: $let* (§6.7.4), $letrec

(§6.7.5), and $letrec* (§6.7.6). The * variants evaluate the 〈expk〉 from left to right,
and allow each to see the results of its predecessors. The rec variants support recursive
combiners by matching each 〈formk〉 in the same environment where 〈expk〉 was evaluated.

All operatives in the $let family consider it an error for 〈bindings〉 to be a cyclic list.
In all cases, this is because the behavior of the operative is undefined for cyclic 〈bindings〉
(per the general policy on handling cyclic lists, in the rationale discussion for §3.9); but
the undefinedness has two different sources. In the unordered variants (principally $let

and $letrec), the structure of 〈bindings〉 is mapped onto a single formal parameter tree,
so the acyclicity constraint on 〈bindings〉 follows from the acyclicity constraint on formal
parameter trees (§4.9.1). In the ordered variants ($let* and $letrec*), the ordered
sequence of bindings is followed by expression sequence 〈objects〉, and their chronological
concatenation is undefined when the former sequence is cyclic by the same reasoning that
forbids cyclic non-final arguments to applicative append (§6.3.3).

Derivation

The following expression defines $let using only previously defined features.

($define! $let

($vau (bindings . body) env

(eval (cons (list* $lambda (map car bindings) body)

77

(map cadr bindings))

env)))

Rationale:

Note that coping with cyclic binding lists is hidden seamlessly within the calls to
map. This is why $let is withheld to the end of the section, even though it would have
simplified several of the earlier derivations (see, for example, the alternative derivation
of $cond , §5.6.1): without map, $let would have to implement a subset of the same
functionality itself — which would be appallingly difficult unless one used the same tools
as map itself, in which case $let would arrive too late to be used for anything else except
map itself.

6 Core library features (II)

This section describes the remaining library features of the core modules, after those
few library features that were isolated in §5. The features in this section are arranged
by module.

Rationale:

On the division of the language core into sections, see the rationale discussion at the
beginning of §4.

6.1 Booleans

6.1.1 not?

(not? boolean)

Applicative not? is a predicate that returns the logical negation of its argument.

Derivation

The following expression defines the not? applicative, using only previously defined
features.

($define! not? ($lambda (x) ($if x #f #t)))

6.1.2 and?

(and? . booleans)

Applicative and? is a predicate that returns true unless one or more of its argu-
ments are false.

78

Rationale:
Because and? doesn’t process its arguments in any particular order, it must terminate

in finite time even if arguments is cyclic (per the rationale discussion in §3.9).
Returning true on zero arguments is deemed the most uniform, hence least error-

prone, behavior for that case. One measure of its uniformity is that it allows the entire
behavior of the applicative, including the zero-argument case, to be captured by a very
simple statement (above). Another is that that it preserves the following equivalence:

(and? h . t) ≡ (and? h (and? . t))

Derivation

The following expression defines the and? applicative, using only previously defined
features.

($define! and?

($lambda x

($define! aux

($lambda (x k)

($cond ((<=? k 0) #t)

((car x) (aux (cdr x) (- k 1)))

(#t #f))))

(aux x (car (get-list-metrics x)))))

6.1.3 or?

(or? . booleans)

Applicative or? is a predicate that returns false unless one or more of its argu-
ments are true.

Rationale:
See the rationale for and?, §6.1.2. The equivalence preserved here is:

(or? h . t) ≡ (or? h (or? . t))

Derivation

The following expression defines the or? applicative, using only previously defined
features.

($define! or?

($lambda x

(not? (apply and? (map not? x)))))

79

6.1.4 $and?

($and? . 〈objects〉)

The $and? operative performs a “short-circuit and” of its operands: It evaluates
them from left to right, until either an operand evaluates to false, or the end of the
list is reached. If the end of the list is reached (which is immediate if 〈objects〉 is
nil), the operative returns true. If an operand evaluates to false, no further operand
evaluations are performed, and the operative returns false. If 〈objects〉 is acyclic, and
the last operand is evaluated, it is evaluated as a tail context (§3.10). If 〈objects〉 is
cyclic, an unbounded number of operand evaluations may be performed.

If any of the operands is evaluated to a non-boolean value, it is an error; and if
the operand evaluated to a non-boolean is not the last operand, the error is signaled.

Cf. the and? applicative, §6.1.2.

Rationale:
Because the behavior of $and? is still definable when 〈objects〉 is cyclic, and the

operands are processed in a fixed order, and the processing of any operand may have side-
effects, $and? continues processing operands in a cyclic list indefinitely (per the rationale
discussion in §3.9).

When a compound computation has a well-defined last unbounded step, and the result
of the last step is to be the result of the larger computation, it would be counterintuitive
(hence error-prone) for that last step not to be a tail context. In the case of $and?, the
results of all but the last operand evaluation are used internally as booleans, and we require
type errors on these values to be signaled, to protect against degradation of the role of
type boolean (on which, see the rationale in §3.5). A final operand evaluation, performed
as a tail context, is also expected to return a boolean, that expectation being the meaning
of the predicate suffix on the name “$and?” of the operative. However, we do not require
implementations to signal a dynamic type error on the result of a tail context. If error
signaling were sufficiently important to the design to require the error to be signaled
(which it isn’t, here), we would lift the tail-context requirement; although a dynamic
boolean type check certainly can be imposed on a tail context without compromising its
tail-context status, doing so is a burden that we would not lightly impose on non-robust
implementations of Kernel.

Derivation

The following expression defines the $and? operative, using only previously defined
features.

($define! $and?

($vau x e

($cond ((null? x) #t)

((null? (cdr x)) (eval (car x) e)) ; tail context

((eval (car x) e) (apply (wrap $and?) (cdr x) e))

80

(#t #f))))

6.1.5 $or?

($or? . 〈objects〉)

The $or? operative performs a “short-circuit or” of its operands: It evaluates
them from left to right, until either an operand evaluates to true, or the end of the
operand list is reached. If the end of the operand list is reached (which is immediate
if 〈objects〉 is nil), the operative returns false. If an operand evaluates to true, no
further operand evaluations are performed, and the operative return true. If 〈objects〉
is acyclic, and the last operand is evaluated, it is evaluated as a tail context (§3.10). If
〈objects〉 is cyclic, an unbounded number of operand evaluations may be performed.

If any of the operands is evaluated to a non-boolean value, it is an error; and if
the operand is not the last operand, the error is signaled.

Cf. the or? applicative, §6.1.3.

Rationale:

See the rationale discussion for $and?, §6.1.4.

Derivation

The following expression defines the $or? operative, using only previously defined
features.

($define! $or?

($vau x e

($cond ((null? x) #f)

((null? (cdr x)) (eval (car x) e)) ; tail context

((eval (car x) e) #t)

(#t (apply (wrap $or?) (cdr x) e)))))

6.2 Combiners

6.2.1 combiner?

(combiner? . objects)

This is the type predicate for type combiner. Returns true iff all of its arguments
are combiners, i.e., of type operative or applicative.

Rationale:

See the rationale for applicative and? (§6.1.2).

81

Derivation

The following expression defines the combiner? applicative using only previously
defined features.

($define! combiner?

($lambda x

(apply and? (map ($lambda (x)

(or? (applicative? x)

(operative? x)))

x))))

6.3 Pairs and lists

6.3.1 length

(length object)

Applicative length returns the (exact) improper-list length of object . (Re im-
proper lists, see §5.7.1.) That is, it returns the number of consecutive cdr references
that can be followed starting from object . If object is not a pair, it returns zero; if
object is a cyclic list, it returns positive infinity.

Derivation

The following expression defines the length applicative, using previously defined
features, and number primitives (§12).

($define! length

($lambda (object)

($let (((#ignore #ignore a c) (get-list-metrics object)))

($if (>? c 0)

#e+infinity

a))))

6.3.2 list-ref

(list-ref list integer)

integer should be exact and non-negative. The list-ref applicative returns the
integer th element of list , zero-indexed.

82

Derivation

The following expression defines the list-ref applicative, using previously defined
features.

($define! list-ref

($lambda (ls k)

(car (list-tail ls k))))

6.3.3 append

(append . lists)

Here, all the elements of lists except the last element (if any) must be acyclic
lists. The append applicative returns a freshly allocated list of the elements of all
the specified lists, in order, except that if there is a last specified element of lists , it
is not copied, but is simply referenced by the cdr of the preceding pair (if any) in the
resultant list.

If lists is cyclic, the cycle of the result list consists of just the elements of the lists
specified in the cycle in lists . In this case, the acyclic prefix length of the result is
the sum of the lengths of the lists specified in the acyclic prefix of lists , and the cycle
length of the result is the sum of the lengths of the lists specified in the cycle of lists .

The following equivalences hold.

(append) ≡ ()

(append h) ≡ h
(append () h . t) ≡ (append h . t)

(append (cons a b) h . t) ≡ (cons a (append b h . t))

Rationale:
The behavior of append on acyclic lists generalizes at least three mathematically

simple behaviors. If append required its last argument to be an acyclic list, and there
were no mutation in the language (so that equal? pairs were effectively identical), the
acyclic behavior would be fully defined by the zero-argument base case and a simplified
recursive step. If append required its last argument to be an acyclic list, and copied the
pairs of that list as well as those of preceding argument lists, its acyclic behavior would
again be defined by the zero-argument base case and simplified recursive step. If append
required at least one argument, then the special treatment of the last argument would
seem less noteworthy since it would simply be the (sole) base case. The acyclic behavior
provided here supports all of these as special cases, but also supports the sometimes-useful
construction of improper lists (see also list*, §5.2.2). For uniform acyclic behavior with
respect to mutation, one can explicitly add a nil final argument; an expression

(append l1 · · · ln ())

is guaranteed to signal an error if any lk is not an acyclic list, and returns an acyclic list
with none of the same pairs as the original lists lk.

83

Derivation

The following expression defines the append applicative, using only previously defined
features.

($define! append

($lambda lss

($define! set-last!

($lambda (ls tail) ; set cdr of last pair of ls to tail

($let ((next (cdr ls)))

($if (pair? next)

(set-last! next tail)

(set-cdr! ls tail)))))

($define! aux2

($lambda (ls tail) ; prepend ls onto tail

($if (null? ls)

tail

(cons (car ls) (aux2 (cdr ls) tail)))))

($define! aux1

($lambda (k lss tail) ; prepend k elmts of lss onto tail

($if (>? k 0)

(aux2 (car lss)

(aux1 (- k 1) (cdr lss) tail))

tail)))

($if (null? lss)

()

($let (((#ignore #ignore a c)

(get-list-metrics lss)))

($if (>? c 0)

($let ((cycle (aux1 c (list-tail lss a) ())))

($cond ((pair? cycle)

(set-last! cycle cycle)))

(aux1 a lss cycle))

(aux1 (- a 1) lss (list-ref lss (- a 1))))))))

Rationale:

Helper applicative aux2 really ought to signal an error when its first argument is a
cyclic list, because that could happen by accident; so, even though we don’t usually do
non-required error signaling in our expository library derivations, we would be tempted

84

to do so here, if not that it would depend on details of error handling that haven’t been
finalized yet in this revision of the report.

6.3.4 list-neighbors

(list-neighbors list)

The list-neighbors applicative constructs and returns a list of all the consec-
utive sublists of list of length 2, in order. If list is nil, the result is nil. If list is
non-nil, the length of the result is one less than the length of list . If list is cyclic,
the result is structurally isomorphic to it (i.e., has the same acyclic prefix length and
cycle length).

For example,

(list-neighbors (list 1 2 3 4)) =⇒ ((1 2) (2 3) (3 4))

Rationale:
This applicative is one of Kernel’s intermediate-level tools for handling potentially

cyclic lists (as opposed to the lower-level tools that use explicit list metrics). It addresses
list handling that involves considering consecutive elements two at a time (whereas most
other intermediate-level tools act element-wise, e.g. map, §5.9.1). For examples of its use,
see the derivations of library applicatives append!, §6.4.1, and eq?, §6.5.1.

Some consideration was given to providing a more general tool list-tails that would
return a list of nonempty suffixes of its argument. However, thus far it appears that most
cases addressable by list-tails are more cleanly addressed by list-neighbors; so
list-neighbors is included here, while list-tails is omitted pending a stronger case
for its utility.

Derivation

The following expression defines the list-neighbors applicative, using only previ-
ously defined features.

($define! list-neighbors

($lambda (ls)

($define! aux

($lambda (ls n) ; get n sets of neighbors from ls

($if (>? n 0)

(cons (list (car ls) (cadr ls))

(aux (cdr ls) (- n 1)))

())))

($let (((p #ignore a c) (get-list-metrics ls)))

($if (=? c 0)

85

(aux ls (- a 1))

($let ((ls (aux ls p)))

(encycle! ls a c)

ls)))))

6.3.5 filter

(filter applicative list)

Applicative filter passes each of the elements of list as an argument to ap-
plicative, one at a time in no particular order, using a fresh empty environment for
each call. The result of each call to applicative must be boolean, otherwise an error
is signaled. filter constructs and returns a list of all elements of list on which
applicative returned true, in the same order as in list .

applicative is called exactly as many times as there are pairs in list . The resultant
list has a cycle containing exactly those elements accepted by applicative that were
in the cycle of list ; if there were no such elements, the result is acyclic.

Rationale:
Because filter doesn’t process the list elements in any particular order, it must

terminate in finite time even if list is cyclic (per the rationale discussion in §3.9; the
possibility that applicative could have side-effects would only matter to the policy if the
elements were to be processed in order).

The two paradigmatic examples of a standard applicative that takes an applicative
argument are apply and map (§§5.5.1, 5.9.1). apply allows the caller to specify an
environment to be used when calling its applicative argument; and this makes sense for
apply , because apply’s purpose is to facilitate general calls to its argument; but the
purpose of filter is list processing, so such a general interface would be tangential. map
calls its applicative argument using the dynamic environment of the call to map, because
that behavior is followed by the code equivalence that map seeks to preserve; but filter
has no comparable equivalence to preserve. So instead, filter follows the simple and
hygienic precedent of the default behavior of apply , by using a fresh empty environment
for each argument call.

For examples of the use of applicative filter in robust list-processing without explicit
use of list metrics, see the derivations of library applicatives assoc , §6.3.6, and append!,
§6.4.1.

Derivation

The following expression defines the filter applicative, using only previously defined
features.

($define! filter

($lambda (accept? ls)

(apply append

86

(map ($lambda (x)

($if (apply accept? (list x))

(list x)

()))

ls))))

Note the use of apply when calling argument accept?, which provides the call with
its expected fresh empty environment.

6.3.6 assoc

(assoc object pairs)

Applicative assoc returns the first element of pairs whose car is equal? to object .
If there is no such element in pairs, nil is returned.

Cf. assq (§6.4.3).

Derivation

The following expression defines the assoc applicative, using only previously defined
features.

($define! assoc

($lambda (object alist)

($let ((alist (filter ($lambda (record)

(equal? object (car record)))

alist)))

($if (null? alist)

()

(car alist)))))

Rationale:

This isn’t a particularly efficient way to implement assoc , but it is interesting in
that it emphasizes that assoc doesn’t depend on processing the list in any particular
order. Because of this order-independence, it must handle cyclic lists in finite time (per
the rationale discussion in §3.9).

The choice of what value assoc should return on failure touches on a number of
deep issues in the language design. We first consider why several alternatives would be
unsuitable.

In most Lisp languages, the value returned by assoc to indicate failure is determined
by the language policy for handling conditional test values. In those languages, arbitrary
objects can be conditional test values, and all but one or a few designated values count

87

as true. By selecting a designated-false value as the value returned by assoc on failure,
one can write

(let ((result (assoc key alist)))

(if result

〈consequent〉
〈alternative〉))

and have 〈consequent〉 executed if key is found in alist, 〈alternative〉 if it isn’t found.
Accordingly, assoc in Scheme returns #f on failure ([KeClRe98]), while in more tradi-
tional Lisps (as [Pi83]) it returns nil. However, Kernel forbids non-boolean values for
conditional tests (§3.5 rationale). The above expression in Kernel (replacing let/if with
$let/$if) would cause a type error if key is found in alist ; and so, in practice, it
is desirable that the failure value of Kernel assoc should be non-boolean, so that the
dynamic type error will occur consistently rather than intermittently.

The failure value of Kernel assoc signifies, broadly speaking, nothing, that being what
was found. It would be a conceptual type error to use #inert (§4.5) for this purpose,
since #inert signifies no information, and thus ought not to be used to convey positive
information (namely, the definite fact that nothing was found).

One might introduce a new encapsulated object for the purpose, similarly to #ignore

and #inert (§§4.8, 4.5) — perhaps #search-failure, or more generally, #failure. This,
however, would set an unfortunate precedent. The abstract domain of return codes can
never be fully represented by one, or even a finite fixed set, of specialized objects (re full
representation of abstract domains, see Appendix B); and an infinite primitive type of
return codes would be a major, probably elaborate, addition to the language. It could
therefore only be admitted after a very compelling case had been made for it; and it seems
unlikely that such a case could be made, since there are already two significant facilities
in the language that address much the same purpose: the exception handling supported
by Kernel’s continuation type (§7), and the data structure parsing supported by Kernel’s
generalized matching algorithm (§4.9.1).

Generalized matching bears on the general problem of return codes by effectively
supporting simultaneous return of multiple values. If a combiner always returns a data
structure of a certain shape, the caller can immediately decompose the returned structure
into its constituent parts. In the case of assoc , one wants to return either one or two
values: always, a boolean indicating whether object was found in alist ; and on success,
also the alist element that was found. It’s undesirable to return a second value on failure,
since that would make it easier to accidently use the second value as if it had been found.
Let’s call the combiner that behaves this way assoc*. One could define it by:

($define! assoc*

($lambda (object alist)

($let ((alist (filter ($lambda (record)

(equal? object (car record)))

alist)))

($if (null? alist)

(cons #f ())

(cons #t (car alist))))))

88

To use assoc*, one could then write

($let (((found . result) (assoc* key alist)))

($if found

〈consequent〉
〈alternative〉))

Here, formal parameter tree (found . result) is locally matched to the data structure
returned by assoc*, binding found to #f or #t, and result to () or the matching element
of alist . An optimizing Kernel compiler may recognize that the returned data structure
cannot actually be accessed, and therefore needn’t actually be constructed as long as its
two parts are properly exported from assoc* .

The entire technique works because of the special status that the matching algorithm
awards to the list-constituent types, pair and null. The special status of type null, in
particular, is the reason why it is natural to substitute nil for result on failure, in the
absence of a useful value.

However, the data structure returned by assoc* is gratuitously complicated, forcing
the caller to use either a compound definiend to bind two formal parameters as in the
above $let, or explicit accessors to extract the desired parts of the structure. Either
device would be perfectly acceptable with cause; but here, neither is warranted, because
the boolean car of the structure is entirely redundant information: we can easily factor
assoc* into two stages, one that simply returns the element found or nil, and another
that wraps the data structure and boolean around that result:

($define! assoc*-aux

($lambda (object alist)

($let ((alist (filter ($lambda (record)

(equal? object (car record)))

alist)))

($if (null? alist)

()

(car alist)))))

($define! assoc*

($lambda (object alist)

($let ((result (assoc*-aux object alist)))

(cons (pair? result) result))))

The underlying function assoc*-aux is obviously just assoc as defined in this report;
and we could —and do— eliminate both the indirection, and the redundancy that caused
it, by providing the simpler assoc rather than the needlessly elaborate assoc* . The use
of nil to represent nothing in a return value is thus seen to be neither arbitrary nor (in
itself) ad hoc, but rather a natural consequence of the special status afforded to types pair
and null by Kernel’s matching algorithm (§4.9.1).

89

6.3.7 member?

(member? object list)

Applicative member? is a predicate that returns true iff some element of list is
equal? to object .

Cf. memq? (§6.4.4).

Rationale:

On the handling of cyclic lists, see the rationale discussion in §3.9.

Derivation

The following expression defines the member? applicative, using only previously de-
fined features.

($define! member?

($lambda (object ls)

(apply or?

(map ($lambda (x) (equal? object x))

ls))))

6.3.8 finite-list?

(finite-list? . objects)

This is the type predicate for type finite-list. It returns true iff all its arguments
are acyclic lists (§3.9).

Rationale:
See the rationale for applicative and? (§6.1.2).

Since Scheme programmers expect predicate list? to test for acyclic lists, but Kernel
lists can be cyclic, it would be potentially confusing for Scheme programmers if Kernel
were to assign the unadorned predicate name list? to either type. So Kernel qualifies
its names for both: finite-list? for the acyclic type (here), and countable-list? for
the potentially cyclic type (§6.3.9).

Derivation

The following expression defines finite-list? using only previously defined fea-
tures.

($define! finite-list?

($lambda args

(apply and?

90

(map ($lambda (x)

($let (((#ignore n . #ignore)

(get-list-metrics x)))

(>? n 0)))

args))))

6.3.9 countable-list?

(countable-list? . objects)

This is the type predicate for type list. Returns true iff all its arguments are lists
(§3.9).

Rationale:
See the rationales for applicatives and? (§6.1.2) and finite-list? (§6.3.8).

Derivation

The following expression defines countable-list? using only previously defined
features.

($define! countable-list?

($lambda args

(apply and?

(map ($lambda (x)

($let (((#ignore n #ignore c)

(get-list-metrics x)))

($or? (>? c 0)

(>? n 0))))

args))))

6.3.10 reduce

(reduce list binary identity)
(reduce list binary identity precycle incycle postcycle)

list should be a list. binary should be an applicative. If the first call syntax is
used, list should be an acyclic list. If the second call syntax is used, precycle, incycle,
and postcycle should be applicatives.

If list is empty, applicative reduce returns identity .
If list is nonempty but acyclic, applicative reduce uses binary operation binary

to merge all the elements of list into a single object, using any associative grouping
of the elements. That is, the sequence of objects initially found in list is repeatedly
decremented in length by applying binary to a list of any two consecutive objects,

91

replacing those two objects with the result at the point in the sequence where they
occurred; and when the sequence contains only one object, that object is returned.

If list is cyclic, the second call syntax must be used. The elements of the cycle
are passed, one at a time (but just once for each position in the cycle), as arguments
to unary applicative precycle; the finite, cyclic sequence of results from precycle is
reduced using binary applicative incycle; and the result from reducing the cycle is
passed as an argument to unary applicative postcycle. Binary operation binary is
used to reduce the sequence consisting of the elements of the acyclic prefix of list
followed by the result returned by postcycle. The only constraint on the order of calls
to the applicatives is that each call must be made before its result is needed (thus,
parts of the reduction of the acyclic prefix may occur before the contribution from
the cycle has been completed).

Each call to binary , precycle, incycle, or postcycle uses the dynamic environment
of the call to reduce .

If list is acyclic with length n ≥ 1, binary is called n − 1 times. If list is cyclic
with acyclic prefix length a and cycle length c, binary is called a times; precycle, c
times; incycle, c− 1 times; and postcycle, once.

Rationale:

Because reduce uses an unspecified associative order of binary operations, the guide-
lines in §3.9 require it to reduce a cyclic list in finite time if the reduction behavior can
be naturally defined in the cyclic case. However, an arbitrary binary operation can’t be
automatically generalized to reduce an infinite sequence of elements in finite time. So,
either the client must provide additional information on how to handle cycles, or cyclic-list
reduction must be an error.

Cyclic-list reduction is sometimes desirable (addition is a paradigmatic commutative
case); and would be significantly more onerous if, in addition to the technicalities of each
particular case of reduction, one also had to cope with explicit list metrics; therefore, the
cyclic case is worth supporting at an intermediate level (i.e., above the list-metric level).
The technicalities of any such reduction are sufficiently ticklish, even in simple cases, that
providing a single interface general enough to cover elaborate cases does not significantly
increase the burden on the less elaborate. On the other hand, the added programming
burden and source-code complexity of the cycle-handling arguments may sometimes be
undesirable —or irrelevant, or impossible— so the simpler cycle-rejecting interface is also
worth supporting.

For the single general interface to specify cycle-handling, it is envisioned that, as a
most-elaborate case, precycle will convert each term to a record that tracks multiple facets
of the reduction; incycle will use and synthesize these facets; and postcycle will convert
the reduced record back to a term of the type expected by binary .

The applicative arguments are all called with the dynamic environment of the call to
reduce by analogy with map (§5.9.1).

Two variant tools are under consideration (in a leisurely fashion, not to rush into vo-
cabulary growth), reduce-left and reduce-right, which would use specific associative
groupings and thus cater primarily to non-associative binary operations. Given a cyclic

92

list, reduce-left would perform the binary operation an unbounded number of times,
while reduce-right would signal an error.

Derivation

The following expression defines reduce using only previously defined features.

($define! reduce

($let ()

($define! reduce-acyclic

($lambda (ls bin id)

($cond ((null? ls) id)

((null? (cdr ls)) (car ls))

(#t

(bin (car ls)

(reduce-acyclic (cdr ls) bin id))))))

($define! reduce-n

($lambda (ls bin n)

($if (=? n 1)

(car ls)

(bin (car ls)

(reduce-n (cdr ls) bin (- n 1))))))

(wrap ($vau (ls bin id . opt) env

($define! fixenv

($lambda (appv)

($lambda x (apply appv x env))))

($define! bin (fixenv bin))

($let (((p n a c) (get-list-metrics ls)))

($if (=? c 0)

(reduce-acyclic ls bin id)

($sequence

($define! (pre in post) (map fixenv opt))

($define! reduced-cycle

(post (reduce-n (map pre (list-tail ls a))

in

c)))

($if (=? a 0)

93

reduced-cycle

(bin (reduce-n ls bin a)

reduced-cycle)))))))))

6.4 Pair mutation (optional)

6.4.1 append!

(append! . lists)

lists must be a nonempty list; its first element must be an acyclic nonempty list,
and all of its elements except the last element (if any) must be acyclic lists. The
append! applicative sets the cdr of the last pair in each nonempty list argument to
refer to the next non-nil argument, except that if there is a last non-nil argument, it
isn’t mutated.

It is an error for any two of the list arguments to have the same last pair.
The result returned by this applicative is inert.
The following equivalences hold.

(append! v) ≡ #inert

(append! u v . w) ≡ ($sequence (append! u v)
(append! u . w))

Rationale:
append! is pointedly not a more space-efficient version of append . Efficiency is a

proscribed design motivation in Kernel (per G5 of §0.1.2), so the design of append! must
be driven entirely by its role as a mutator. Mutators are called for effect, rather than
for value, hence they always return #inert; and this in turn steers the programmer away
from confusion between append! and append (per G3 of §0.1.2).

Whereas the acyclic behavior of append naturally builds leftward from its rightmost
argument by means of cons, the acyclic behavior of append! naturally builds rightward
from its leftmost argument by means of set-cdr! . Hence, append! must have at least
one argument, and the leftmost argument must be nonempty so that it can have things
appended to it by mutation. Note that, after completion of the operation, the mutated
leftmost argument is the one structure that is certain to encompass all of the elements of
all of the append!ed lists.

Derivation

The following expression defines the append! applicative, using only previously de-
fined features.

($define! append!

($lambda lss

94

($define! set-last!

($lambda (ls tail)

($let ((next (cdr ls)))

($if (pair? next)

(set-last! next tail)

(set-cdr! ls tail)))))

(map ($lambda (x) (apply set-last! x))

(list-neighbors (filter ($lambda (x)

(not? (null? x)))

lss)))

#inert))

If applicative for-each (§6.9.1) were available at this point, the derivation would
have used that, rather than construct a list of inert values with map only to discard
it.

6.4.2 copy-es

(copy-es object)

Briefly, applicative copy-es returns an object initially equal? to object with a
freshly constructed evaluation structure (§4.7.2) made up of mutable pairs.

If object is not a pair, the applicative returns object . If object is a pair, the applica-
tive returns a freshly constructed pair whose car and cdr would be suitable results for
(copy-es (car object)) and (copy-es (cdr object)), respectively. Further, the
evaluation structure of the returned value is structurally isomorphic (§3.9) to that of
object at the time of copying, with corresponding non-pair referents being eq? .

Cf. copy-es-immutable (§4.7.2).

Derivation

The following expression defines copy-es using only previously defined features.

($define! copy-es

($lambda (x)

($define! aux

($lambda (x alist)

($if (not? (pair? x))

(list x alist)

($let ((record (assoc x alist)))

($if (pair? record)

(list (cdr record) alist)

95

($let ((y (cons () ())))

($let ((alist (cons (cons x y) alist)))

($let (((z alist) (aux (car x) alist)))

(set-car! y z)

($let (((z alist) (aux (cdr x) alist)))

(set-cdr! y z)

(list y alist))))))))))

(car (aux x ()))))

The depth of nesting of this code could be greatly reduced if operative $let* (§6.7.4)
were available; one could rewrite the alternative clause of the inner $if combination
as:

($let* ((y (cons () ()))

(alist (cons (cons x y) alist))

((z alist) (aux (car x) alist))

(#ignore (set-car! y z))

((z alist) (aux (cdr x) alist))

(#ignore (set-cdr! y z)))

(list y alist))

Rationale:

The above derivation of copy-es is messy and slow (quadratic time) because it per-
forms its traversal without temporarily marking visited pairs. Internal robust traversals
can readily achieve linear time using temporary marks.

6.4.3 assq

(assq object pairs)

Applicative assq returns the first element of pairs whose car is eq? to object . If
there is no such element in pairs, nil is returned.

Rationale:

Applicative assq behaves as assoc , except that when comparing the cars of elements
to object , it uses eq? instead of equal? . See the rationale discussion for assoc , §6.3.6.

Derivation

The following expression defines the assoc applicative, using only previously defined
features.

96

($define! assq

($lambda (object alist)

($let ((alist (filter ($lambda (record)

(eq? object (car record)))

alist)))

($if (null? alist)

()

(car alist)))))

6.4.4 memq?

(memq? object list)

Applicative memq? is a predicate that returns true iff some element of list is eq?
to object .

Cf. member? (§6.3.7).

Derivation

The following expression defines the memq? applicative, using only previously defined
features.

($define! memq?

($lambda (object ls)

(apply or?

(map ($lambda (x) (eq? object x))

ls))))

6.5 Equivalence under mutation (optional)

6.5.1 eq?

(eq? . objects)

This applicative generalizes primitive predicate eq? (§4.2.1) to zero or more ar-
guments. It is a predicate that returns true unless some two of its arguments are
different as judged by the primitive predicate.

Rationale:

Because the applicative doesn’t process its arguments in any particular order, it must
terminate in finite time even if objects is cyclic (per the rationale discussion in §3.9).

Returning true on zero or one arguments is deemed the most uniform, hence least
error-prone, behavior for those cases. One measure of its uniformity is that it allows the
entire behavior of the applicative, including the zero/one-argument cases, to be captured

97

by a very simple statement (above; cf. the behavioral statement for and?, §6.1.2). Another
is that it preserves the following implication:

(eq? h . t) ⇒ (eq? . t)

Derivation

The following expression defines the eq? library applicative using only previously
defined features. (This is a bit tricky because some previously defined features —
notably get-list-metrics— use binary eq? , creating hidden circularities when
eq? is rebound to the library applicative.)

($define! eq?

($let ((old-eq? eq?))

($lambda x

($if ($and? (pair? x) (pair? (cdr x)) (null? (cddr x)))

(apply old-eq? x)

(apply and?

(map ($lambda (x) (apply old-eq? x))

(list-neighbors x)))))))

6.6 Equivalence up to mutation

6.6.1 equal?

(equal? . objects)

This applicative generalizes primitive predicate equal? (§4.3.1) to zero or more
arguments. It is a predicate that returns true unless some two of its arguments are
different as judged by the primitive predicate.

Rationale:
See the rationale for library eq?, §6.5.1.

Derivation

The following expression defines the equal? library applicative using only previously
defined features. (As a somewhat paranoid precaution, special provisions are taken,
as with library eq?, §6.5.1, to truncate any hidden circularities induced by previously
defined features using binary equal? .)

($define! equal?

($let ((old-equal? equal?))

($lambda x

($if ($and? (pair? x) (pair? (cdr x)) (null? (cddr x)))

98

(apply old-equal? x)

(apply and?

(map ($lambda (x) (apply old-equal? x))

(list-neighbors x)))))))

6.7 Environments

6.7.1 $binds?

($binds? 〈exp〉 . 〈symbols〉)

Operative $binds? evaluates 〈exp〉 in the dynamic environment; call the result
env . env must be an environment. The operative is a predicate that returns true iff
all its later operands, 〈symbols〉, are visibly bound in env .

Rationale:

The choice to make this feature operative, rather than applicative, is ultimately derived
from accident-avoidance Guideline G3 of §0.1.2. In Kernel programming, unevaluated
symbols are opportunities for accidental hygiene violations. The likelihood of such acci-
dents is low in sufficiently focused situations (most operative core library feature deriva-
tions are examples of this, notably including the library derivation here of $binds?),
but the likelihood rises sharply with increasing accessibility of the symbols — since pre-
cautions for handling unevaluated symbols become a ready source of problems as they
become incidental to the purpose of the code. One way to discourage accidents of this
sort in Kernel is to omit any facilities that purposefully return unevaluated symbols, such
as quasiquotation (cf. §1.1), thus avoiding any convenient means for general use of un-
evaluated symbols. The other side of this is to avoid features that motivate general use of
unevaluated symbols. Normal use of an applicative binds? would presuppose operands
that evaluate to unevaluated symbols — which may occur in a focused setting in the body
of an operative when the symbols are operands, but which in a general setting is sugges-
tive of some quasiquotation-like device. Hence, to avoid this accident-prone motivation,
the provided feature is operative.

Derivation

The following expression defines the $binds? operative, using previously defined
features, and features from the Continuations module (§7). (The latter features
aren’t all primitive, but they don’t use binds? directly or indirectly, so there’s no
circularity in the derivation.)

($define! $binds?

($vau (exp . ss) dynamic

(guard-dynamic-extent

()

99

($lambda ()

($let ((env (eval exp dynamic)))

(map ($lambda (sym) (eval sym env))

ss))

#t)

(list (list error-continuation

($lambda (#ignore divert)

(apply divert #f)))))))

Rationale:

Presenting this predicate as a library feature drives home the point that it doesn’t
introduce any capability that wasn’t already provided by the language. In particular,
for purposes of type encapsulation (§3.4), there is still no way for a Kernel program to
generate a complete list of the variables exhibited in an arbitrary environment. Predicate
$binds?, or the techniques used to derive it, could be used to formally enumerate such a
list, by sequentially generating all possible variables (an infinite sequence) and testing each
one; but there would be no way to know when all variables in the environment had been
enumerated. This nontermination is critical because it means that no Kernel program
can prove in finite time that two non-eq? environments are equivalent up to mutation;
therefore, the rules governing predicate equal? (§4.3.1) do not require it to return false
in any cases where predicate eq? returns true.

6.7.2 get-current-environment

(get-current-environment)

The get-current-environment applicative returns the dynamic environment in
which it is called.

Rationale:

Operatives should be used only when there is a specific reason to do so, so that the
programmer can assume that $’s always flag out exceptions to the usual rules of argument
evaluation. Accordingly, throughout this report zero-ary combiners, such as this one, are
always wrapped: get-current-environment rather than $get-current-environment .

Some combiner names are nouns, while others are verbs. When a combiner acts on
one or more operands, it’s clear that it describes action, so we consider it acceptably
clear to name the combiner for its result (e.g., lcm , §12.5.14, which returns the lcm of its
arguments). Often such a combiner can be called with no operands, but usually isn’t, so
the degenerate case shouldn’t interfere with understanding the nomenclature. However,
when the combiner is primarily, or even exclusively, called without operands, there is some
danger that because its name is a noun, the programmer might forget to put parentheses
around it; so, in the interest of preventing accidents (G3 of §0.1.2), the names of zero-ary
combiners are always verbs. Hence, in this case, get-current-environment rather than
simply current-environment.

100

Derivation

The following expression defines get-current-environment using only previously
defined features.

($define! get-current-environment (wrap ($vau () e e)))

6.7.3 make-kernel-standard-environment

(make-kernel-standard-environment)

The make-kernel-standard-environment applicative returns a standard envi-
ronment; that is, a child of the ground environment with no local bindings. (See
§3.2.)

Derivation

The following expression defines make-kernel-standard-environment using only
previously defined features.

($define! make-kernel-standard-environment

($lambda () (get-current-environment)))

Rationale:
This derivation works exactly because, per §1.3.2, library derivations are postulated

to be evaluated in the ground environment. Thus, the ground environment becomes the
static environment of the compound combiner; and when the combiner is called, its local
environment —which it returns— is a child of the ground environment, with no local
bindings since the combiner has no formal parameters.

6.7.4 $let*

($let* 〈bindings〉 . 〈body〉)

〈bindings〉 should be a finite list of formal-parameter-tree/expression pairings,
each of the form (〈formals〉 〈expression〉), where each 〈formals〉 is as described for
the $define! operative, §4.9.1. 〈body〉 should be a list of expressions.

The expression

($let* () . 〈body〉)

is equivalent to

($let () . 〈body〉)

and the expression

($let* ((〈form〉 〈exp〉) . 〈bindings〉) . 〈body〉)

101

is equivalent to

($let ((〈form〉 〈exp〉)) ($let* 〈bindings〉 . 〈body〉))

Rationale:
The $let* operative provides a different combination of capabilities and constraints

than do the other operatives in the $let family (on which see the rationale for $let,
§5.10.1). The binding expressions are guaranteed to be evaluated from left to right, and
each of these evaluations has access to the bindings of previous evaluations. Because the
result of each binding expression is matched separately, there is nothing to prevent the
same symbol from occurring in more than one 〈formals〉. (For an example of this technique,
see the alternative derivation in §6.4.2.) However, each of these evaluations takes place in
a child of the environment of the previous one, and bindings for the previous evaluation
take place in the child, too. So, if one of the binding expressions is a $vau or $lambda

expression, the resulting combiner still can’t be recursive; and only the first binding
expression is evaluated in the dynamic environment, so if the dynamic environment is to
be bound, only the first binding can do it.

Derivation

The following expression defines $let* using only previously defined features.

($define! $let*

($vau (bindings . body) env

(eval ($if (null? bindings)

(list* $let bindings body)

(list $let

(list (car bindings))

(list* $let* (cdr bindings) body)))

env)))

6.7.5 $letrec

($letrec 〈bindings〉 . 〈body〉)

〈bindings〉 and 〈body〉 should be as described for $let, §5.10.1.
The expression

($letrec ((〈form1〉 〈exp1〉) ... (〈formn〉 〈expn〉)) . 〈body〉)

is equivalent to

($let ()

($define! (〈form1〉 ... 〈formn〉)
(list 〈exp1〉 ... 〈expn〉))

. 〈body〉)

102

Rationale:
The $letrec operative provides a different combination of capabilities and constraints

than the other operatives in the $let family (on which see the rationale for $let, §5.10.1).
The binding expressions may be evaluated in any order. None of them are evaluated
in the dynamic environment, so there is no way to capture the dynamic environment
using $letrec ; and none of the bindings are made until after the expressions have been
evaluated, so the expressions cannot see each others’ results; but since the bindings are
in the same environment as the evaluations, they can be recursive, and even mutually
recursive, combiners.

The R5RS requires its special form letrec to provide dummy bindings for the 〈symk〉
(bindings to “undefined values”) while the 〈expk〉 are being evaluated, but then goes on
to say that it is an error for the evaluation of any 〈expk〉 to actually look up any of the
〈symk〉 in e′. So the bindings have to be there, and you’re supposed to pretend they
aren’t.

Derivation

The following expression defines $letrec using only previously defined features.

($define! $letrec

($vau (bindings . body) env

(eval (list* $let ()

(list $define!

(map car bindings)

(list* list (map cadr bindings)))

body)

env)))

6.7.6 $letrec*

($letrec* 〈bindings〉 . 〈body〉)

〈bindings〉 and 〈body〉 should be as described for $let*, §6.7.4.
The expression

($letrec* () . 〈body〉)

is equivalent to

($letrec () . 〈body〉)

and the expression

($letrec* ((〈form〉 〈exp〉) . 〈bindings〉) . 〈body〉)

is equivalent to

($letrec ((〈form〉 〈exp〉)) ($letrec* 〈bindings〉 . 〈body〉))

103

Rationale:
The $letrec* operative provides a different combination of capabilities and con-

straints than do the other operatives in the $let family (on which see the rationale for
$let, §5.10.1). The binding expressions are guaranteed to be evaluated from left to right;
each of these evaluations has access to the bindings of previous evaluations; and the result
of each evaluation is matched in the same environment where it was performed, so if the
result is a combiner, it can be recursive. Further, the result of each binding expression
is matched separately, so there is nothing to prevent the same symbol from occurring in
more than one 〈formals〉. However, since each evaluation takes place in a child of the
previous one, and even the first does not take place in the dynamic environment, there is
no way to capture the dynamic environment using $letrec*, and no way for combiners
resulting from different binding expressions to be mutually recursive.

Derivation

The following expression defines $letrec* using only previously defined features.

($define! $letrec*

($vau (bindings . body) env

(eval ($if (null? bindings)

(list* $letrec bindings body)

(list $letrec

(list (car bindings))

(list* $letrec* (cdr bindings) body)))

env)))

6.7.7 $let-redirect

($let-redirect 〈exp〉 〈bindings〉 . 〈body〉)

〈bindings〉 and 〈body〉 should be as described for $let, §5.10.1.
The expression

($let-redirect 〈exp〉
((〈form1〉 〈exp1〉) ... (〈formn〉 〈expn〉))
. 〈body〉)

is equivalent to

((eval (list $lambda (〈form1〉 ... 〈formn〉) 〈body〉)
〈exp〉)

〈expn〉 ... 〈expn〉)

Rationale:
An ordinary $let expression depends on its dynamic environment in two different

ways: the binding expressions are evaluated in the dynamic environment; and the local

104

environment, where the results are bound and the body is processed, is a child of the
dynamic environment. $let-redirect is a general tool for eliminating the latter depen-
dence: the binding expressions are evaluated in the dynamic environment, but the local
environment is a child of some other environment specified by the programmer. This
promotes semantic stability, by protecting the meaning of expressions in the body from
unexpected changes to the client’s environment (much as static scoping protects explicitly
constructed compound combiners).

In the interests of maintaining clarity and orthogonality of semantics, there are no
variants of $let-redirect analogous to the variants $let*, etc., of $let. The variants
of $let modulate its role in locally augmenting the current environment, whereas the
primary purpose of $let-redirect is presumed to be locally replacing the current en-
vironment; so it was judged better to provide just one environment replacement device,
insulating it as much as possible from complexities of environment augmentation.

Derivation

The following expression defines $let-redirect using only previously defined fea-
tures.

($define! $let-redirect

($vau (exp bindings . body) env

(eval (list* (eval (list* $lambda (map car bindings) body)

(eval exp

env))

(map cadr bindings))

env)))

6.7.8 $let-safe

($let-safe 〈bindings〉 . 〈body〉)

〈bindings〉 and 〈body〉 should be as described for $let, §5.10.1.
The expression

($let-safe 〈bindings〉 . 〈body〉)

is equivalent to

($let-redirect (make-kernel-standard-environment)

〈bindings〉 . 〈body〉)

Rationale:

This is a common case of $let-redirect ; providing a shorthand for it unclutters
one’s source code.

105

Derivation

The following expression defines $let-safe using only previously defined features.

($define! $let-safe

($vau (bindings . body) env

(eval (list* $let-redirect

(make-kernel-standard-environment)

bindings

body)

env)))

6.7.9 $remote-eval

($remote-eval 〈exp1〉 〈exp2〉)

Operative $remote-eval evaluates 〈exp2〉 in the dynamic environment, then eval-
uates 〈exp1〉 as a tail context (§3.10) in the environment that must result from the
first evaluation.

Rationale:
Operative $remote-eval provides a convenient way to evaluate an expression built

into source code in an environment computed at run-time. This is a sometimes-useful task
when working with first-class environments; if not provided as a standard feature, the task
would have to be reprogrammed when needed, creating various preventable opportunities
for accidents (cf. G3 of §0.1.2).

Derivation

The following expression defines $remote-eval using only previous defined features.

($define! $remote-eval

($vau (o e) d

(eval o (eval e d))))

6.7.10 $bindings->environment

($bindings-environment . 〈bindings〉)

〈bindings〉 should be as described for $let, §5.10.1.
The expression

($bindings->environment . 〈bindings〉)

is equivalent to

($let-redirect (make-environment) 〈bindings〉
(get-current-environment))

106

Rationale:

Operative $bindings->environment provides a convenient way to construct a first-
class environment containing computed bindings for a predetermined set of symbols. It
might, for example, be useful in constructing a suitable second argument for applicative
get-module , §15.2.3.

Derivation

The following expression defines $bindings->environment using only previous de-
fined features.

($define! $bindings->environment

($vau bindings denv

(eval (list $let-redirect

(make-environment)

bindings

(list get-current-environment))

denv)))

6.8 Environment mutation (optional)

6.8.1 $set!

($set! 〈exp1〉 〈formals〉 〈exp2〉)

〈formals〉 should be as described for the $define! operative, §4.9.1.

The $set! operative evaluates 〈exp1〉 and 〈exp2〉 in the dynamic environment;
call the results env and obj . If env is not an environment, an error is signaled. Then
the operative matches 〈formals〉 to obj in environment env . Thus, the symbols of
〈formals〉 are bound in env to the corresponding parts of obj . (The matching process
was defined in §4.9.1.) The result returned by $set! is inert.

Rationale:

On support of arbitrary formal parameter trees as definiends, see the rationale discus-
sion of §4.9.1.

The (second-class) Scheme operative set! allows Scheme code to modify any bind-
ing that is visible, regardless of whether or not the binding is local. Binding mutation
in Kernel is more controlled, because the environment mutators can only affect cap-
turable environments — $set! mutates an environment captured by the client, while
equi-powerful primitive $define! does the capturing itself. Encapsulation of the envi-
ronment type allows ancestor environments to be visible without being capturable, making
them effectively read-only. (On restricting environment-mutation, see also the rationale
for $provide!, §6.8.2.)

107

Derivation

The following expression defines $set!, using only previously defined features.

($define! $set!

($vau (exp1 formals exp2) env

(eval (list $define! formals

(list (unwrap eval) exp2 env))

(eval exp1 env))))

The key to this implementation is its use of unwrap. In the constructed combination

($define! 〈formals〉 ($eval 〈exp2〉 env))

(where we write $eval for the operative that underlies applicative eval), $define!
evaluates its second operand in its dynamic environment, and then matches 〈formals〉
to the result, again in its dynamic environment. Here, its dynamic environment is the
result of $set!’s local evaluation of (eval exp1 env), call it e1 ; but because the sec-
ond operand ($eval 〈exp2〉 env) is an operative combination, 〈exp2〉 is evaluated
only in env, the dynamic environment of the call to $set! — not in e1 .

6.8.2 $provide!

($provide! 〈symbols〉 . 〈body〉)

〈symbols〉 must be a finite list of symbols, containing no duplicates. 〈body〉 must
be a finite list.

The $provide! operative constructs a child e of the dynamic environment d;
evaluates the elements of 〈body〉 in e, from left to right, discarding all of the results;
and exports all of the bindings of symbols in 〈symbols〉 from e to d, i.e., binds each
symbol in d to the result of looking it up in e. The result returned by $provide! is
inert.

The expression

($provide! 〈symbols〉 . 〈body〉)

is equivalent to

($define! 〈symbols〉
($let ()

($sequence . 〈body〉)
(list . 〈symbols〉)))

Rationale:
An important encapsulation technique in Kernel is to store private information in a

local environment, and then construct combiners in that environment and export them.
If only one combiner is being exported, the easiest way to do this is to simply $define!

the combiner, and put a $let around the definition expression, as in

108

($define! count

($letrec ((self (get-current-environment))

(counter 0))

($lambda ()

($set! self counter (+ counter 1))

counter)))

When more than one combiner is exported to the surrounding environment, it would be
technically possible to locally capture the surrounding environment and use $set! for
the exportation:

($let ((outside (get-current-environment)))

...

($set! outside (foo bar quux) (list foo bar quux)))

but this would be bad style because the local binding of outside is visible to everything
in the local block, granting power to mutate the surrounding environment to everything in
the local environment, and therefore (probably) to anything that captures a descendent
of the local environment. Permission to mutate an environment should be conferred
sparingly, to avoid accidents (G3 of §0.1.2). Another technically possible approach would
be to $define! a compound definiend with a $let -expression definition, and end the
$let -expression with a list of values to match the definiend:

($define! (foo bar quux)

($let ()

...

(list foo bar quux)))

but this too would be accident-prone, because the programmer would have to manually
maintain coordination between the list of symbols at the top of the construct, and the list
of combiners at the bottom of the construct. The corresponding $provide! -expression,

($provide! (foo bar quux)

...)

accomplishes the same multiple exportation, without either widely distributing permission
to mutate the surrounding environment or requiring the programmer to coordinate two
lists at opposite ends of the construct. For a full example of its use, see the derivation
code for promises, §9.1.3.

Derivation

The following expression defines $provide!, using only previously defined features.

($define! $provide!

($vau (symbols . body) env

(eval (list $define! symbols

(list $let ()

109

(list* $sequence body)

(list* list symbols)))

env)))

6.8.3 $import!

($import! 〈exp〉 . 〈symbols〉)

〈symbols〉 must be a list of symbols.
The $import! operative evaluates 〈exp〉 in the dynamic environment; call the

result env . env must be an environment. Each distinct symbol s in 〈symbols〉 is
evaluated in env , and s is bound in the dynamic environment to the result of this
evaluation.

The expression

($import! 〈exp〉 . 〈symbols〉)

is equivalent to

($define! 〈symbols〉 ($remote-eval (list 〈symbols〉) 〈exp〉))

Rationale:
Extracting bindings from a first-class environment is of immediate interest in conjunc-

tion with get-module (§15.2.3).

Derivation

The following expression defines $import!, using only previous defined features.

($define! $import!

($vau (exp . symbols) env

(eval (list $set!

env

symbols

(cons list symbols))

(eval exp env))))

6.9 Control

6.9.1 for-each

(for-each applicative . lists)

lists must be a nonempty list of lists; if there are two or more, they should all be
the same length. If lists is empty, or if all of its elements are not lists of the same
length, an error is signaled.

110

for-each behaves identically to map, except that instead of accumulating and
returning a list of the results of the element-wise applications, the results of the
applications are discarded and the result returned by for-each is inert.

Rationale:

The Scheme procedure for-each is defined to perform its applications from left to
right ([KeClRe98, §6.4]). By Kernel’s general policy on list handling (rationale for §3.9),
though, if for-each were required to process from left to right, it would have to loop
forever on cyclic lists. Handling cyclic lists in finite time was judged a more useful be-
havior, and uniformity with map was preferred, so the order of processing is pointedly
unspecified.

Derivation

The following expression defines for-each using only previously defined features.
(Since we’re only trying to show derivability, we can take the mathematician’s way
out by reducing it to a previously solved problem.)

($define! for-each

(wrap ($vau x env

(apply map x env)

#inert)))

7 Continuations

A continuation is a plan for all future computation, parameterized by a value to be
provided, and contingent on the states of all mutable data structures (which notably
may include environments, §4.9). When the Kernel evaluator is invoked, the invoker
provides a continuation to which the result of the evaluation will normally be returned.

For example, when $if (§4.5.2) evaluates its 〈test〉 operand, the continuation
provided for the result expects to be given a boolean value; and, depending on which
boolean it gets, it will evaluate either the 〈consequent〉 or the 〈alternative〉 operand
as a tail context — that is, the continuation provided for the result of evaluating the
selected operand is the same continuation that was provided for the result of the call
to $if.

A Kernel program may sometimes capture a continuation; that is, acquire a refer-
ence to it as a first-class object. The basic means of continuation capture is applicative
call/cc (§7.2.2).

Given a first-class continuation c, a combiner can be constructed that will ab-
normally pass its operand tree to c (as opposed to the normal return of values to
continuations, which was mentioned above, and which will be discussed below in
§7.1). In the simplest case, the abnormally passed value arrives at c as if it had
been normally returned to c. In general, continuations bypassed by the abnormal

111

pass may have entry/exit guards attached to them, and these guards can intercept
the abnormal pass before it reaches c. Each entry/exit guard consists of a selector
continuation, which designates which abnormal passes the guard will intercept, and
an interceptor applicative that performs the interception when selected; see §§7.2.4
and 7.2.5 (applicatives guard-continuation and continuation->applicative).

Continuations are immutable, and are equal? iff eq? . The continuation type is
encapsulated.

Rationale:
First-class continuations can be used to implement a wide variety of advanced control

structures. Their inclusion in Kernel may therefore be justified from the generality de-
sign goal. (Justification from first-class-ness Guideline G1a of §0.1.2 has a suggestion of
circularity about it, because it’s problematic whether continuations would qualify as ‘ma-
nipulable entities’ if they weren’t capturable.) However, the ability to capture and invoke
first-class continuations leads to a subtle partial undermining of the ability of algorithms
to regulate themselves (which falls under the aegis of accident-prevention, Guideline G3
of §0.1.2): when an algorithm initiates a subcomputation, while it gives up a great deal
of control over subsequent events, there is usually an expectation that the subcomputa-
tion will return (and thus, the algorithm resume from that point) at most once. Kernel
redresses this problem, while not-incidentally supporting a generalization of conventional
exception-handling facilities, by means of a flexible entry/exit guard device (§§7.2.4, 7.3.3)
that allows the initiating algorithm to regulate abnormal passes into or out of the dynamic
extent of the subcomputation.

Scheme first-class continuations are procedures. That design choice is defensible in
Scheme, where anything that can be done with first-class continuations can also be done
with first-class procedures, and vice versa. In Kernel, though, each of the two types
supports operations that the other does not: arbitrary combiners cannot act as guard
selectors, nor as parents in continuation construction; while the concept of wrapping and
unwrapping has no relevance at all to the internal semantics of continuations, and therefore
ought to be orthogonal to the language interface of the continuation type.

7.1 Dynamic extents

Each call to the Kernel evaluator is provided with a continuation to which it would
normally return its result; hence, at each point in a Kernel computation, there is a
unique stack of continuations waiting for normal return of results. Continuation c2

is a child of continuation c1 iff normal receipt of a result passed to c2 is scheduled by
an evaluator call that would normally return its result to c1. (That is, whenever c2 is
on the normal continuation stack, c1 is immediately below it on the stack.)

Each call to a Kernel operative is provided with a continuation to which it would
normally return its result; but this is not a separate case from evaluator calls. Each
operative call is initiated by the evaluator because the object being evaluated is
a combination whose combiner is that operative (evaluator Step 3a in §3.3); and
since the result of the operative call will become the result of the evaluator call, the

112

continuation provided to the operative call is just the continuation provided to the
evaluator call. In effect, the operative call is a suffix of the processing of the evaluator
call.

Some examples:

• When $if is called, the continuation for the evaluation of the 〈test〉 is a child
of the continuation for the call to $if.

• When a compound operative is called, the continuations for the evaluations of
expressions in the body of the operative (via $sequence , §5.1.1) are children
of the continuation for the call to the operative (except that, if the body is
acyclic, the last expression-evaluation has no distinct continuation because it’s
a tail context).

• When the evaluator evaluates the operands to an applicative combination, the
continuation for the evaluation of each operand is a child of the continuation for
the evaluation of the combination. It doesn’t matter whether the applicative
happens to be a converted continuation (via continuation->applicative ,
§7.2.5), whose underlying operative will abnormally pass the argument list; the
operand evaluations take place before that, and are part of the combination
evaluation, and that is all the child-continuation relation reflects.

Since the set of ancestors of a continuation is determined solely by the identity of the
evaluator call whose computation would resume on normal return to the continua-
tion, the set of ancestors of the continuation is fixed for all time at the moment the
continuation is created.

The dynamic extent of a continuation c consists of c, all its descendants, and all
evaluator calls whose results would normally be passed to c or to any of its descen-
dants.

Rationale:

Exception-handling facilities in most modern programming languages involve a log-
ical hierarchy of exceptional conditions. If the language has manifest types, the type
hierarchy is used for the purpose; in languages with no manifest type hierarchy, a spe-
cial type-like logical hierarchy of exceptions may be introduced. While the introduction
of an entirely new hierarchy for exceptions would not sit well with Kernel’s simplicity
design goal, the natural ordering of continuations in a Kernel computation provides a
pre-existing hierarchy suitable for the purpose. The ability to extend the hierarchy ex-
plicitly (i.e., by specifying the extension without having to be within the dynamic extent
of the continuation to be extended), which in a manifestly typed language would be
accomplished via programmer-defined subtyping, is supported in Kernel by applicatives
extend-continuation and guard-continuation (§§7.2.3, 7.2.4).

113

7.2 Primitive features

7.2.1 continuation?

(continuation? . objects)

The primitive type predicate for type continuation.

Rationale:

The possibility was considered of providing a distinct type for guard selectors. It
would then be possible to export a selector for a dynamic extent without exporting the
continuation of that dynamic extent. However, there did not appear to be sufficient need
for such an arrangement to justify the additional complexity. Worse, the complexity of
the feature would tend to take on a life of its own: once selectors were made a separate
type, there would be a natural temptation to introduce additional selector constructors
— first union, then intersection, and by that point it would be hard to justifying stopping
short of Turing power.

7.2.2 call/cc

(call/cc combiner)

Calls combiner in the dynamic environment as a tail context, passing as sole
operand to it the continuation to which call/cc would normally return its result.
(That is, constructs such a combination and evaluates it in the dynamic environment.)

Cf. operative $let/cc , §7.3.2.

Rationale:

Since the operand list of the call to combiner is a list whose one element is self-
evaluating and whose one pair is freshly allocated, applying argument-evaluation to the
operand list has no observable effect; so any restriction on the argument type beyond type
combiner would be arbitrary.

The name of the analogous feature in Scheme is call-with-current-continuation;
the R5RS notes that this name was coined in 1982 and “opinions differ on the merits of
such a long name.” In choosing between these two alternative names in Kernel, accident
avoidance and its correlate clarity were first considered, but failed to produce a compelling
resolution (the long name is more self-documenting, the short name allows more unclut-
tered code). The choice was finally based on a gedankenexperiment: if the standard name
had been made call/cc back in 1982, how many programmers today would be renaming
it to call-with-current-continuation?

7.2.3 extend-continuation

(extend-continuation continuation applicative environment)
(extend-continuation continuation applicative)

114

When the first syntax is used, the extend-continuation applicative constructs
and returns a new child of continuation that, when it normally receives a value v,
calls the underlying combiner of applicative with dynamic environment environment
and operand tree v, the result of the call normally to be returned to continuation.

The second syntax is syntactic sugar, equivalent to specifying an empty environ-
ment to the first syntax; that is,

(extend-continuation c a)
≡ (extend-continuation c a (make-environment))

Rationale:

The decision that v should be passed as the entire operand tree to the underlying
combiner of applicative, rather than as a single operand, parallels the design of applicative
continuation->applicative , §7.2.5.

In order to wield Kernel’s continuation hierarchy effectively for exception handling,
the programmer must be able to extend the hierarchy of possible destination continuations
without triggering entry/exit guards, which are meant to intercept actual exceptions, and
oughtn’t get in the way of defining potential destinations when no exceptional condition
yet exists. Applicative call/cc cannot do this, because it must be used from inside the
dynamic extent of the continuation that it captures.

Applicative extend-continuation allows the programmer to remotely create a child
of an existing continuation c by prepending some arbitrary computation (embodied by
argument applicative) to the computation by c. The complementary ability to place
entry/exit guards on a remotely created continuation (extending abnormal computation as
extend-continuation does normal computation) is provided by guard-continuation ,
§7.2.4.

7.2.4 guard-continuation

(guard-continuation entry-guards continuation exit-guards)

entry-guards and exit-guards should each be a list of clauses; each clause should be
a list of length two, whose first element is a continuation, and whose second element
is an applicative whose underlying combiner is operative.

Applicative guard-continuation constructs two continuations: a child of con-
tinuation, called the outer continuation; and a child of the outer continuation, called
the inner continuation. The inner continuation is returned as the result of the call to
guard-continuation .

When the inner continuation normally receives a value, it passes the value nor-
mally to the outer continuation; and when the outer continuation normally receives
a value, it passes the value normally to continuation. Thus, in the absence of ab-
normal passing, the inner and outer continuations each have the same behavior as
continuation.

115

The two elements of each guard clause are called, respectively, the selector and
the interceptor. The selector continuation is used in deciding whether to intercept a
given abnormal pass, and the interceptor applicative is called to perform customized
action when interception occurs. (Selection and interception are explained in §7.2.5.)
At the beginning of the call to guard-continuation , internal copies are made of the
evaluation structures (§4.7.2) of entry-guards and exit-guards, so that the selectors
and interceptors contained in the arguments at that time remain fixed thereafter,
independent of any subsequent mutations to the arguments.

Rationale:

guard-continuation copies its entry-guards and exit-guards arguments for the same
reason that $vau (§4.10.3) copies its operands: they represent algorithmic information
that may persist indefinitely, and should not be subject to internal change. (Algorithm
behavior can be modulated through interaction with mutable structures external to the
algorithm, which is less accident-prone than mutation of the algorithm itself.)

Early in the design, it was envisioned that dynamic-extent guards would be specified
by an operative, with the guard lists being special syntax, similarly to the binding list to
$let . Thus, instead of

(guard-continuation (list (list s1 i1) . . . (list sn in))

c
(list (list s′1 i′1) . . . (list s′n′ i′n′))

one would write

($guard-continuation ((s1 i1) . . . (sn in))

c
((s′1 i′1) . . . (s′n′ i′n′))

However, as noted elsewhere (§6.7.2), we prefer to reserve the use of operatives for sit-
uations where they are really needed. Binding clauses have to be handled operatively
because they contain parameter trees, which cannot be evaluated; but here, every single
sublist element sk, ik, s′k, and i′k is to be evaluated in the dynamic environment.

The type constraint on interceptors follows mainly from Guidelines G1 (uniformity)
and G3 (accident avoidance) of §0.1.2. It is generally more convenient, and safer, to work
with applicatives; but the value passed to an interceptor usually should not be evaluated
— and when it should be evaluated, to avoid accidents its evaluation should be performed
within the jurisdiction of the interceptor. So: when constructing an interceptor call we
expect to unwrap the interceptor, and, in order to handle all interceptors in a uniform
way, we unwrap each interceptor exactly once (which means the interceptor can’t have
been operative to begin with); but, if the underlying combiner of an interceptor were itself
applicative, the value passed to it would still be evaluated outside the jurisdiction of the
interceptor; so we don’t allow the interceptor to be multiply wrapped, and leave it to the
interceptor to explicitly call eval at its discretion.

116

7.2.5 continuation->applicative

(continuation->applicative continuation)

Returns an applicative whose underlying operative abnormally passes its operand
tree to continuation, thus: A series of interceptors are selected to handle the abnormal
pass, and a continuation is derived that will normally perform all the interceptions
in sequence and pass some value to the destination of the originally abnormal pass.
The operand tree is then normally passed to the derived continuation.

The processes of selection and interception are detailed below.

Rationale:

A continuation receives one object, normally the value returned by a subcomputation
for which the continuation was constructed; an operative receives one object, called an
operand tree. Naturally, when a continuation is converted to an operative, the continuation
receives the object received by the operative, i.e., its operand tree.

There is a mild mismatch of expectations in Kernel between operatives, which usually
expect lists because the evaluator algorithm provides lists of arguments when evaluating
applicative combinations (which most combinations are); and continuations, which tend
by nature to expect the result of a single computation, rather than a list of results of
separate computations. Both expectations are readily overcome —again, in Kernel— the
former by deconstructing a list received by a continuation, via a list-structured definiend
(see the rationale of §4.9.1); the latter by passing an atomic value in place of an argument
list (see the rationale of §4.10.5).

In Scheme, however, the mismatch isn’t mild, because neither expectation is readily
overcome. Deconstructing a list received by a continuation is laborious, since formal
parameter lists are only supported for deconstructing the argument list received by a
procedure; and passing an atomic value in place of an argument list is specifically forbidden
(e.g., (apply c 5) is illegal in Scheme). Scheme gets around the problem by skewing the
correspondence between argument list received by a procedure and result received by a
continuation: a Scheme first-class continuation is a procedure that takes one argument,
and behaves as if its argument were the returned value. Thus, for continuation c , Kernel
(apply-continuation c 5) becomes Scheme (apply c (list 5)). (The point here
being structural, we use Scheme apply ; in practice a Scheme programmer would write
(c 5), which has no close analog in Kernel since Kernel continuations are not combiners.)

The Scheme single-operand approach was considered for Kernel. Once historical prece-
dent is set aside (the compatibility motive being toxic to the Kernel design, as noted
in §0.1.1), there remains a tenuous argument from accident-avoidance, that the single-
operand approach would reduce the amount of structural intervention needed, and thus
the number of opportunities for error. Ultimately, though, the single-operand approach
was rejected on the more primordial grounds that it treats continuations as a special case
— a conclusion that is subtly affirmed by its fostering of the illusion of multiple-value
returns (on which see, again, the rationale discussion of §4.9.1.)

117

Selection

The selection of interceptors for an abnormal pass is based on

• the continuation to which the value is being abnormally passed, called the des-
tination of the abnormal pass; and

• the continuation that would have normally received the result of the abnor-
mal combination (i.e., the combination whose combiner was constructed by
continuation->applicative , and whose evaluation initiated the abnormal
pass), called the source of the abnormal pass.

In selecting guards to intercept the abnormal pass, an exit-guard list is considered
iff the abnormal pass exits the dynamic extent of the associated inner continuation
(that is, if the source is within that dynamic extent, and the destination is not within
it); and an entry-guard list is considered iff the abnormal pass enters the dynamic
extent of the associated outer continuation (the destination is within that extent and
the source isn’t). Exit-guard lists are considered first, proceeding from smallest to
largest dynamic extent (thus, outward from the source), followed by entry-guard lists
proceeding from largest to smallest dynamic extent (thus, inward to the destination).
Note that no extents are exited if the destination is within the extent of the source,
and no extents are entered if the source is within the extent of the destination.

For each exit-guard list considered, the first interceptor (if any) is selected whose
selector’s dynamic extent contains the destination. Symmetrically, for each entry-
guard list considered, the first interceptor (if any) is selected whose selector’s dynamic
extent contains the source. Thus, at most one interceptor is selected from each list.

Rationale:

It doesn’t matter whether a guard list is cyclic, because testing a selector has no
side-effects; cf. the handling of cyclic parent lists by make-environment, §4.8.4.

Interceptors are selected in the order that the guarded dynamic-extent barriers are
passed through — exit from successively larger extents, followed by entrance to succes-
sively smaller extents. Since all relevant guard lists are considered along the path from
source to destination, selecting at most one match from each list maximizes the pro-
grammer’s control over the interception process — analogously to taking a conjunction of
disjunctions in boolean algebra.

In the case of exit guards, this conjunction-of-disjunctions algorithm is just the way
exception-handling facilities in other languages typically work. When an exception is
thrown (to use Java terminology), it is caught first by the first compatible catch clause
of the most recent enclosing try block; and then, if the exception is rethrown, no other
catch clause is considered for that try, but control continues outward to successively less
recent blocks, stopping (if repeatedly rethrown) at no more than one catch clause for
each try.

The handling of entry guards is ruthlessly symmetric to that of exit guards. Languages
with type-based exception hierarchies have no clear analog to Kernel’s entry guards, which

118

occur as a concept only because the hierarchy of exception destinations is alike in kind to
the hierarchy of exception sources; there is therefore, within the author’s experience, no
precedent for the entry-guard facility, and its design is based entirely on the strength of
the exit/entry symmetry.

There was some deliberation over the possibility that, when specifying a nontrivial
selector for an entry guard (i.e., a selector that doesn’t simply intercept everything), the
guarded destination extent will usually have a trusted source extent from which it allows
unobstructed abnormal passing, and will want to intercept just those abnormal entries
that do not come from the trusted extent. One could imagine reversing the polarity
of selection on entry guards, so that an exit guard is selected if the destination belongs
to the selector’s extent, but an entry guard is selected if the source does not belong to
the selector’s extent. However, even if this does turn out to be the most common usage
pattern for entry guards, it was judged more symmetrical and straightforward (thus, less
accident-prone) to use the same selection algorithm for entry as for exit. Complementary
behavior can be achieved, when wanted, by specifying a pass-through guard for the trusted
case followed by a restrictive guard for all other cases; for example,

(guard-dynamic-extent

(list (list trusted ($lambda (x #ignore) x))

(list root-continuation ($lambda (x divert) · · ·)))
($lambda () · · ·)
())

Interception

In the derived normal handling of an abnormal pass, each selected interceptor is called
with two arguments (that is, its underlying operative is called with two operands),
in the dynamic environment of the associated call to guard-continuation . The
two arguments are: first, the value being passed; and second, an applicative based on
the associated outer continuation (as constructed by continuation->applicative).
The call takes place within the dynamic extent of the associated outer continuation,
but outside the dynamic extent of the associated inner continuation; thus, if the in-
terceptor calls its second argument, no interceptions will be caused (since exit guards
only care about abnormal exit from the inner continuation; to be precise, no inter-
ceptions will be caused external to the interceptor call). If the interceptor normally
returns a value, that value becomes the first argument to the next interceptor, or
becomes the value normally passed to the destination if the returning interceptor was
the last selected.

To make this behavior happen, for each selected interceptor a new continuation is
constructed to normally receive its result. The constructed continuation is a child of
the associated outer continuation (so that the call is inside the outer extent but outside
the inner extent); but when it receives a value, it normally sends the received value to
wherever it should go next — passing the value to the destination, or initiating the call
to the next interceptor. One additional continuation is then constructed to normally
receive the value that was abnormally passed, and initiate the first interceptor call.

119

Rationale:

In making the design of Kernel extent guarding work smoothly, a key insight was that,
when an abnormal pass occurs, all the consequent interceptions must be scheduled at once,
with the normal return of a result from each interceptor causing the value to be passed
on to the next interceptor. That is, passing of the value from one interceptor to the next
is not itself subject to interception (normal = not subject to interception). Exception-
handling facilities in other languages typically require a caught exception to be rethrown;
in our terminology, normal return from an interceptor would go to the outer continuation,
and an abnormal pass would be required in order to send the value further along its
way toward the destination. However, that approach only works when all interceptors
are selected by destination. In Kernel, where entry interceptors are selected by source,
initiating a new abnormal pass from within an interceptor might cause entirely different
entry-guard selections, because the new abnormal pass has the earlier interceptor as its
source. Thus, the entire chain of selected interceptions is scheduled to occur as a normal
process; and, in case the interceptor wants to cut the process short, it is given a route to
the associated outer continuation as its second argument. (The possibility was considered
of also providing the destination as an argument — but then, by symmetry one ought also
to provide the source, and at that point the whole mechanism is getting awfully elaborate.)
The handling of outer and inner continuations is then carefully arranged so that, when
an interceptor does call its second argument, no interceptions will occur (external to the
interceptor call).

If an interceptor doesn’t simply ignore its second argument, its interest will almost
always be to pass an object to the outer continuation. At need, the interceptor could
construct a continuation with equivalent behavior to the outer continuation, by evaluating
the following expression (assuming the local name for the applicative is divert):

($let/cc c (extend-continuation c divert))

This expression only works properly if it is evaluated in a dynamic extent that has no
entry/exit guards between it and the outer continuation being simulated. Thus, not only
is the applicative form of the outer continuation more often wanted, but it is also safer
to work with, because if it should somehow fall into the hands of a computation in some
remote dynamic extent, it would grant less power to that remote extent.

Providing the abnormally passed value as the first argument to the interceptor and the
applicative as the second argument, rather than the other way around, avoids illusory cues
to the programmer. If the applicative were the first argument and the value second, the
programmer might be tempted to think of the argument tree as a combination; but if the
argument tree were taken as a combination, the value would be the cadr of the combination
when it ought to be the cdr, and even if that detail were fixed, the combination would
be applicative, when one would almost never intend the value or, worse, parts of it to be
evaluated as arguments before being passed to the outer continuation.

R5RS Scheme supports a limited form of extent guarding through its procedure
dynamic-wind , which unconditionally intercepts all entry/exit of its dynamic extent.
The R5RS doesn’t fully define how dynamic-wind interacts with first-class continuations
(specifically, what happens when a continuation is captured from inside an interceptor),

120

and says nothing about how dynamic-wind interacts with error-signaling. For perspec-
tive, here is a Kernel implementation of dynamic-wind .

($define! dynamic-wind

($lambda (before thunk after)

(guard-dynamic-extent

(list (list root-continuation

($lambda (value #ignore)

(before)

value)))

($lambda ()

(before)

($let ((result (thunk)))

(after)

result))

(list (list root-continuation

($lambda (value #ignore)

(after)

value))))))

7.2.6 root-continuation

root-continuation

This continuation is the ancestor of all other continuations. When it normally
receives a value, it terminates the Kernel session. (For example, if the system is
running a read-eval-print loop, it exits the loop.)

Cf. applicative exit, §7.3.4.

Rationale:

If the hierarchy of continuations didn’t have a maximal element, or if that element
weren’t made available to the programmer, there would be no way to create a guard
clause that is always selected. See for example the implementation of dynamic-wind in
the rationale discussion of §7.2.5.

7.2.7 error-continuation

error-continuation

The dynamic extent of this continuation is mutually disjoint from the dynamic
extent in which Kernel computation usually occurs (such as the dynamic extent in
which the Kernel system would run a read-eval-print loop).

When this continuation normally receives a value, it provides a diagnostic mes-
sage to the user of the Kernel system, on the assumption that the received value is
an attempt to describe some error that aborted a computation; and then resumes

121

operation of the Kernel system at some point that is outside of all user-defined com-
putation. (For example, if the system is running a read-eval-print loop, operation
may resume by continuing from the top of the loop.)

The diagnostic message is not made available to any Kernel computation, and
is therefore permitted to contain information that violates abstractions within the
system (as discussed in §3.7).

When an error is signaled during a Kernel computation, the signaling action con-
sists of an abnormal pass to some continuation in the dynamic extent of error-

continuation .

Rationale:
Making error-continuation available to the programmer serves two purposes: it

allows the programmer to duplicate the built-in action of error-signaling (modulo the
format of the value used to describe the error, which this preliminary report does not
specify), per extensibility Guideline G1b of §0.1.2; and it allows for an exit-guard that
will be selected whenever an error is signaled within the guarded dynamic extent (see for
example the derivation of predicate $binds? , §6.7.1.)

7.3 Library features

7.3.1 apply-continuation

(apply-continuation continuation object)

Applicative apply-continuation converts its first argument to an applicative as
if by continuation->applicative , and then applies it as usual. That is,

(apply-continuation continuation object)
≡ (apply (continuation->applicative continuation) object)

Rationale:
This applicative provides a less cluttered way to abnormally pass values to continua-

tions than by explicitly calling continuation->applicative .
There is also an element of added programmer safety in using apply-continuation

instead of continuation->applicative , because apply-continuation specifically does
not support an optional third, environment argument. Since an abnormal pass ignores
its dynamic environment, the programmer who specifies an environment argument when
applying a continuation is making a conceptual error, which apply-continuation signals.

Derivation

The following expression defines the apply-continuation applicative, using only
previously defined features.

($define! apply-continuation

($lambda (c o)

(apply (continuation->applicative c) o)))

122

7.3.2 $let/cc

($let/cc 〈symbol〉 . 〈objects〉)

A child environment e of the dynamic environment is created, containing a binding
of 〈symbol〉 to the continuation to which the result of the call to $let/cc should
normally return; then, the subexpressions of 〈objects〉 are evaluated in e from left to
right, with the last (if any) evaluated as a tail context, or if 〈objects〉 is empty the
result is inert. That is,

($let/cc 〈symbol〉 . 〈objects〉)
≡ (call/cc ($lambda (〈symbol〉) . 〈objects〉))

Rationale:

Almost all continuation capture follows the pattern abstracted by $let/cc . It is equi-
powerful with call/cc , either being easily rewritten using the other. (Derivations are
given below in both directions.) Including call/cc in Kernel forestalls incompatibilities
that could result from its omission; and making call/cc the primitive underscores that
capturing the current continuation does not require an operative.

Derivation

The following expression defines the $let/cc applicative, using only previously de-
fined features.

($define! $let/cc

($vau (symbol . body) env

(eval (list call/cc (list* $lambda (list symbol) body))

env)))

For perspective, here is an implementation of call/cc using $let/cc :

($define! call/cc

(wrap ($vau (appv) env

($let/cc cont

(apply appv (list cont) env)))))

7.3.3 guard-dynamic-extent

(guard-dynamic-extent entry-guards combiner exit-guards)

This applicative extends the current continuation with the specified guards, and
calls combiner in the dynamic extent of the new continuation, with no operands and
the dynamic environment of the call to guard-dynamic-extent .

123

Derivation

The following expression defines the guard-dynamic-extent applicative, using only
previously defined features.

($define! guard-dynamic-extent

(wrap ($vau (entry-guards combiner exit-guards) env

($let ((local (get-current-environment)))

($let/cc bypass

($set! local bypass bypass)

(apply-continuation

(car ($let/cc cont

($set! local enter-through-bypass

(continuation->applicative cont))

(list bypass)))

#inert)))

($let/cc cont

(enter-through-bypass

(extend-continuation

(guard-continuation

(cons (list bypass ($lambda (v . #ignore) v))

entry-guards)

cont

exit-guards)

($lambda #ignore

(apply combiner () env))))))))

To the client, guard-dynamic-extent appears to call combiner from inside the
guarded continuation without triggering the entry-guards to get there. Internally,
though, it uses guarded-continuation to construct the new continuation and then
abnormally passes control to it. To avoid interception by entry-guards, a prepended
entry guard overrides all of them (by being first on the list) to allow unimpeded
abnormal entry from local dedicated continuation bypass . (In principle, a clever
interpreter might correctly deduce that bypass cannot possibly be used this way
again, and remove the prepended entry guard, making bypass, and local , available
for garbage collection.)

7.3.4 exit

(exit)

124

Applicative exit initiates an abnormal transfer of #inert to root-continuation
(§7.2.6). That is,

(exit) ≡ (apply-continuation root-continuation #inert)

Rationale:

The main advantage of exit over root-continuation is that it is an applica-
tive, rather than a continuation. An obvious benefit is that combiners are easy to
call (it’s their reason for being, after all), whereas a continuation can only be invoked
through an auxiliary call to another combiner (typically apply-continuation , occasion-
ally continuation->applicative). A more subtle benefit (though it comes into play
only mildly in this case) is that combiners induce type errors eagerly. If an operative
receives an operand tree of the wrong type, it signals an error from within the dynamic
extent of the call to the operative. If a continuation receives a value of the wrong type,
it too signals an error — but by the time the continuation actually receives a value, the
source dynamic extent of the abnormal pass has been lost, reducing Kernel’s ability to
provide useful diagnostic information about the source of the problem. It is therefore of-
ten desirable, for safety, to build known type constraints into an applicative shell around
a continuation, and call the shell rather than the continuation.

A secondary advantage of exit over root-continuation is that its name is both
shorter, thus less code-cluttering; and more descriptive of its function in terminating
computation, whereas root-continuation primarily characterizes the role of the contin-
uation as a guard selector.

Derivation

The following expression defines the exit applicative, using only previously defined
features.

($define! exit

($lambda ()

(apply-continuation root-continuation #inert)))

8 Encapsulations

An encapsulation is an object that refers to another object, called its content. The
Kernel data type encapsulation is encapsulated.

Two encapsulations are equal? iff they are eq? (§§4.2.1, 4.3.1).
Encapsulations are immutable.

Rationale:

Type encapsulation is not a primitive type. Rather, it is the union of arbitrarily
many generated primitive types, each with its own matching set of constructor, primitive
predicate, and accessor. Primitive applicative make-encapsulation-type generates a

125

fresh such set each time it is called. These generated sets of tools are minimalist, but,
by isolating the tools in a local environment, the programmer can channel access to them
through a customized interface, effectively synthesizing arbitrary new encapsulated types
(per Guidelines G1b and G4 of §0.1.2).

Programmer-defined encapsulated types are discussed in the rationale of §3.4. For an
example of the practical use of type encapsulation to create customized primitive types,
see the derivation in §9.1.3.

The behavior of predicate equal? on encapsulations is tied to that of eq? to prevent
a more permissive predicate equal? from exposing information about the contents of
encapsulations, and thus weakening the encapsulation of programmer-defined types.

The concept for Kernel encapsulated types was inspired by seals from [Mor73] (on
which see also [SumPi04]).

8.1 Primitive features

8.1.1 make-encapsulation-type

(make-encapsulation-type)

Returns a list of the form (e p? d), where e, p? , and d are applicatives, as
follows. Each call to make-encapsulation-type returns different applicatives e,
p? , and d .

• e is an applicative that takes one argument, and returns a fresh encapsulation
with the argument as content. Encapsulations returned on different occasions
are not eq? .

• p? is a primitive type predicate, that takes zero or more arguments and returns
true iff all of them are encapsulations generated by e.

• d is an applicative that takes one argument; if the argument is not an en-
capsulation generated by e, an error is signaled, otherwise the content of the
encapsulation is returned.

That is, the predicate p? only recognizes, and the decapsulator d only extracts the
content of, encapsulations created by the encapsulator e that was returned by the
same call to make-encapsulation-type .

9 Promises

A promise is an object that represents the potential to determine a value. The value
may be the result of an arbitrary computation that will not be performed until the
value must be determined (constructor $lazy , §9.1.3); or, in advanced usage, the

126

value may be determined before the promise is constructed (constructor memoize ,
§9.1.4).

The value determined by a promise is obtained by forcing it (applicative force ,
§9.1.2). A given promise cannot determine different values on different occasions
that it is forced. Also, if a promise determines its value by computation, and that
computation has already been completed, forcing the promise again will produce the
previously determined result without re-initiating the computation to determine it.

The Kernel data type promise is encapsulated.
The general rules for predicate eq? (§4.2.1) only require it to distinguish promises

if they can exhibit different behavior; the resulting leeway for variation between im-
plementations is similar, in both cause and effect, to that for eq? -ness of operatives
(§4.10). For example, if two promises, constructed on different occasions, would per-
form the same computation to determine their values, and that computation has no
side-effects and must always return the same value, the promises may or may not be
eq? . Two promises are equal? iff they are eq? (§4.3.1).

Rationale:

Kernel promises have a distinctly different character from Scheme promises, because
the encapsulated status of Kernel promises allows Kernel to partition objects into promises
and non-promises. This in turn allows promises to be intermixed freely with non-promise
objects, without losing track of which is which — so that, in this case, encapsulation
promotes first-class-ness (G1a of §0.1.2). The distinct character of Kernel promises will
be elaborated further in rationale discussions throughout the section.

There are two versions of Scheme promises. Promises in the R5RS are supported by
two combiners, delay (which is operative) and force ; but their implementation in the
R5RS contains a memory leak — accumulation of continuations in a situation that ought
to have been tail-recursive (§3.10). SRFI-45, [vT04], fixes the memory leak, introducing
in the process two additional combiners, lazy (another operative) and eager . Kernel
promises more nearly resemble those of SRFI-45 than of the R5RS ; but their encapsulated
status induces further changes to the set of primitives, renaming eager to memoize and
eliminating delay . (See the rationale discussions for $lazy and memoize , §§9.1.3, 9.1.4.)

The general rules for predicate equal? would sometimes permit it to equate two
promises — if, for example, both have previously been forced and contain the same mem-
oized value. However, if such disagreements between equal? and eq? were allowed, they
might sometimes give the programmer a way to determine whether or not a promise has
ever been forced. Hence the stipulation tying the behavior of equal? to that of eq? .

9.1 Library features

9.1.1 promise?

(promise? . objects)

The primitive type predicate for type promise.

127

A library derivation of this combiner will be provided as part of the derivation in
§9.1.3.

9.1.2 force

(force object)

If object is a promise, applicative force returns the value determined by promise;
otherwise, it returns object .

The means used to force a promise depend on how the promise was constructed.
The description of each promise-constructor specifies how to force promises con-
structed by that constructor.

A library derivation of this combiner will be provided as part of the derivation in
§9.1.3.

9.1.3 $lazy

($lazy 〈expression〉)

Operative $lazy constructs and returns a new object of type promise, repre-
senting potential evaluation of 〈expression〉 in the dynamic environment from which
$lazy was called.

When the promise is forced, if a value has not previously been determined for
it, 〈expression〉 is evaluated in the dynamic environment of the constructing call
to $lazy . If, when the evaluation returns a result, a value is found to have been
determined for the promise during the evaluation, the result is discarded in favor
of the previously determined value; otherwise, the result is forced, and the value
returned by that forcing becomes the value determined by the promise.

Forcing an undetermined lazy promise (i.e., a promise constructed by $lazy for
which no value has yet been determined) may cause a sequential series of evaluations,
each of which returns a promise that is forced and thus initiates the next evaluation
in the series. The implementation must support series of this kind with unbounded
length (i.e., unbounded number of sequential evaluations).

Note that forcing concerns the value determined by a given promise, not the result
of evaluating a given expression in a given environment. Distinct promises (judged by
eq?, §4.2.1) represent different occasions of evaluation; so, even if they do represent
evaluation of the same expression in the same environment, forcing one does not
necessarily determine the value for the other, and actual evaluation will take place
the first time each of them is forced.

Rationale:
In SRFI-45, promise constructor lazy (which is a macro) requires the programmer

to guarantee that when its operand is eventually evaluated in the dynamic environment

128

where it was constructed, the result of the evaluation will be a promise. This is necessary
because if the result is an undetermined lazy promise, it should be iteratively forced
(much as described here for $lazy) — and there is no way to distinguish promises from
other objects in the Scheme implementation, so SRFI-45 force can only assume that the
resulting value is always a promise, and access its parts accordingly.

SRFI-45 also provides a second operative constructor of lazy promises, delay , meant
to be compatible with the like-named constructor in the R5RS . delay has a different type
signature than lazy : where the operand to lazy must be an expression that evaluates
to a promise, the operand to delay is an expression that can evaluate to any arbitrary
value; by definition, (delay 〈x〉) ≡ (lazy (eager 〈x〉)).

In Kernel, where type promise is an encapsulated type with its own primitive predicate
(thanks, in the library derivation, to the Encapsulations module, §8), there is no need to
prohibit the operand to $lazy from evaluating to a non-promise object; so we remove
that restriction (per the core statement of design philosophy, §0.1.2). Since the operand
to $lazy can then yield an arbitrary value, it has the same type signature as Scheme’s
delay , eliminating the possible type-signature motive for a Kernel constructor $delay

(compatibility with Scheme being already a non-starter).

History shows that promises are exceedingly easy to mis-implement, and the detailed
description of Kernel’s $lazy operative is chosen to preclude several problems that have
occurred in published implementations.

When, as described above, forcing an undetermined lazy promise causes a sequential
series of evaluations, support for unbounded lengths of series means, simply, iteration in
constant space. The form of the requirement emulates that of the proper-tail-recursion
requirement in §3.10, which is modeled in turn on that of the like requirement in the
Scheme reports. Iterative forcing is not supported by the standard Scheme implementation
of promises, and was the immediate motive for SRFI-45.

The rule for forcing an undetermined lazy promise is phrased in such a way that, when
it does cause a sequential series of evaluations, all of the intermediate promises involved
(whose forcing initiates the evaluations) are forced during the process. Thus, when the
sequence of evaluations is complete, all of the promises involved have determined values,
so that subsequently forcing any of them will not cause further evaluations. The version
of SRFI-45 finalized in April 2004 had failed to meet this requirement, and was corrected
in the official post-finalization update of August 2004.

The forcing rule specifies that, when the expression evaluation returns a result, the
result is discarded if a value was determined for the promise during the evaluation. While
this does curtail needless iteration (in case the result of evaluation is an undetermined
lazy promise), its primary purpose is to guarantee that any given promise will always
determine the same value. The R3RS implementation of promises didn’t check for a
previous determination before storing the result of evaluation, and consequently violated
this invariant; the R4RS corrected this, but accompanied its bug-fix with test code that
did not actually test for the bug, and the bug reappeared in the April version of SRFI-45.
Again, the problem was corrected in the August post-finalization update.

(The rule for forcing an undetermined lazy promise is also phrased so that it explic-
itly requires each forced evaluation, once initiated, to complete even after a value has

129

already been determined despite the fact that the result of that completion will certainly
be discarded. This clarifies the phrasing in the R5RS , which so strongly emphasized
determination of values that the status of the evaluations themselves was somewhat un-
derstated.)

Derivation

The following expression defines the promise?, force , $lazy , and memoize com-
biners, using only previously defined features.

($provide! (promise? memoize $lazy force)

($define! (encapsulate promise? decapsulate)

(make-encapsulation-type))

($define! memoize

($lambda (value)

(encapsulate (list (cons value ())))))

($define! $lazy

($vau (exp) env

(encapsulate (list (cons exp env)))))

($define! force

($lambda (x)

($if (not? (promise? x))

x

(force-promise (decapsulate x)))))

($define! force-promise

($lambda (x)

($let ((((object . env)) x))

($if (not? (environment? env))

object

(handle-promise-result x (eval object env))))))

($define! handle-promise-result

($lambda (x y)

($cond ((null? (cdar x)) ; check for earlier result

(caar x))

((not? (promise? y))

(set-car! (car x) y) ;

(set-cdr! (car x) ()) ; memoize

130

y)

(#t

(set-car! x (car (decapsulate y))) ; iterate

(force-promise x))))))

Rationale:
This derivation represents a promise internally as a data structure of the form

promise: q q ()

q

object

q env

If env is an environment, the promise is lazily waiting to evaluate object in environment
env ; otherwise, env is nil, and the promise has memoized (thus, determines) the value
object .

The implementation of applicative force only directly handles the case that the forced
object is not a promise; all other cases it delegates to applicative force-promise , which
acts on the content of the promise, not on the encapsulated object itself. force-promise
disposes of promises already in memoized state, and advances processing of undetermined
lazy promises by performing the previously suspended evaluation, but then delegates
handling the result of evaluation to handle-promise-result .

Most of the core logic of the implementation, including the subtleties that have caused
problems historically, is in handle-promise-result .

The first cond-clause handles the case that the promise was actually forced during
the evaluation, so that on entry to handle-promise-result a result for this promise has
already been memoized. Failing to make this check was the bug in the R3RS that was
corrected by the R4RS . Here is (ugly) Kernel code to test this behavior.

($provide! (get-count p)

($define! count 5)

($define! get-count ($lambda () count))

($define! p

($let ((self (get-current-environment)))

($lazy

($if (<=? count 0)

count

($sequence

($set! self count (- count 1))

(force p)

($set! self count (+ count 2))

count))))))

131

Following these definitions,

(get-count) =⇒ 5

(force p) =⇒ 0

(get-count) =⇒ 10

Evaluation of (force p) causes five evaluations of the operand of $lazy , nested within
each other. Each evaluation of the operand returns a different result; but all five calls
to force return 0, because that is the result of the innermost operand evaluation, which
returns first. The fact that the other four operand evaluations do complete is evident
from the fact that count is left at twice its original value.

The second cond-clause in handle-promise-result is the ordinary terminal case
of forcing, where the result of evaluation is not a promise; in which case, the result is
memoized in the promise, so that forcing this promise again later will not cause further
computation.

The third cond-clause handles the iterative case of forcing, where the result of evalu-
ation is itself a promise. By mutating the forcing promise x to reference the same second
pair as the resultant promise y , the clause guarantees that y will not be forced more than
once. This was the subject of a subtle bug in the April version of SRFI-45: That version
copied the content of y back into x and then discarded y ; and in doing so, it effectively
created a clone of the internal state of y . The clone was then forced; but the original y
remained unforced, so that, if y had not been determined before cloning, its evaluation
might be re-initiated later. Here is a sequence of expressions that test this behavior.

($define! p1 ($lazy (display "*")))

($define! p2 ($lazy p1))

(force p2)

(force p1)

The correct behavior on this sequence is that (force p2) displays an asterisk, but then
(force p1) does not.

The third clause also enables promises to be forced iteratively: at an intermediate
point during computation, when forcing the original promise (here, x) has been reduced
to forcing another promise (here, y), the code that orchestrates the forcing process makes
a tail call. In the implementation of promises in the R5RS , the orchestrating code failed
to make a tail call, resulting in the memory leak that motivated SRFI-45. (Correcting the
problem involved a fairly drastic internal rearrangement of the implementation, so one
can’t point to any one place in the R5RS implementation where a tail call should have
occurred.) Here is a sequence of expressions that test iterative forcing.

($define! stream-filter

($lambda (p? s)

($lazy

($let ((v (force s)))

($if (null? v)

v

($let ((s (stream-filter p? (cdr v))))

($if (p? (car v))

132

(cons (car v) s)

s)))))))

($define! from

($lambda (n)

($lazy (cons n (from (+ n 1))))))

(force (stream-filter ($lambda (n) (=? n 10000000000))

(from 0)))

Here, a stream represents a possibly infinite list by using promises to defer elaboration
of later elements of the list. (from n) represents the infinite list of integers ascending
from n. stream-filter takes a predicate and a stream, and constructs a new stream
representing the list of elements of the given stream that satisfy the given predicate.
In an iterative implementation of promises, the final expression in this sequence should
iteratively force ten billion and one promises, finally producing a cons cell whose car is
ten billion, and whose cdr is a stream. (Forcing the cdr stream would never terminate,
since none of the integers greater than ten billion are equal to ten billion — but shouldn’t
run out of memory, either, since the implementation is properly tail-recursive.)

A subtlety, BTW, of the last example is that it only works in bounded space because
the stream generated by (from 0) is only used by stream-filter . Thus, at any given
moment in the iterative forcing, only one segment of the stream of integers is reachable,
and everything to its left is garbage. If, in place of the last expression above, we had
written

($define! s (from 0))

(force (stream-filter ($lambda (n) (=? n 10000000000))

s))

then we would eventually run out of memory, because the entire stream of integers from
zero on up would have to be retained in memory. (Even the “bounded space” version
isn’t really bounded, because the increasing integers themselves take space logarithmic in
their magnitude; but since occupying all of memory that way would take longer than the
age of the universe, we choose to overlook it.)

9.1.4 memoize

(memoize object)

Applicative memoize constructs and returns a new object of type promise, repre-
senting memoization of object . Whenever the promise is forced, it determines object .

A library derivation of this combiner was provided as part of the derivation in
§9.1.3.

Rationale:
A basic right of first-class objects is the right to be the result of a general computation

133

(§B); and promises are supposed to represent the potential to do general computation.
So if there were some particular type t of objects that could be the result of general
computation, but couldn’t be the result of forcing a promise, one would have to conclude
either that type promise wasn’t entirely living up to its obligations, or (by extrapolation
of the usual right of first-class objects) that type t wasn’t quite as first-class as it ought
to be. (Moreover, the inability to return objects of type t from lazy computations would
in turn weaken their right to be stored in lazily expanded data structures (as illustrated
below) — again casting doubt on their first-class status.)

If $lazy were the only constructor of promises, then forcing a promise could never
result in a promise — so that type promise would be either short on its obligations, or
short on first-class status. Constructor memoize provides the wherewithal for a promise
to determine a promise. That is, it allows a promise to be the result of lazy computation.

As a concrete example: Define a stream to be a promise that will determine either nil,
or a pair whose cdr is a stream. One could then define the following function stream-ref

that returns the element at index k of a stream (zero-indexed):

($define! stream-ref

($lambda (s k)

($let ((v (force s)))

($if (>? k 0)

(stream-ref (cdr v) (- k 1))

(car v)))))

Applicative stream-ref immediately forces the stream to determine a result. If one
wants instead to construct a promise to access that element of the stream later, one
might (naively) write:

($define! lazy-stream-ref

($lambda (s k)

($lazy (stream-ref s k))))

When the result of lazy-stream-ref is later forced, the operand (stream-ref s k)

is immediately evaluated, and returns whatever object was at the indexed position in
the stream; and this value is then iteratively forced (per the specification for constructor
$lazy). If the value stored at that position in the stream is a non-promise, forcing it will
have no effect on it, and it will be returned as intended. If, however, the value stored at
that position in the stream is a promise, it will be forced — which may not be what was
intended, and is certainly inconsistent with what would have happened if we had used
stream-ref instead of lazy-stream-ref. To bring the behavior of lazy-stream-ref

into line with that of stream-ref, one would instead write:

($define! lazy-stream-ref

($lambda (s k)

($lazy (memoize (stream-ref s k)))))

Now, forcing the result will again evaluate (stream-ref s k), but the value returned
is memoized, and the memoizing promise is iteratively forced — so that the final result
of forcing the promise is the k-indexed element of the stream even if that element is a
promise.

134

In SRFI-45, a constructor of promises substantially identical to memoize is called
eager. Because SRFI-45 lacks a type predicate promise? for distinguishing promises
from non-promise objects, its support for lazy promises requires the programmer to write
code that always generates a promise, either eager or lazy; so eager is in fact the sole
primitive alternative to lazy , which lends plausibility to the name. However, since Kernel
can always distinguish promises from non-promise objects, lazy promises are commonly
managed without ever constructing an eager promise (as above in stream-ref); and the
name eager seems singularly inappropriate for a constructor whose net effect is to allow
forcing to stop short of resolving all promises; so we choose instead to call it memoize,
which is after all what it does internally.

In those uses of promises where memoize is needed, a common idiom is that the call
to memoize is nested immediately inside a call to $lazy , as in the above derivation of
lazy-stream-ref. This idiom provides the exact semantics of the sole promise construc-
tor in standard Scheme, macro delay : evaluation of the operand to delay (the operand to
memoize in the Kernel idiom) is postponed, but once performed its result will be returned
without iterative forcing. SRFI-45, whose whole purpose is to support iterative forcing,
defines delay by equivalence (delay 〈x〉) ≡ (lazy (eager 〈x〉)). The corresponding
derivation in Kernel would be

($define! $delay

($vau (x) e

($lazy (memoize (eval x e)))))

Serious consideration was given to including such an operative in Kernel. The name
$delay was rejected on the grounds that that name would tend to somewhat obscure the
relationship of what is being done to the underlying iterative-forcing mechanism (thus hid-
ing information that the programmer should be aware of, rather than information that the
programmer shouldn’t be bothered by). A more explicit name, such as $lazy-memoize,
was considered, but seems scarcely more readable that the idiomatic nested calls, so would
smack of feature bloat. There would be no feature bloat in including $lazy-memoize if
memoize itself were omitted from the language; but guaranteeing that iterative forcing
won’t pass a certain point is logically distinct from postponing computation, so it seems
that memoize ought to be provided.

10 Keyed dynamic variables

A keyed dynamic variable is a device that associates a non-symbolic key (in the form
of an accessor applicative) with a value depending on the dynamic extent (§7.1) in
which lookup occurs.

Rationale:
Most modern Lisps are “statically scoped”, meaning that the binding of a variable

depends on where it is evaluated (the surrounding static extent, i.e., the current envi-
ronment) rather than on when it is evaluated (the surrounding dynamic extent, i.e., the
current continuation). Most dynamic information needed by an algorithm is supplied

135

to it by means of explicit parameter passing. However, explicit parameter passing only
makes sense if the information to be passed is locally relevant to both caller and callee.
When dynamic information must be propagated more-or-less universally through a large
dynamic extent, but is locally relevant at only a few static locations, one uses a dynamic
variable.

In Common Lisp ([Ste90]), the value of a symbolic variable in an environment may
be determined statically or dynamically. This approach was rejected for Kernel, on the
grounds that it degrades orthogonality of function between types environment and contin-
uation — those types being the embodiments of, respectively, static and dynamic context.
While Kernel supports dynamic lookup, it preserves orthogonality by using applicative
accessors instead of symbolic keys; thus, there is just one lookup rule for symbols.

The particular form of the provided support is parallel to that of the Encapsula-
tions module (§8): A factory applicative (here, make-keyed-dynamic-variable) gener-
ates unique matching sets of tools (here, a binder and an accessor). The tools themselves
are then subject to being statically bound by symbols in a local environment, and are
thus subject to hiding by just the same means as any other Kernel facilities.

10.1 Primitive features

10.1.1 make-keyed-dynamic-variable

(make-keyed-dynamic-variable)

Returns a list of the form (b a), where b and a are applicatives, as follows. Each
call to make-keyed-dynamic-variable returns different b and a.

• b is an applicative that takes two arguments, the second of which must be a
combiner. It calls its second argument with no operands (nil operand tree) in
a fresh empty environment, and returns the result.

• a is an applicative that takes zero arguments. If the call to a occurs within the
dynamic extent of a call to b, then a returns the value of the first argument
passed to b in the smallest enclosing dynamic extent of a call to b. If the call
to a is not within the dynamic extent of any call to b, an error is signaled.

As an illustration of how this facility might be used, here is a hypothetical deriva-
tion of the current-input-port facilities from the Ports module (§15, where the features
hypothetically derived here are primitive).

($provide! (with-input-from-file get-current-input-port)

($define! (binder accessor) (make-keyed-dynamic-variable))

($define! with-input-from-file

($lambda (filename appv)

136

(call-with-input-file

filename

($lambda (port)

($let ((result (apply binder (list port appv))))

(close-input-port port)

result)))))

($define! get-current-input-port accessor))

Using this code as written, the Kernel interpreter would have to be called through
with-input-from-file , in order to specify the default input port. Alternatively,
one might modify the code by building a compound version of get-current-input-
port that substitutes a default if the primitive accessor fails:

($define! get-current-input-port

($lambda ()

(guard-dynamic-extent

()

($lambda () (accessor))

(list (list error-continuation

($lambda (#ignore divert)

(apply divert

default-input-port)))))))

Rationale:

The possibility was considered of allowing make-keyed-dynamic-variable to take an
optional argument that would serve as a default value when the accessor is called outside
of the dynamic extent of any call to the binder. It was decided that such a default value is
not obviously part of the mandate of the keyed-dynamic-variable device; so, to maintain
the orthogonality of the device, imposition of default values was left to the programmer,
with an example provided showing how it may be accomplished.

Consideration was also given to whether a keyed-variable binder ought to call its
second argument in its dynamic environment, rather than in an empty environment.
However, our expectation is that the combiner argument will usually be customized for
the particular binder-combination; in such a case, the combiner is constructed during
the combination’s argument-evaluation, at which time the dynamic environment could be
deliberately captured. We therefore prefer the more hygienic, hence less accident-prone,
behavior; also cf. call/cc , §7.2.2. The caller’s dynamic environment would be preferred
if general call semantics were fundamental to the operation (as with apply , §5.5.1, or,
even more so, map, §5.9.1). Also, the dynamic environment would naturally be provided
if, instead of providing an algorithm to the binder through a combiner argument, one
made the binder operative and provided the algorithm an expression operand, similarly
to $let (§5.10.1) — since in that case there would be no argument-evaluation during
which to deliberately capture the dynamic environment.

137

As long as Kernel doesn’t support concurrency, it would be possible to implement
dynamic variables as a library facility; for each dynamic variable, one would simply main-
tain a global stack of values, which at any given moment would simulate the calls to b
enclosing the current continuation. This approach, however, would lose miserably in the
presence of concurrency, since there would then be more than one current continuation.
Therefore, make-dynamic-variable is presented here as a primitive, in anticipation of
concurrency support to be added later.

11 Keyed static variables

A keyed static variable is a device that binds data in an environment by a non-symbolic
key, where the key is an accessor applicative.

Cf. module Keyed dynamic variables, §10.

Rationale:

Statically scoped symbolic variables are ideally suited as a basis for regulating ac-
cess to Kernel facilities: being statically scoped, they vary mostly with location in the
source-code, which is the basis on which programs are naturally organized; and symbols
being publicly accessible keys, they are a natural basis for general-purpose information
distribution.

A binding (of a symbol or other key) is shadowed when it isn’t visible in an environment
e despite being contained in an ancestor a of e, because another binding for the same key
is located in some ancestor a′ of e and, during lookup in e, a′ is visited before a. The very
fact that symbols are publicly accessible keys, which makes them suitable for general-
purpose access regulation, also means that a symbolic binding in a might be shadowed in
e by anyone with access to a′. Sometimes, though, we may want to regulate access to the
key, so that access to a′ does not necessarily confer unlimited power to bind that key in a′;
this would allow the construction of tools that interact with their dynamic environments
in advanced but strictly regulated ways. Some cross-cutting concerns in aspect-oriented
programming may call for a tool to behave in a certain way just when it is called from
within a certain static extent; or, as a more traditional example, one might want to build a
Scheme-style environment-mutator, that affects pre-existing non-local bindings (cf. Kernel
$set!, §6.8.1).

The particular form of the provided support is parallel to that of the Encapsu-
lations and Keyed dynamic variables modules (§§8, 10): A factory applicative (here,
make-keyed-static-variable) generates unique matching sets of tools (here, a binder
and an accessor). The tools themselves are then subject to being statically bound by
symbols in a local environment, and are thus subject to Kernel’s general-purpose access-
regulation techniques.

138

11.1 Primitive features

11.1.1 make-keyed-static-variable

(make-keyed-static-variable)

Returns a list of the form (b a), where b and a are applicatives, as follows. Each
call to make-keyed-static-variable returns different b and a.

• b is an applicative that takes two arguments, the second of which must be
an environment. It constructs and returns a child-environment of its second
argument, with initially no local bindings.

• a is an applicative that takes zero arguments. If the dynamic environment e
of the call to a has an improper ancestor that was constructed by a call to
b, then a returns the value of the first argument passed to b in the first such
environment encountered by a depth-first traversal of the improper ancestors of
e. If e has no improper ancestors constructed via b, an error is signaled.

Rationale:

Traditionally in Lisp, unique limited-access static keys are achieved via gensyms (short
for generated symbols). Gensyms are generated one-off by a generator procedure, typically
called gensym, and cannot be created from input representations (in common parlance,
they are uninterned symbols); so they are not publicly accessible; but because they are
still considered symbols by the Lisp system, they are acceptable to all the usual facilities
for static bindings. (E.g., [Ste90, §10.3].) Allowing the unique/limited-access key facility
to tap into the usual static-symbolic-binding facilities is, at least, somewhat parsimonious
of features; but it clearly does not foster orthogonality between the features. So for the
Kernel design we prefer a strictly non-symbolic approach.

The uses identified, to date, for non-symbolic static variables are related to environ-
ment mutation; but the ability to regulate shadowing of bindings —thus allowing a sort
of “perfect hygiene” in tools that remotely manipulate environments— is not obviously
tied to mutability; so, for the integrity of the underlying concepts involved, we prefer that
the new facility be orthogonal to environment mutation.

Moreover, if the new facility were directly based on mutation, it would confer a capa-
bility that is not obviously related to non-symbolic static variables at all: the capability
to determine in an effectively non-destructive way whether any given environment is an
ancestor of another given environment. Given candidate ancestor a and candidate descen-
dant d, one could reliably find a symbol s that isn’t bound in d (using string->symbol

and $binds? ; §§13.1.1, 6.7.1); then, if s is bound in a, a isn’t an ancestor of d, otherwise
mutate a by binding s in it, and look to see whether the new binding is visible in d. The
process is destructive because there is then no way to get rid of the binding of s in a;
however, if a key k could be generated one-off for the occasion (whether a non-symbol or
a gensym), its binding in a could be left in situ, where it would have no further effect on
computation since no part of future computation would have access to k. So the facility

139

intended to support regulated extensions to environment manipulation would actually
support unregulated (and unregulable) ancestor-testing.

The non-mutation-based alternative is to build the desired non-symbolic static bind-
ing into an environment at the time the environment is constructed — just as dynamic
bindings are built into continuations at construction time in §10. As in the dynamic case,
even though the binding itself refers to a fixed object, the effect of binding-mutation can
still be achieved by mutating the referent. This sort of construction might have taken
the form of a $let -like operative construct; but that approach was rejected because it
is highly non-orthogonal to the primary information-hiding facility of the language —
symbolic static variables.

To illustrate, suppose the keyed-static-variable facility is used to construct a child
environment e of the surrounding current environment e′, with the bound value being a
compound combiner c. If the constructor for e followed the model of $let (§5.10.1), then
the expression constructing c would be evaluated in e′; then c could capture e′, as by

($let-keyed ($let ((parent-env (get-current-environment)))

($lambda ...))

...)

but then c would not have access to e. If the constructor for e followed the model of
$letrec (§6.7.5), the expression constructing c would be evaluated in e, so could capture
e by

($letrec-keyed ($let ((child-env (get-current-environment)))

($lambda ...))

...)

but then, in order to grant c access to e′, one would have to capture e′ with a binding that
would be visible throughout e. A general keyed-static-variable facility oughtn’t have to
wrestle with this access issue at all (neither to choose between e and e′, nor to provide both
constructors and thus bloat the feature interface); so, instead, we model the constructor
on applicative make-environment (§4.8.4) rather than any operative of the $let family.
One could then give c access to either or even both of e and e′, without use of bindings
in either environment, by

($let ((parent-env (get-current-environment)))

($letrec ((child-env (binder ($letrec ((c ($lambda ...)))

c)

(get-current-environment))))

child-env))))

(an arrangement that also, for good measure, gives c the wherewithal to call itself recur-
sively).

12 Numbers

This section describes the required Numbers module and five optional modules that
assume it. Module Numbers supports type number and its subtype integer ; between

140

them, the five optional modules define another five subtypes of number (including
subtype exact, which is defined by module Inexact but contains just those numbers
that would be supported without that module). Features are grouped into separate
subsections by module, according to which module is necessary to the purpose of each
feature; but, having placed the entry for a feature with one module, the behavior of
that feature on numbers of subtypes from all five optional modules is specified in that
one entry. For example, applicative sin is grouped with module Real, but the entry
there includes its behavior on complex numbers.

We distinguish between a mathematical number, which is an abstract idea; a Ker-
nel number, or simply number, which is a Kernel object that determines (exactly),
or approximates (inexactly), a mathematical number; an external representation of
a Kernel number, which is a sequence of characters that describes, or partially de-
scribes, a Kernel number (below, §12.4); and an internal number, which is a presumed
data structure of the Kernel implementation that determines a mathematical number
(below, §12.3). Note that an internal number determines a mathematical number, not
a Kernel number; determining a Kernel number may require more than one internal
number, if the Kernel number is inexact (below, §12.2).

The numerical sublanguage described in this section is designed to be largely in-
dependent of both what internal number formats are used, and how large a domain of
mathematical numbers is modeled. It draws freely on its R5RS Scheme counterpart
([KeClRe98, §6.2]), but modifies its approach for Kernel’s design policies, and incor-
porates two significant extensions to the R5RS Scheme notion of number: infinities,
and bounds on inexact real numbers.

All numbers are immutable, and equal? iff eq? . The number type is encapsu-
lated.

Rationale:

The R6RS introduces concrete numeric representation issues (such as fixnums, flon-
ums, and NaNs) into the purely abstract treatment of numbers from the previous Scheme
reports ([Sp+07]).13 One reason suggested for doing so is that, while attempting to be in-
dependent of internal number formats, the abstract Scheme treatment of numbers allowed
so many variant behaviors that it left itself open to rabid non-portability. The Kernel
design agrees with this objection (on grounds that non-portable number support degrades
the programmer’s ability to use numbers freely, contrary to first-class-ness Guideline G1a
of §0.1.2); but the R6RS alternative multiplies the number of numeric features, violating
Kernel’s core design philosophy (top of §0.1.2). There is a profound difference between
constraining low-level behavior, which promotes portability; and inflating the programmer
interface with low-level details, which, besides the feature bloat itself, promotes fragmen-
tation of the language semantics and thereby degrades first-class-ness. Kernel provides an
abstract programmer interface to numbers, but seeks to avoid the somewhat ad hoc char-
acter of the abstract R5RS interface by moderating its interface through explicit design

13The R5RS abstract treatment of numbers dates back to the R2RS , [Cl85].

141

principles (a lesser echo of the overall Kernel design strategy). Kernel admits flexibility for
problem-domain-driven variations in internal number formats, but seeks to avoid rampant
non-portability by disallowing variations that would be merely stylistic.

The Kernel design purpose of infinities is to bound sets of finite real numbers that
have no finite bounds. For example, the max of an empty list of real numbers —which, for
smooth behavior of max , must be no greater than the max of any non-empty list of real
numbers— is negative infinity; the min , positive infinity (§12.5.13). An important case is
bounds on inexact real numbers: if no finite upper or lower bound can be be placed on
the set of mathematical numbers that might be approximated by an inexact real, we can
still assign it upper bound positive infinity, and lower bound negative infinity.

When an arithmetic operation involves an infinity, either among its arguments or as
its result, it should be understood as a limit, as with the arctangent of positive infinity,
which is exactly pi over two (though an implementation of module Real doesn’t have to
support exact modeling of that mathematical number). This principle also implies that
certain operations are not defined, such as division by zero, which has no determinate
primary value since it has different one-sided limits as zero is approached from above or
from below (or, worse, from an arbitrary direction in the complex plane; re / , see §12.8.2).

The Kernel design purpose of inexact numbers is to support not only approximations
of mathematical numbers (as in R5RS Scheme), but also bounds on those approximations.
See the rationale discussion of §12.2.

Encapsulating the number type does not interfere with support for extended subtypes
of number. For example, if a number subtype quaternion were added, encapsulation
would prohibit any standard feature from returning a non-complex quaternion when given
complex arguments, because its behavior on complex arguments is described in the report;
but its behavior on non-complex quaternions is not described in the report, so given any
non-complex quaternion argument it could return a non-complex quaternion.

12.1 Kinds of mathematical numbers

The only mathematical numbers modeled by the Numbers module are the integers
(positive, zero, and negative), and positive and negative infinity (countable). Succes-
sively larger domains of mathematical numbers are modeled via optional modules:

Rational — admits finite ratios of integers.
Real — admits finite real numbers that might not be rational.
Complex — admits sums and products of numbers with complex i.

Module Real assumes module Rational. Module Complex assumes module Real.
Each of these modules supports a subtype of type number, with the same name

as the module. Subtype rational is a supertype of integer, real is a supertype of
rational, and complex is a supertype of real.

Rationale:

Integers and infinities are included in required module Numbers because they are
needed for the core modules, e.g. length (§6.3.1). Module Complex assumes module

142

Real because both rectangular and polar accessors are provided, so that trigonometry is
involved even if only Gaussian integers are constructed. It would seem a daunting task to
implement module Real without module Inexact, but in case someone has a reason to do
so, the report doesn’t preclude it, i.e., module Real doesn’t assume module Inexact.

12.2 Inexactness

An exact Kernel number models some particular mathematical number, and is rep-
resented in the Kernel implementation by an internal number. However, sometimes
there may be no way for an internal number to capture a mathematical number that
the client wants to reason about, either because the intended mathematical number
cannot be represented by an internal number (as with exclusively rational internal
number formats confronted with an irrational mathematical number), or because the
client doesn’t know exactly which mathematical number to model (as with an ex-
perimental measurement, or the result of arithmetic on numbers that were already
inexact). Optional module Inexact associates to each real Kernel number a mathe-
matical upper and lower bound, between which the intended mathematical number
is certain to fall if the intended mathematical number exists at all. It also partitions
type number into subtypes exact and inexact, each of which intersects, but is not a
sub- or supertype of, the other subtypes of number described in the report (integer,
rational, etc.).

An inexact real number is represented internally by an internal real upper bound ;
an internal real lower bound ; optional internal real primary value; and optional robust
tag. The intended mathematical number, if it exists, is certain to be no less than the
lower bound, and no greater than the upper bound. If the number is robust (i.e., is
tagged so), the intended mathematical number is certain to exist. The primary value
is a best guess at the intended mathematical number, within the bounded interval. If
there is no primary value, the “best guess” is that the intended mathematical number
does not exist; but if it does exist it must still fall within the bounded interval. An
inexact number with no primary value cannot be robust. An inexact real number
has lower bound no greater than its upper bound. When an inexact “real” number
is created with lower bound greater than its upper bound, the number is said to be
undefined ; there is only one undefined number (i.e., all undefined numbers are eq?),
which does not belong to type real, nor even to type complex ; the only subtype of
number that it belongs to is inexact . If an arithmetic operation with any undefined
argument returns a result, that result must be undefined.

Because types inexact and exact are mutually exclusive, an inexact real is not an
exact real, even if the inexact real is robust and its upper and lower bounds are the
same as its primary value. However, an exact real is considered to be robust, and to
have itself as its primary value and upper and lower bounds. When an arithmetic
operation in module Numbers or Rational is given only exact arguments, the result
of the operation must be exact.

143

When any real arithmetic operation is performed (“real” in the sense of real ar-
guments and real result),

• The primary value of the result is based solely on the primary values of the
arguments, taking into account the internal number formats of those primary
values. (Therefore, the primary value of the result cannot depend on the bounds,
robustness, nor exactness, of the arguments.) If any of the arguments doesn’t
have a primary value, the result cannot have a primary value.

If the result doesn’t have a primary value (and even if all of the arguments
do have primary values), an error is or is not signaled depending on the current
value of the strict-arithmetic keyed dynamic variable (§12.6.6).

• The closed interval between the upper and lower bounds of the result must in-
clude every possible result of the operation from any mathematical real primary
values within the bounds of the arguments. For example, if an integer two, with
upper bound three and lower bound one, is added to itself, the result is four
with an upper bound of at least six and a lower bound of at most two.

• If some choice of primary argument values within the argument bounds would
result in failure of the operation, the result cannot be robust. For example, if
exact 1 is divided by an inexact 1 with lower bound less than zero, the result has
primary value 1, upper bound positive infinity, lower bound negative infinity,
and is not robust.

When any arithmetic operation is performed that involves complex numbers, the
above rules are applied by treating separately each real component of each non-real
complex number (in whatever internal coordinate system is used for each complex
number; see §12.3.1, below). When an operation takes a complex argument, it behaves
as a specialized operation taking the two real components separately; and when an
operation returns a complex result, it behaves as if it were two operations, each
returning one real number. (Moreover, if an implementation supports any other
kind of hypercomplex number, again the above rules are applied by treating real
components separately.)

An implementation can fully support module Inexact without making any effort
to maintain finite bounds or robustness on inexact real numbers, because the require-
ments of the module —excepting exact operations on exact arguments— only prevent
inexact numbers from claiming greater precision than is actually certain. The imple-
mentation might simply take all inexact real numbers to be non-robust with upper
bound positive infinity and lower bound negative infinity, and describe each inexact
real number by a single internal real number and a tag indicating that it is inexact
(since the implementation is required to distinguish between exact and inexact num-
bers). Optional module Narrow inexact lets the client instruct the implementation to
maintain bounding and robustness information, through the narrow-arithmetic keyed
dynamic variable (§12.7.1). Module Narrow inexact assumes module Inexact.

144

If an operation on numeric arguments depends on their values to determine behav-
ior other than a numeric result, and the operation is given a numeric argument with
no primary value, the operation signals an error. (As earlier, a complex argument is
treated here as if it were two real arguments.) The numeric comparison predicates
(§§12.5.2, 12.5.3) are paradigmatic of such operations. Type predicates notably do
not belong to this class of operations because, although some of them may use a pri-
mary value when present, they do not depend on its presence: absence of a primary
value is at most a cause for returning false.

Rationale:
When a Scheme arithmetic operation produces an inexact result, that result conveys

no certain knowledge at all. However, if one has certain bounds on the arguments of the
operation, and knows the internal number formats being used, one can deduce certain
upper and lower bounds on the result. The implementation knows the internal number
formats, while the client should worry about them as little as possible; so we provide
means for the implementation to deduce the bounds and provide that information to the
client, empowering the client to accommodate differences between internal number formats
while maintaining the abstract treatment of numbers. Since this kind of deduction by the
implementation is a substantial effort that may be irrelevant to some applications, we
separate out the means by which the client requests it to a dependent optional module,
Narrow inexact.

In bounding an inexact arithmetic result, the bounded interval is required to include
results from all choices of mathematical primary values of the arguments, rather than
merely all supported internal primary values of the arguments. Requiring coverage of all
choices of real primary values prohibits the bounds from taking advantage of non-support
for optional modules (e.g., even if only integers are supported, arbitrary real choices must
be covered by the interval). Requiring coverage of all choices of mathematical, rather than
internal, real primary values prohibits the bounds from taking advantage of limitations
on support for internal number formats.

This revision of the report leaves flexibility for implementations of module Narrow in-
exact to decide for themselves just how tightly to bound the results of narrow-arithmetic
operations. Flexibility here entails non-portability of narrow-inexact bounding behavior;
but the numerical analysis issues involved appear to be quite deep (especially when con-
templating complex arithmetic), and were not studied in depth for this revision; so, for
the moment, we leave implementations free to address these deep issues for themselves,
rather than impose ill-considered constraints now and then have to repair it later after
forcing implementations to choose between non-conformant behavior and poor behavior.

When the strict-arithmetic keyed dynamic variable is false (§12.6.6), and the numeric
result of an operation depends on the value of a numeric argument that has no primary
value, the operation has the option of returning a number with no primary value instead
of signaling an error. However, non-numeric types generally do not have states signifying
‘probably, but not necessarily, non-existent’; so when a non-numeric result depends on
the value of a numeric argument with no primary value, there is no non-strict alternative
to an error signal. In the case of predicates on numbers, such as numeric comparisons
(=?, §12.5.2, etc.), one might be tempted to handle lack of primary argument value by

145

simply returning false; however, the use of such predicates on inexact numbers is already,
by nature, a guess based on best information available, and lack of a primary value means
that the best information available indicates that the question has no answer (cf. mu in
[Ra03]). Framing the situation in purely practical terms, the results of numeric predicates
are used to determine branching of control flow (the design purpose of type boolean), and
it would be merely a coincidence if, in a particular case, false causes a more useful no-
primary-value behavior than true; so returning either boolean value on no-primary-value
is essentially a random guess, and accident avoidance (G3 of §0.1.2) favors signaling a
dynamic type error.

12.3 Internal numbers

Internal numbers are, as stated earlier, presumed data structures of the Kernel im-
plementation. Because implementations only have to match the abstract behavior
described in this report, internal numbers needn’t be realized as concrete data struc-
tures, and even if they are, the format of the concrete data structures is not con-
strained by the report. However, under various circumstances implementations are
constrained to behave as if internal numbers were concrete data structures with par-
ticular formats, and these constraints are the subject of the current section (§12.3).

12.3.1 Complex numbers

An inexact complex number is represented internally by a choice of coordinate system,
and real Kernel numbers for the coordinates. The coordinate system must be one of
those used by the available primitive constructors (here, make-rectangular and
make-polar , §12.10), although a number returned by one of these constructors does
not have to be represented internally in the coordinate system of that constructor.
Accessors are provided to extract coordinates under each of these coordinate systems;
and if that system is used internally to represent the accessed complex number, the
accessor returns the internally stored coordinate.

An exact finite complex number is always internally represented in rectangular
coordinates.

An exact infinite complex number (i.e., an exact complex number with infinite
magnitude) is represented internally either in rectangular coordinates, or in point-
projective form. Rectangular coordinates can be used for the internal representation
only if one of the rectangular coordinates is finite. In point-projective form, an exact
finite non-zero complex number (the point) is specified, which determines the direction
from zero of the represented infinite complex; that is, the represented number is
exact positive infinity times the point. The point doesn’t have to be stored internally
in any normal form (it only has to be exact, finite, and non-zero), but any given
implementation must normalize the point when writeing the infinity, so as not to
reveal anything about eq? numbers that couldn’t be determined without write (per
§3.6).

146

Rationale:

Requiring that internal inexact complex numbers correspond with the constructors
provides a degree of simple reproducibility to inexact complex arithmetic.

Requiring that an exact finite complex number be internally rectangular means that
real-part and imag-part must return an exact result when given an exact finite com-
plex argument. The purpose of this constraint is to disambiguate the behavior of predicate
exact? without causing turbulence between exact finite arithmetic and internal real for-
mats. From §12.2, any exact arithmetic operation —i.e., an operation in module Number
or Rational— given only exact arguments must return an exact result; but we don’t mean
to require any implementation to support exact irrational reals. Consider the complex
number z = 1i, where the radix 1 and exponent i are both exact. When we construct z,
we know exactly which mathematical number we are modeling: the complex number with
magnitude exactly one, and angle exactly one radian. No irrational reals are needed to
represent this number exactly in polar coordinates, even though both of its rectangular
coordinates are irrational. However, adding exact one to z gives a complex number z + 1
whose rectangular and polar coordinates are all irrational. (Of course, an implementation
that does support exact irrationals won’t have a problem with that.)

An exact complex infinity is only internally representable in rectangular coordinates
if one of its rectangular coordinates is finite. Representing an exact rectangular com-
plex infinity in polar coordinates would actually lose data, since differences in the finite
rectangular coordinate change the angle infinitesimally. Representing a non-rectangular
complex infinity (i.e., one whose rectangular coordinates are both infinite) in polar coor-
dinates would force implementations to support exact irrationals (below, §12.3.2).

12.3.2 Exact real numbers

Every implementation of Kernel must support the two exact real infinity objects,
positive and negative. Every implementation of Kernel must support exact integers
of arbitrary size, and, when supporting module Rational, exact finite ratios of integers
of arbitrary size (subject only to running out of memory, which is an implementation
restriction violation admitted by §1.3.3). Implementations may also provide, at their
discretion, internal representations for various exact irrational numbers; but note
that the first-class exact Kernel numbers are required to be closed under features of
modules Numbers and Rational (above, §12.2).

As long as only exact numbers occur, the only observable consequence of internal
number format is that the exact numbers involved are representable at all.

When discussing a rational internal representation in terms of numerator and
denominator, they are assumed to be integers, with least positive denominator. (E.g.,
rational zero has numerator zero and denominator one).

Rationale:

The report is intended to specify the behavior of each operation sufficiently that, in
principle, given exact arguments it has just one possible exact result (or is undefined). The
operation usually isn’t required to return this exact result, the largest class of exceptions

147

being features of modules Numbers and Rational ; and the exact result might not be
internally representable by the implementation (if it is irrational, or a complex with an
irrational component).

If an implementation supports module Complex, and also chooses to support any
exact irrationals, it must support a class of exact irrationals that is closed, not only
under arithmetic of modules Numbers and Rational, but also under these operations on
rectangular complex numbers with exact components (as discussed above, §12.3.1).

12.3.3 Inexact real numbers

In the internal representation of an inexact real number, the internal numbers —
bounds and optional primary value— may use a restricted format. A restricted in-
ternal real format has finite precision (number of significant digits in the mantissa),
may have bounded exponent (of the radix, by which to multiply the mantissa), and is
equipped with definitions for all arithmetic operations. If any of the internal numbers
in an inexact real number use a restricted format, all of the finite internal numbers for
that inexact real must use the same restricted format. When multiple restricted for-
mats are involved in an operation, any result should use the restricted format among
the arguments with the greatest precision, and within that precision, the largest range
of exponents. If all internal numbers in an operation use the same restricted format,
the operation uses its behavior for that format; if multiple formats are involved, and
the result format will be restricted, when feasible all internal numbers should be
converted to that format before performing the operation.

A numeric overflow occurs when the primary value of an inexact result would ex-
ceed the largest magnitude representable by its restricted format (either in the positive
or in the negative direction); underflow, when the primary value would have non-zero
magnitude smaller than the smallest non-zero magnitude representable. When the
strict-arithmetic keyed dynamic variable is cleared (§12.6.6), numeric overflow and
underflow are not errors; in that case, overflow produces an infinite primary value
(positive or negative), and underflow produces a zero primary value.

12.4 External representations of numbers

An external representation of an inexact real number describes its primary value,
possibly including some information about internal format (which can affect arith-
metic behavior on inexact numbers), and indicates that it is inexact, but does not
indicate whether it is robust, nor what its bounds are. An external representation of
a complex number indicates that it is complex and contains external representations
of two real numbers from which the complex number may be constructed, either by
rectangular or by polar construction (and indicates which). An external represen-
tation of an exact number completely determines the number, so that writeing an
exact number z and then read ing what was written will produce an object eq? to z.

148

The external representation of an undefined number is #undefined. All other
rules for externally representing numbers pertain only to defined numbers.

An external representation of a real number consists of optional radix and/or
exactness prefixes, optional sign (+ or -), and magnitude. The radix prefixes are
#b (binary), #o (octal), #d (decimal), and #x (hexadecimal); the default is decimal.
The exactness prefixes are #e (exact) and #i (inexact); by default, the number is
inexact iff the magnitude representation uses floating point. If both kinds of prefixes
are used, they may occur in either order. The magnitude is either infinity; an
unsigned integer (nonempty sequence of digits); a ratio of unsigned integers (two
unsigned integers with a / between, of which the second is non-zero); or a floating
point representation. If the magnitude is infinity, there must be an exactness
prefix and a sign, and no radix prefix. Floating point representation can only be
used with decimal radix; it consists of nonempty integer part, point (.), nonempty
fraction part, and optional exponent part. The optional exponent part consists of an
exponent letter, and an (optionally signed) integer indicating a power of ten by which
to multiply the magnitude. The choice of exponent letter makes no difference in what
mathematical number is indicated by the external representation, but does indicate
internal representation precision. Exponent letters s, f, d, l indicate preference for
successively higher internal precision — short, float, double, long. When read ing an
inexact real number, exponent letter e accepts the default internal precision, which
must be at least double. When writeing an inexact real number, exponent letter
e may be used for the default internal precision, and must be used for any internal
number format not indicated by any of the other exponent letters. Float and double
must provide, respectively, at least as much precision as IEEE 32-bit and 64-bit
floating point standards [IE85].

For example, #i#xa/c represents an inexact number using hexadecimal notation,
with signed magnitude positive five sixths (ten over twelve). -3.5l-2 represents
an inexact number using decimal notation, with signed magnitude negative thirty
five thousandths, and requested long precision (which must be at least IEEE 64-bit
floating point).

When read ing an external representation of an inexact real, the bounds on the
resulting inexact number are chosen in accordance with the narrow-arithmetic keyed
dynamic variable (§12.7.1).

A polar external representation of a complex number consists of external repre-
sentations of magnitude and angle separated by an @; the angle must not be infinite.
A rectangular external representation of a complex number consists of an optional
external representation of the real part (defaults to exact zero if omitted), required
sign (+ or -), optional unsigned external representation of the imaginary part (de-
faults to exact one if omitted), and i; either the real part or the imaginary part may
be infinite, but not both.

For example, 2.3@8/3 represents a complex number with magnitude inexact 2.3
and angle exactly eight thirds. -0.7i represents a complex number with real part

149

exactly zero and imaginary part inexact negative seven tenths. 1.0+i represents a
complex number with real part inexact positive one and imaginary part exact positive
one.

A point-projective external representation of a complex infinity consists of required
exactness prefix, required sign +, infinity, *, and angle brackets <> delimiting an
external representation of the point. The external representation of the point must
include an imaginary part or angle (i or @). If the exactness prefix of the whole is
#e, both real components of the point must be exact; if the exactness prefix of the
whole is #i, the real components of the point may be exact or inexact.

For example, #e+infinity*<-1+i> represents an exact complex infinity with an-
gle −π

4
radians, while #i+infinity*<1@0> represents inexact positive real infinity.

When an external representation is read of a number belonging to an optional
numeric module (such as a non-real complex number), any resulting number must be
either of the specified type, or an inexact approximation of the represented number
(as allowed for the result of an arithmetic operation, above in §12.3). Alternatively,
if the optional module is not supported, an error may be signaled; and if the optional
module is excluded, an error must be signaled. Reading an external representation of
a number belonging to an unsupported optional numeric module does not constitute
violation of an implementation restriction.

Rationale:

The traditional restriction of floating point to decimal radix cannot easily be dismissed,
because the most usual exponent letter, e, is a hexadecimal digit.

12.5 Number features

12.5.1 number?, finite?, integer?

(number? . objects)
(finite? . numbers)
(integer? . objects)

Applicative number? is the primitive type predicate for type number.

Applicative finite? is a predicate that requires numbers to be a list of numbers,
and returns true unless one or more of its arguments is either a real infinity, or an
inexact real with no primary value, or a complex number whose rectangular compo-
nents are not all finite. If an argument is an inexact real with no primary value, or
a complex number any of whose components has no primary value, or undefined, an
error is signaled.

Applicative integer? is the primitive type predicate for number subtype integer.
A real infinity is not an integer. A rational is an integer iff its denominator is one. An
inexact real is an integer iff it has an integer primary value. A complex is an integer

150

iff its real part is an integer and its imaginary part has primary value zero and upper
and lower bounds zero.

Rationale:
Since predicate finite? does not take arbitrary objects as arguments, it is not a

type predicate; therefore, when any of its arguments has no primary value, an error is
signaled (per §12.2). Predicates number? and integer? are type predicates, so they
handle no-primary-value without error.

The criterion for predicate integer? is superficial on the real part of a complex
number (only concerns its primary value), but fundamental on the imaginary part (also
concerns its bounds).

The real part of the criterion could have required, instead, certainty that every possible
value of the intended mathematical number is an integer. However, given only primary
value and upper and lower bounds, the only ways to be certain of this would be (1) the
implementation only supports integers, so that every finite number computed is sure to
be an integer; or (2) the upper and lower bounds are identical to the primary value. We
don’t want the behavior of the predicate on inexact numbers to change when additional
modules are supported; and we do want to support inexact integers. Another approach
would be to maintain an additional integer tag on each inexact real number, akin to the
robust tag, indicating that the intended mathematical number is known to be an integer;
but we prefer not to further complicate the inexact type in this way.

The imaginary part of the criterion could have been made superficial, only requiring
that the primary value be zero. However, we intend integer? to imply real? ; see the
rationale discussion for real? , §12.9.1.

12.5.2 =?

(=? . numbers)

Applicative =? is a predicate that returns true iff all its arguments are numerically
equal to each other. If any of its arguments has no primary value, or has any real
component with no primary value, an error is signaled.

Two real numbers are numerically equal iff their primary values model the same
mathematical number. Two complex numbers are numerically equal iff their corre-
sponding components, both rectangular and polar, are numerically equal — that is,
their real parts are numerically equal, their imaginary parts are numerically equal,
their magnitudes are numerically equal, and their angles are numerically equal.

Rationale:
The conditions and rationale for signaling an error on no-primary-value were discussed

in §12.2.

When two same-signed real infinities are compared, they should be found numerically
equal. Because an infinity is viewed in arithmetic operations as a limit, one might suppose
that the result of comparing two same-signed infinities is indeterminate, there being no

151

way to decide which limit approached infinity “faster”. However, as set out in the rationale
discussion at the top of §12, an infinity is treated as a limit only to guide its arithmetic
use. The design purpose of an infinity is to bound sets of finite reals — and in that
capacity, two different infinities with the same sign bound the same finite reals, so they
are numerically equal.

12.5.3 <?, <=?, >=?, >?

(<? . reals)
(<=? . reals)
(>=? . reals)
(>? . reals)

Each of these applicatives is a predicate that returns true iff every two consecutive
elements of reals have primary values in the order indicated by the name of the
applicative. If any element of reals has no primary value, an error is signaled.

For example,

(<=?) =⇒ #t

(<=? 1) =⇒ #t

(<=? 1 3 7 15) =⇒ #t

(<=? 1 7 3 15) =⇒ #f

On a cyclic list of real arguments, <? or >? will always return false, while <=? or
>=? might still return true if all elements of the cycle are numerically equal to each
other.

Rationale:
The conditions and rationale for signaling an error on no-primary-value were discussed

in §12.2.

In principle, all of these predicates could be derived as library features, given =?

and a binary version of <? (using a similar technique to the library derivations of
eq? and equal? , §§6.5.1, 6.6.1).

12.5.4 +

(+ . numbers)

Applicative + returns the sum of the elements of numbers.
If numbers is empty, the sum of its elements is exact zero.
If a positive infinity is added to a negative infinity, the result has no primary

value. If a complex number with magnitude infinity is added to another complex
number with magnitude infinity, and they don’t have the same angle, the result has
no primary value.

152

If all the elements of a cycle are zero, the sum of the cycle is zero. If the acyclic
sum of the elements of a cycle (i.e., the sum of an acyclic list containing just those
elements) is non-zero, the sum of the cycle is positive infinity times the acyclic sum
of the elements. If the acyclic sum of the elements of a cycle is zero, but some of the
elements of the cycle are non-zero, the sum of the cycle has no primary value.

Rationale:

We view the sum of a cycle as the limit sum of an infinite series. When the acyclic
sum of the elements of the cycle is zero, but some of the elements are non-zero, the sum
of the series isn’t convergent.

12.5.5 *

(* . numbers)

Applicative * returns the product of the elements of numbers.

If numbers is empty, the product of its elements is exact one.

If an infinity is multiplied by zero, the result has no primary value. If a complex
number with magnitude infinity is multiplied by zero, the result has no primary value.
If a non-real complex number is multiplied by infinity, the result has no primary value.

If the acyclic product of the elements of a cycle is real greater than one, the
product of the cycle is positive infinity. If all the elements of a cycle are positive one,
the product of the cycle is positive one. If the acyclic product of the elements of a
cycle is positive one, but some of the elements of the cycle are not positive one, the
product of the cycle has no primary value. If the acyclic product of the elements of
a cycle has magnitude less than one, the product of the cycle is zero. If the acyclic
product of the elements of a cycle has magnitude greater than or equal to one, and
is not positive real, the product of the cycle has no primary value.

Rationale:

We view the product a cycle as the limit product of an infinite series.

The product of positive infinity with a finite non-zero complex number does not have a
unique limit as the finite factor approaches zero, so we do not arbitrarily assign a primary
value to the product of positive infinity with zero.

12.5.6 -

(- number . numbers)

numbers should be a nonempty list of numbers. Applicative - returns the sum of
number with the negation of the sum of numbers.

153

Rationale:

The smooth behavior of applicative - on a single argument (i.e., if numbers is the
empty list) would be to return that argument unchanged. In Scheme, however, - on a sin-
gle argument performs a completely different operation on the single argument (negation).
If we wanted a negation applicative in Kernel, we would give it a different name; but we
also forgo the extension of smooth behavior to a single argument, to avoid a behavioral
inconsistency with Scheme that could trip up Scheme programmers.

12.5.7 zero?

(zero? . numbers)

Applicative zero? is a predicate that returns true iff every element of numbers
is zero. For this purpose, a real number is zero if its primary value is zero, and a
complex number is zero if its real part, imaginary part, and magnitude are all zero.
If any element of numbers has no primary value, or has any real component with no
primary value, an error is signaled.

Rationale:

The conditions and rationale for signaling an error on no-primary-value were discussed
in §12.2.

12.5.8 div, mod, div-and-mod

(div real1 real2)
(mod real1 real2)
(div-and-mod real1 real2)

For all three applicatives, if real1 is infinite or real2 is zero, an error is signaled.

Let n be the greatest integer such that real2 ×n ≤ real1 . Applicative div returns
n. Applicative mod returns real1 − (real2 × n). Applicative div-and-mod returns a
freshly allocated list of length two, whose first element is n and whose second element
is real1 − (real2 × n).

Rationale:

The R5RS supports integer division through procedures quotient remainder and
modulo . There are some difficulties using those three procedures as the principal general
tools for integer division, due to which the R6RS provides its primary integer-division
support through functions div, mod, div0, and mod0. Here we prefer the more well-
behaved div etc. to the earlier procedures; the R6RS discusses its rationale for these
functions in a separate document ([Sp+07]).

154

12.5.9 div0, mod0, div0-and-mod0

(div0 real1 real2)
(mod0 real1 real2)
(div0-and-mod0 real1 real2)

For all three applicatives, if real1 is infinite or real2 is zero, an error is signaled.

Let n be the greatest integer such that real2×n ≤ real1 +
∣

∣

real2

2

∣

∣. Applicative div0
returns n. Applicative mod0 returns real1 − (real2 ×n). Applicative div0-and-mod0

returns a freshly allocated list of length two, whose first element is n and whose second
element is real1 − (real2 × n).

Rationale:

See the rationale discussion in §12.5.8.

12.5.10 positive?, negative?

(positive? . reals)
(negative? . reals)

Applicative positive? is a predicate that returns true iff every element of reals
is greater than zero. Applicative negative? is a predicate that returns true iff every
element of reals is less than zero. If any argument to either applicative has no primary
value, or has any real component with no primary value, an error is signaled.

Rationale:

The conditions and rationale for signaling an error on no-primary-value were discussed
in §12.2.

12.5.11 odd?, even?

(odd? . integers)
(even? . integers)

Applicative odd? is a predicate that returns true iff every element of integers is
odd. Applicative even? is a predicate that returns true iff every element of integers
is even. If any argument to either applicative has no primary value, or has any real
component with no primary value, an error is signaled.

Rationale:

The conditions and rationale for signaling an error on no-primary-value were discussed
in §12.2.

155

12.5.12 abs

(abs real)

Applicative abs returns the nonnegative real number with the same magnitude
as real ; that is, if real is nonnegative it returns real , otherwise it returns the negation
of real .

12.5.13 max, min

(max . reals)
(min . reals)

If reals is nil, applicative max returns exact negative infinity, and applicative min

returns exact positive infinity. If reals is non-nil, applicative max returns the largest
number in reals, and applicative min returns the smallest number in reals.

Rationale:

The behaviors on nil argument list preserve equivalences

(max h . t) ≡ (max h (max . t))

(min h . t) ≡ (min h (min . t))

12.5.14 lcm, gcd

(lcm . impints)
(gcd . impints)

impints should be a list of improper integers, that is, real numbers each of which
is either an integer or an infinity.

Applicative lcm returns the smallest positive improper integer that is an improper-
integer multiple of every element of impints (that is, smallest n ≥ 1 such that for
every argument nk there exists n′

k with nk × n′
k = n). If any of the arguments is

zero, the result of lcm has no primary value. According to these rules, lcm with nil
argument list returns 1, and lcm with any infinite argument returns positive infinity.

Applicative gcd returns the largest positive improper integer such that every
element of reals is an improper-integer multiple of it (that is, largest n ≥ 1 such that
for every argument nk there exists n′

k with n × n′
k = nk). gcd with nil argument

list returns exact positive infinity. If gcd is called with one or more arguments, and
at least one of the arguments is zero, but none of the arguments is a non-zero finite
integer, its result has no primary value. According to these rules, if gcd is called
with at least one finite non-zero argument, its result is the same as if all zero and
infinite arguments were deleted.

156

Rationale:

Positive infinity is an improper-integer multiple of every non-zero improper integer
(by multiplying that non-zero improper integer by an infinity of like sign). Zero is an
improper-integer multiple of every finite integer (by multiplying that finite integer by
zero). Therefore, the gcd of any non-zero finite integer n with zero is abs(n), and the gcd
of any non-zero finite integer n with any real infinity is abs(n). However, the gcd of zero
with an infinity is indeterminate: it can’t be positive infinity, because there isn’t anything
that multiplied by zero gives infinity, but it can’t be any particular finite integer either,
because every finite positive integer can be multiplied by zero to give zero, and by an
infinity to give positive infinity. Therefore, if gcd has a zero argument, but doesn’t have
a non-zero finite argument, its result has no primary value.

The behaviors on nil argument list preserve equivalences

(lcm h . t) ≡ (lcm h (lcm . t))

(gcd h . t) ≡ (gcd h (gcd . t))

provided, in the latter case, that (gcd . t) has a primary value (which excludes the case
that t contains a zero, but h was the only non-zero finite argument).

In the R5RS (which does not support infinities), gcd given any empty argument list
returns 0. This behavior does, in fact, preserve the above equivalence, and could be
extended to a behavior that encompasses infinite arguments without leaving certain cases
indeterminate (the ones with a zero argument but no non-zero finite argument). However,
the behavior specified here is deemed more uniform. Here, unlike the R5RS , (gcd h .

t) is never greater than (gcd . t); and the entire behavior of the applicative here is
captured by a simple statement of the form “the largest . . . such that . . . ”, whereas a
statement of the R5RS behavior is intrinsically more elaborate.

12.6 Inexact features

12.6.1 exact?, inexact?, robust?, undefined?

(exact? . numbers)
(inexact? . numbers)
(robust? . numbers)
(undefined? . numbers)

Applicative exact? is a predicate that returns true iff every element of numbers
is either an exact real number, or a complex number whose rectangular components
are all exact. Applicative inexact? is a predicate that returns true iff every element
of numbers is either an inexact real number, or a complex number at least one of
whose rectangular components is inexact. Applicative robust? is a predicate that
returns true iff every element of numbers is either a robust real number, or a complex
number all of whose rectangular components are robust. Applicative undefined? is
a predicate that returns true iff every element of numbers is undefined.

157

Rationale:
Although none of these predicates are type predicates (because they don’t take ar-

bitrary objects as arguments), none of them depend on their arguments having primary
values, either, so they don’t signal an error on no-primary-value (per §12.2).

12.6.2 get-real-internal-bounds, get-real-exact-bounds

(get-real-internal-bounds real)
(get-real-exact-bounds real)

Applicative get-real-internal-bounds returns a freshly allocated list of reals
(x1 x2), where the primary value of x1 is the lower bound of real , using the same
internal representation as the primary value of real , and the primary value of x2 is
the upper bound of real , using the same internal representation as the primary value
of real . The xk are inexact iff real is inexact. The xk are robust (i.e., tagged if
the implementation supports such), and the bounds of each xk are only required to
contain its primary value (i.e., the implementation is allowed to make the bounds
equal to the primary value).

Applicative get-real-exact-bounds returns a freshly allocated list of exact reals
(x1 x2), where x1 is not greater than the lower bound of real , and x2 is not less than
the upper bound of real .

Rationale:
Not all internal numbers are necessarily representable by an exact number, so when

converting the bounds of real to exact numbers, some error may be introduced. get-real-
internal-bounds avoids introducing this error, while get-real-exact-bounds guaran-
tees that any error introduced will increase the bounded interval rather than decreasing
it. (In practice, one will usually prefer to keep the internal format, simply because con-
verting to exact numbers would be pointlessly expensive — but that is proscribed as a
design motive, by G5 of §0.1.2).

12.6.3 get-real-internal-primary, get-real-exact-primary

(get-real-internal-primary real)
(get-real-exact-primary real)

If real is exact, both applicatives return real . If real has no primary value, both
applicatives signal an error.

If real is inexact with a primary value, applicative get-real-internal-primary
returns a real number x0 whose primary value is the same as, and has the same
internal format as, the primary value of real . x0 is robust, and its bounds are only
required to contain its primary value.

If real is inexact with a primary value, applicative get-real-exact-primary

returns an exact real number x0 within the exact bounds that would be returned for

158

real by applicative get-real-exact-bounds (§12.6.2). Preferably, x0 should be as
close to the primary value of real as the implementation can reasonably arrange. If
the implementation does not support any exact real that reasonably approximates
real , an error may be signaled.

Rationale:
There should be a facility for separating the primary value of real from its bounds

without changing the format of real , hence get-real-internal-primary . See also the
rationale discussion in §12.6.2.

When real has no primary value, signaling an error preserves the expectations that
get-real-exact-primary always returns an exact real, and that get-real-internal-

primary always returns a real whose primary value is within its bounds.
These applicatives could be widened to support arbitrary number arguments, rather

than just reals. For the moment, only real arguments are supported, pending deeper
analysis of the complex-representation issues involved.

12.6.4 make-inexact

(make-inexact real1 real2 real3)

Applicative make-inexact returns an inexact real number, as follows.
If real2 is inexact, the result has the same primary value as real2 ; and if real2 has

no primary value, the result has no primary value. The result has the same robustness
as real2 . If possible, the result uses the same internal representation as real2 .

If real2 is exact, the primary value of the result is as close to real2 as the imple-
mentation can reasonably arrange; overflow and underflow are handled as described
in §12.3.3.

The lower bound of the result is no greater than the lower bound of real1 , the
primary value of real2 , and the primary value of the result. The upper bound of the
result is no less than the upper bound of real3 , the primary value of real2 , and the
primary value of the result.

Rationale:
If this applicative used the general rule for internal representations for arithmetic op-

erations (§12.3.3), the programmer would have to regulate the internal representations of
all three arguments in order to regulate the internal representation of the result. Adopting
the internal representation of real2 simplifies the programmer’s regulation task.

A seemingly more straightforward behavior for this applicative would base the bounds
of the result on the primary values of real1 and real3 , rather than the lower bound of
real1 and upper of real3 . However, this was deemed potentially error-prone, since any
error accumulated in calculating real1 and real3 probably should be applied to the num-
ber constructed from them — and in the presumably less usual case that it shouldn’t,
the programmer can stipulate the primary values of real1 and real3 via applicative
get-real-internal-primary (§12.6.3).

It would be possible to derive get-real-internal-primary from this applicative, by

159

($define! get-real-internal-primary

($lambda (x)

(make-inexact #e+infinity x #e-infinity))

12.6.5 real->inexact, real->exact

(real->inexact real)
(real->exact real)

Applicative real->exact behaves just as get-real-exact-primary , §12.6.3.
If real is inexact, applicative real->inexact returns real .
If real is exact, applicative real->inexact returns an inexact real x0 such that

real would be a permissible result of passing x0 to real->exact . If the implementa-
tion does not support any such x0, an error may be signaled. Otherwise, x0 is robust,
and its bounds are only required to contain its primary value and real .

12.6.6 with-strict-arithmetic, get-strict-arithmetic?

(with-strict-arithmetic boolean combiner)
(get-strict-arithmetic?)

These applicatives are the binder and accessor of the strict-arithmetic keyed dy-
namic variable; keyed dynamic variables were described in §10. When this keyed
variable is true, various survivable but dubious arithmetic events signal an error —
notably, operation results with no primary value (§12.2), and over- and underflows
(§12.3.3).

12.7 Narrow inexact features

12.7.1 with-narrow-arithmetic, get-narrow-arithmetic?

(with-narrow-arithmetic boolean combiner)
(get-narrow-arithmetic?)

These applicatives are the binder and accessor of the narrow-arithmetic keyed dy-
namic variable; keyed dynamic variables were described in §10. When this keyed vari-
able is true, the implementation is advised to maintain the most restrictive bounding
and robustness information it (correctly) can. The only constraint on such informa-
tion, besides correctness, is that it cannot be less restrictive when the variable is true
than when the variable is false.

Rationale:

See the rationale discussion in §12.2.

160

12.8 Rational features

12.8.1 rational?

(rational? . objects)

Applicative rational? is the primitive type predicate for number subtype ratio-
nal. A real infinity is not a rational. An inexact real is a rational iff its primary value
is a ratio of integers. A complex is a rational iff its real part is a rational and its
imaginary part has primary value zero and upper and lower bounds zero.

Rationale:
See the rationale discussion for primitive type predicate integer?, §12.5.1.

12.8.2 /

(/ number . numbers)

numbers should be a nonempty list of numbers. Applicative / returns number
divided by the product of numbers. If the product of numbers is zero, an error is
signaled. If number is infinite and the product of numbers is infinite, an error is
signaled.

Rationale:
On requiring at least two arguments, see the rationale in §12.5.6.
When a non-zero number is divided by zero, one might expect the result to be infinite;

but to understand this result as a limit (per the rationale discussion at the top of §12), one
would have to know which direction the zero denominator is approached from, which is
not knowable from the arguments to applicative / . Infinity divided by infinity is similarly
indeterminate. A case could be made that zero divided by zero should be zero, but the
essence of that position is that zero divided by anything else is zero, and one could as
well argue that anything else divided by zero is indeterminate; since provisions against
dividing by zero are already routine, the latter position was judged less anomalous.

12.8.3 numerator, denominator

(numerator rational)
(denominator rational)

These applicatives return the numerator and denominator of rational , in least
terms (i.e., chosen for the least positive denominator).

Note that if rational is inexact, and either of its bounds is not its primary value,
the denominator has upper bound positive infinity, and the numerator must have at
least one infinite bound (two infinite bounds if the bounds of rational allow values of
both signs).

161

12.8.4 floor, ceiling, truncate, round

(floor real)
(ceiling real)
(truncate real)
(round real)

Applicative floor returns the largest integer not greater than real .
Applicative ceiling returns the smallest integer not less than real .
Applicative truncate returns the integer closest to real whose absolute value is

not greater than that of real .
Applicative round returns the closest integer to real , rounding to even when real

is halfway between two integers.

Rationale:

The behavior of round is as specified in the R5RS , which in turn was chosen for
consistency with the IEEE floating point standard.

12.8.5 rationalize, simplest-rational

(rationalize real1 real2)
(simplest-rational real1 real2)

A rational number r1 is simpler than another rational r2 if r1 = p1/q1 and r2 =
p2/q2, both in lowest terms, and |p1| ≤ |p2| and |q1| ≤ |q2|. Thus 3/5 is simpler than
4/7. Not all rationals are comparable in this ordering, as for example 2/7 and 3/5.
However, any interval (that contains rational numbers) contains a rational number
that is simpler than every other rational number in that interval. For example,
between 2/7 and 3/5 lies the simpler 2/5. Note that 0 = 0/1 is simpler than any
other rational (so that one never has to choose between p/q and −p/q).

For applicative simplest-rational , let x0 be the simplest rational mathemati-
cally not less than the primary value of real1 and not greater than the primary value
of real2 . If no such x0 exists (because the primary value of real1 is greater, or because
the primary values of the arguments are equal and irrational), or if either argument
does not have a primary value, an error is signaled.

For applicative rationalize , let x0 be the simplest rational mathematical num-
ber within the interval bounded by the primary value of real1 plus and minus the
primary value of real2 . If no such x0 exists (because the primary value of real1 is
irrational and the primary value real2 is zero), or if either argument does not have a
primary value, an error is signaled.

If real1 and real2 are exact, the applicative (whichever it is) returns exact x0.
If one or both of real1 and real2 are inexact, the applicative returns an inexact
rational approximating x0 (as by real->inexact , §12.6.5). Note that an inexact

162

result returned is not necessarily bounded by the primary values of the arguments;
but the result is an approximation of x0, which is so bounded, and the bounds of the
result include x0.

Rationale:

The results of these operations are, in principle, distributed arbitrarily over the entire
specified interval, with no preference given to any ‘central’ part of the interval. Therefore,
if the bounds of the arguments were included in the interval used for the operation,
the primary values of the arguments would be completely irrelevant to the operation;
and unintendedly large intervals would tend to have exaggerated consequences (contra
G3 of §0.1.2). Bounds are also a focal point for quantification of differences between
implementations, whereas this operation seems not to be intensionally related to such
differences.

The R5RS provides only rationalize , not simplest-rational . However, providing
only the outer bounds of the interval is a likely tactic since this is the form of result pro-
vided by the get-real-bounds applicatives (§12.6.2). Converting available arguments from
one of these two interfaces to the other carries a risk of imprecision due to fixed-precision
internal formats; so instead we provide both interfaces directly to the programmer, de-
ferring the task of dealing with such imprecisions to the implementation. (The name
simplest-rational is borrowed from MIT/GNU Scheme, [MitGnu].)

12.9 Real features

12.9.1 real?

(real? . objects)

Applicative real? is the primitive type predicate for number subtype real. A
complex is a real iff its imaginary part has primary value zero and upper and lower
bounds zero. (Moreover, if an implementation supports any other kind of hyper-
complex number, a hypercomplex number is real iff all its imaginary parts have zero
primary values and bounds.)

Rationale:

If we’re told that a number is real, we shouldn’t have to think about imaginaries at
all; we shouldn’t have to ask about bounds on the imaginary part of a complex number,
and we certainly shouldn’t have to know what non-complex kinds of numbers might be
supported by the implementation.

12.9.2 exp, log

(exp number)
(log number)

163

12.9.3 sin, cos, tan

(sin number)
(cos number)
(tan number)

12.9.4 asin, acos, atan

(asin number)
(acos number)
(atan number)
(atan number1 number2)

12.9.5 sqrt

(sqrt number)

12.9.6 expt

(expt number1 number2)

12.10 Complex features

12.10.1 complex?

(complex? . objects)

12.10.2 make-rectangular, real-part, imag-part

(make-rectangular real1 real2)
(real-part complex)
(imag-part complex)

12.10.3 make-polar, magnitude, angle

(make-polar real1 real2)
(magnitude number)
(angle complex)

164

13 Strings

13.1 Primitive features

13.1.1 string->symbol

13.2 Library features

14 Characters

14.1 Primitive features

14.2 Library features

15 Ports

A port is an object that mediates character-based input from a source or character-
based output to a destination. In the former case, the port is an input port, in the
latter case, an output port.

Although ports are not considered immutable (i.e., a mutation of a port would not
have to be an error per §3.8), none of the operations on ports described in this section
constitute mutation. Ports are equal? iff eq? . The port type is encapsulated.

Rationale:

Because the file i/o facilities of this module do not specify what constitutes a valid
“filename”, the facilities can be used to support a very wide variety of character-stream-
based i/o.

Ports are the archetype of Kernel objects with administrative state (rationale, §3.8).
Objects of this kind can be a serious obstacle to Guideline G3 (§0.1.2), because once
such an object enters a “dead” state, the object becomes literally an accident waiting to
happen. In the current case, a reference to a closed port is simply a means by which
the programmer could possibly cause an i/o error by trying to use it. Therefore, when
the internal state of a data type is administrative, a dominant concern in the design of
the type support is to minimize the programmer’s dependence on explicit references to
objects of the type.

The port-based i/o tools in R5RS Scheme are already well suited to this design goal,
and so Kernel adopts Scheme’s port tools substantially intact. The opening and closing
of ports can be handled in three ways:

1. The safest, and therefore preferred, way to open a port is via with-input-from-

file /with-output-to-file . Since the opened port is accessed implicitly within
the dynamic extent of the call, and is automatically closed on normal return, it
is possible for the programmer to use a port this way without ever once explicitly
referencing it.

165

2. For somewhat more general i/o operations, call-with-input-file/call-with-
output-file provides an explicit reference to the opened port, but still allows the
programmer to readily contain the reference within a dynamic extent in which it is
valid (as it is closed on return).

3. The programmer can choose to take on the full burden of accident-prevention in ex-
change for complete generality —in which the lifetime of a port does not coincide with
any dynamic extent— by means of open-input-file/open-output-file (which
will also require explicit calls to close-input-file/close-output-file).

Because type port has only administrative state, not data state, none of the general
operations on ports are considered mutation (per the rationale in §3.8). Conceivably, a
subtype of port could have some sort of associated data, so that some internal state of
the subtype would be data state, and modifying that would be mutation.

15.1 Primitive features

15.1.1 port?

(port? . objects)

The primitive type predicate for type port.

15.1.2 input-port?, output-port?

(input-port? . objects)

Applicative input-port? is a predicate that returns true unless one or more of
its arguments is not an input port. Applicative output-port? is a predicate that
returns true unless one or more of its arguments is not an output port.

Every port must be admitted by at least one of these two predicates.

Rationale:
A port has no purpose if it can’t be used for input or output. Although this report

does not allow a single port to be used for both, it would not be unreasonable for an
extension to want to support that, and therefore input port and output port were not
made primitive types (would would have made them mutually exclusive).

15.1.3 with-input-from-file, with-output-to-file

15.1.4 get-current-input-port, get-current-output-port

15.1.5 open-input-file, open-output-file

15.1.6 close-input-file, close-output-file

15.1.7 read

166

15.1.8 write

15.2 Library features

15.2.1 call-with-input-file, call-with-output-file

15.2.2 load

15.2.3 get-module

(get-module string)
(get-module string environment)

When the first syntax is used, applicative get-module creates a fresh standard
environment (§3.2); opens for input (§15.1.5) a file named string ; read s objects
(§15.1.7) from the file until the end of the file is reached; evaluates those objects con-
secutively in the created environment; and, lastly, returns the created environment.

When the second syntax is used, the freshly created standard environment is aug-
mented, prior to evaluating read expressions, by binding symbol module-parameters
to the optional argument, environment .

Rationale:

In any nontrivial programming language, some details of the meaning of a program
module can only be determined by studying other program modules on which it depends.
In an extensible language, this effect may be so pronounced that a dependent program
module may be effectively meaningless without careful study of all its predecessors. [Sta75]
identified this as a basic practical limitation on how far an extensible language can be
extended (using, of course, the extension technology of the time). If all source files of a
Kernel program were processed in a single environment, as via applicative load (§15.2.2),
the effect would be highly pronounced, since Kernel has no special forms whose meanings
would necessarily remain stable. Applicative get-module provides stability, thus promot-
ing usability Guideline G3 of §0.1.2, both by starting each module in a fresh standard
environment, and by giving each module explicit control over access to its predecessors
through use of first-class environments.

The possibility was considered of allowing a single environment to be returned from
multiple calls to get-module on the same file, provided no changes had been made in the
interim to that file, nor to any other files that it in turn had get-moduled. This was ulti-
mately rejected as violating the simplicity language goal. A secondary objection was that,
since detection of relevant source-file changes, and even the definition of what constitutes
a change or when two files are really “the same file”, would be platform-dependent, there
would be no reliable way to predict whether two different calls to get-module would
produce eq? environments, potentially promoting accidents (contra G3 of §0.1.2).

Because each call to get-module reevaluates the contents of the source file(s), caution
is needed when a module constructs facilities that use object identity for access control
— such as, notably, encapsulated types (§8) or keyed dynamic/static variables (§§10,

167

11). A closely related issue is the ability to parameterize the loading process, which is
the purpose of optional argument environment . Using an environment for this lends a
degree of uniformity to the parameter-passing protocol; minimizes intrusion of represen-
tation format (versus alternative formats, such as alists, whose structural mechanics are
explicitly visible); and provides a high degree of flexibility since Kernel core facilities are
strongly oriented toward fluent handling of bindings and first-class environments. Requir-
ing environment to be specified as an explicit argument, rather than using the dynamic
environment of the call to get-module , reduces the likelihood of accidental exposure of
the dynamic environment. Providing environment to the loading module through a single
binding with a standard name, rather than using any arrangement that would make its
bindings directly visible in the environment of the loading module, preserves the stability
afforded by loading in a standard environment. Construction of suitable input-parameter
environments is facilitated by $bindings->environment (§6.7.10); modules being loaded
can check for input parameters using $binds? (§6.7.1); parameters when present might
be extracted using $import! (§6.8.3), or $remote-eval (§6.7.9).

There is room, within the functionality of applicative get-module , for a sort of “com-
pilation”, in which a source file has associated with it preprocessed information about
how to rapidly construct an appropriate environment for return by get-module .

Derivation

The following expression defines get-module using only previous defined features.

($define! get-module

($lambda (filename . opt)

($let ((env (make-kernel-standard-environment)))

($cond ((pair? opt)

($set! env module-parameters (car opt))))

(eval (list load filename) env)

env)))

16 Formal syntax and semantics

This section provides formal descriptions of what has already been described infor-
mally in previous sections.

16.1 Formal syntax

This subsection formally defines the syntax of Kernel. The material is presented, with
some redundancy, in four parts: §16.1.1 gives an algorithm for dividing a sequence
of characters into lexemes (in words, as a grammar, and as a finite-state machine).
§16.1.2 gives an algorithm for classifying lexemes by token type. §16.1.3 presents a
grammar for building tokens from sequences of characters (which formally subsumes

168

the contents of §§16.1.1–16.1.2). Finally, §16.1.4 presents a grammar for building
expressions from sequences of tokens.

The grammars use an extended BNF. All spaces in the grammars are for legibility.
Case is insignificant; for example, #x1A and #X1a are equivalent. 〈empty〉 stands for
the empty string. The following extensions to BNF are used to make the description
more concise: 〈thing〉∗ means zero or more occurrences of 〈thing〉; and 〈thing〉+ means
one or more occurrences of 〈thing〉.

Rationale:

Kernel expression syntax is much simpler than Scheme’s, because there is no need
to go any further than simple expressions — no special forms, no syntax transformers,
and no syntactic sugar for quotation or quasiquotation. However, Kernel lexical structure
is nearly identical to that of Scheme because, for the safety of Scheme programmers, it
includes Scheme lexemes such as ’ and ,@ that are not actually legal tokens in Kernel.
This common Scheme/Kernel lexical structure is fairly simple, but the simplicity is not
evident from a pure extended-BNF grammar for tokens. We therefore present the lexical
structure in a different form that brings out its internal simplicity, so that future revisions
of the report will be better able to preserve the simplicity.

The heart of the simple lexical structure of Scheme/Kernel is that a lexer can group
the input character stream into lexemes using only a few distinct classes of characters,
with a lookahead of only one character,14 and without having to know anything about the
detailed syntax of particular kinds of tokens (§16.1.1). These lexemes can then be easily
classified by token type by looking at a few leading characters, still without worrying
about whether the entire lexeme is a syntactically correct token (§16.1.2). The detailed
syntax of tokens is only needed after the token class is already known.

16.1.1 Lexemes

Here we describe an algorithm for dividing a sequence of characters into lexemes. The
algorithm doesn’t classify lexemes by type, not even by which lexemes are legal and
which are illegal; that is accomplished by a second algorithm, below in §16.1.2.

There are a few special kinds of Kernel lexemes that have well-defined beginnings
or ends, but most lexemes sprawl, each encompassing as many characters as it can
in both directions until stopped by a character that cannot belong to it. Lexemes of
the sprawling kind are called middle lexemes. The special kinds of lexemes come in
two varieties: left lexemes and right lexemes. Simply put, a left lexeme is one that
can occur immediately to the left of a middle lexeme, while a right lexeme is one that
can occur immediately to the right of a middle lexeme.

There are only three kinds of right lexemes: left paren, right paren, and string
literal (delimited by double quotes). All three kinds of right lexemes are also left

14Lookahead of one character means that, when scanning a lexeme from left to right, we can
process characters one at a time, without worrying about what, if anything, comes after a given
character until after we’ve decided whether to include it in the current lexeme.

169

lexemes, because it’s perfectly clear when the right lexeme has ended, so if the fol-
lowing character is non-atmosphere (not a space, tab, newline, etc.), it must be the
beginning of a new lexeme.

In addition to the three kinds of right lexemes, there are also five other left lexemes:

‘ ’ #(, ,@

(In words: backquote, quote, hash-left-paren, comma, and comma-at.) Kernel de-
fines these to be lexemes to avoid accidents that could otherwise result from lexical
incompatibilities with Scheme; but the language syntax doesn’t use any of them, so
they will all be classified as illegal in §16.1.2.

...

16.1.2 Classes of lexemes

16.1.3 Tokens

16.1.4 Expressions

16.2 Formal semantics

[The planned strategy is an operational semantics and associated calculus. On the
theoretical admissibility of this approach, see Appendix C.]

A Evolution of Kernel

A.1 R5RS to R-1RK

Principal technical additions from R5RS Scheme to R-1RK Kernel include:

• First-class operatives and their treatment, especially $vau (which allows their
general construction and is thus necessary to their first-class status, per Ap-
pendix B), and unwrap (which ties the semantics of applicatives to that of
operatives).

• First-class environments and their treatment, especially the selective limitations
on their mutation (mitigating hygiene concerns).

• Generalized formal parameter trees for binding constructs (effectively support-
ing simultaneous return of multiple values without Scheme’s extra-functional
constructs values and call-with-values; see §4.9.1).

• Object #inert (to be returned in lieu of useful information).

• First-class treatment of cyclic structures (§3.9).

170

• Exception handling via entry/exit guards (§7).

• Real infinities, and exact upper and lower bounds on inexact reals.

• Encapsulated data types (§8).

• Dynamic variables via make-dynamic-variable-key (§10).

Principal deletions from Scheme include quotation/quasiquotation, hygienic macros,
and values /call-with-values .

A.2 R-1RK partial drafts

Initial construction of the report is a multi-year process. This is to be expected, given
the nature of its design philosophy (§0.1.1); but the content of the report is meant
to be shared with the programming community at large (§0.2), so it was decided in
March 2005 that the existing incomplete draft of the R-1RK should be made public,
and updated from time to time thereafter.

The incompleteness of the draft was most prominently because portions simply
hadn’t been written yet, only planned in rough outline. However, some existing mate-
rial required further rationale discussion, which could sometimes lead to amendments;
the development of omitted materials might also occasionally induce changes to pre-
vious materials; and everything —especially, all source code fragments— will have to
be systematically rechecked for inconsistencies after the material has stabilized.

The public drafts of the R-1RK are:

• 22 March 2005.

• 21 April 2005. Improved (therefore altered) the interface to interceptors in
continuation guards, §7.2.5. Added keyed static variables.

• 5 November 2005. Minor edits (fixed typos, improved phrasing).

• 15 February 2006. Some content on numbers, formal syntax. Corrected eq? -
ness demands on read /write (§3.6). Bug fixes to length , filter , reduce ,
append! .

• 13 March 2006. Extensive content on numbers.

• 22 August 2006. Some content on numbers. Bug fixes to list*, reduce .

• 9 September 2007. Updates to First-class objects Appendix B. Bug fixes
to example under make-keyed-static-variable , derivations of $sequence

and compound $vau . Improved phrasing, §1.3.3; expanded rationales, §4.9.1,
§5.1.1. More content on numbers (including no-primary-value errors and point-
projective form).

171

• 21 September 2009. Rationales, §1.3.7, §2, §3.8, §4.9.1, §5.4.1. Expanded
index entry for “external representation”. Some content on ports, notably
get-module . Bug fix to derivation of append!, and small emendation to its
description. Bug fix to derivations of library eq? and equal? . Bug fix to
derivation of guard-dynamic-extent . Replaced applicative bound? with oper-
ative $binds? . Added operatives $remote-eval , $bindings->environment,
$import!.

• 29 October 2009. Added Appendix C.

A.3 R-1RK to R0RK

The R-1RK may never have a single authoritatively final version, since “Revised-1”
means “preliminary”. However, there are some weaknesses in the preliminary lan-
guage that, while they should not be allowed to continue into the R0RK , probably
will not be given priority in the design process until all the sections of the report have
at least been drafted. The most prominent such weakness is that cyclic structures
composed of pairs do not currently have an external representation (§4.6; it seems
likely that SRFI-38, [Di03], will be adopted). Another weakness that may fall into
the same class is the absence of any technical characterization of data passed to the
error continuation (§7.2.7).

A.4 Beyond R0RK

A major development that lies beyond the scope of the R0RK is:

• Elaboration of an error continuation hierarchy. This needs to be done, especially
to the extent of completely specifying errors signaled by combiners in the report.

The issue of separate compilation units is under review. Some (possibly) more exten-
sive additions are also under consideration:

• Concurrency. The currently envisioned approach would seek to minimize the
number of new concepts introduced, by basing synchronization on the notion of
reachability that is already used in Lisp for garbage collection.

• Theorems. Traditional type systems contain a fixed inference engine that fights,
and inevitably loses to, the halting problem. An alternative approach is being
developed in which inference engines are the responsibility of the programmer,
who already confronts the halting problem as a normal part of programming.

• External i/o. Graphical user interfaces are an obvious omission. It is not at
all clear that any GUI strategy devised to date has the kind of elegance that
Kernel aspires to; but as of this writing, the problem has not been subjected to
a direct assault, so no alternative strategy for Kernel is yet under development.

172

B First-class objects

As a matter of principle, all entities directly involved in the Kernel evaluator algorithm
must be first-class objects (G1a of §0.1.2). This subsection discusses the concept of
first-class object in depth, starting from its general sense and then applying it to
Kernel.

The concept is due to Christopher Strachey.15 In [Str00, §3.5.1], he describes
first-class objects in Algol:

In Algol a real number may appear in an expression or be assigned to a
variable, and either may appear as an actual parameter in a procedure call.
A procedure, on the other hand, may only appear in another procedure
call either as the operator (the most common case) or as one of the actual
parameters. There are no other expressions involving procedures or whose
results are procedures. Thus in a sense procedures in Algol are second
class citizens — they always have to appear in person and can never be
represented by a variable or expression (except in the case of a formal
parameter)

Strachey’s detailed enumeration of rights and privileges is specific to Algol, but
the concept generalizes naturally. In any given programming language, first-class ob-
jects may be freely manipulated, according to certain broad classes of manipulations
that are characteristic of the language; second-class objects are those whose general
manipulations are hemmed in with special restrictions. The rights and privileges
of first-class objects in a language are usually noticed only by their absence when
working with second-class objects. For example, based on what cannot be done with
primitive data types in Java 1.4, one might well adopt the position that first-class
objects in Java must belong to class Object .16

Abelson and Sussman [AbSu96, §1.3.4] recommend the following four criteria as
necessary, though by implication not sufficient, for first-class objects in Scheme.

1. They may be named by variables.

2. They may be arguments to procedures.

3. They may be returned by procedures.

15Christopher Strachey originally evolved the notion of first-class value from W.V. Quine’s prin-
ciple To be is to be the value of a variable ([La00]).

Quine’s principle is a criterion for what a statement assumes to exist (not a criterion for what
actually does exist). He proposes reformulating any given statement using quantified variables and
predicates; in the reformulation, whenever a variable must have a value bound to it, some such value
that satisfies the statement is assumed to exist. Thus the sentence “Pegasus does not exist,” in
which “Pegasus” appears to be the name of something, becomes “¬(∃x)(is-Pegasus(x))”, in which
x is not bound to anything and so no existence is assumed. ([Qu61].)

16This could also be taken as an example of why one shouldn’t compromise on the elegance of a
language design.

173

4. They may be components of data structures.

A significant omission from this list may be illustrated by the following thought
experiment. Suppose Scheme were slightly modified, by granting these four properties
to, say, the built-in special-form combiners and and or . There would then be two new
“first-class” objects in the Scheme programmer’s repertory. However, there would be
little to gain by it. The new objects would remain anomalies, because they would
always be the only two “first-class” examples of a larger type, with its own peculiar
abstract properties; in fact, conceptually they seem to belong to some kind of infinite
domain, most of whose values are unavailable in Scheme, and the rest of which are
(in this particular scenario) second-class under criteria 1–4. Although one might
then choose to call those two objects “first-class”, their arbitrary peculiarity would
never allow them to, so to speak, fully assimilate into the society of Scheme objects.
To correct this problem, here is an additional criterion for first-class objects17 (still
without claiming sufficiency, of course):

5. There are no arbitrary restrictions on the set of objects, in the given object’s
naturally arising value domain, that satisfy criteria 1–4.

This criterion requires first-class status to be judged collectively for an entire type,
rather than individually for each particular value. In applying the criterion, each
object type is to be judged according to the standard of the naturally arising value
domain to which it corresponds; either all of the values in the domain are first-class,
or none of them are.

The new criterion depends inherently on the intent of the data type: whether
a restriction is arbitrary depends on what abstract domain the type is being used
to represent. For example, a 32-bit unsigned integer representation may be first-
class if its purpose in the program is to model the nonnegative integers modulo 232,
while the same concrete data type used to represent the countably infinite domain of
nonnegative integers fails the criterion. (Any strictly first-class representation of the
integers would have to be infinite-precision, i.e., Lisp-style bignums.)

Under Criterion 5, the Scheme special-form combiners can’t be made first-class
in isolation; a conceptually complete domain of such creatures must be identified,
and given first-class status all at once. Thus, type operative would not be first-class
without its constructor, $vau .

Although Scheme has been remarkable in its support for first-class procedures and
first-class continuations, operatives are not the only second-class objects centrally in-
volved in the R5RS evaluator algorithm: Scheme environments are also second-class.
This follows, again, from Criterion 5. The naturally arising domain of Scheme environ-
ments is infinite; but in the R5RS , only three environments out of this infinite domain
can be explicitly denoted (only two if optional procedure interaction-environment
is omitted) [KeClRe98, §6.5], so only these three (or two) satisfy Criteria 1–4.

17A similar criterion for first-class objects was recommended by [Gu91].

174

Other kinds of second-class objects in Scheme, less basic to its evaluator algorithm,
include multiple-value return sequences (see rationale discussion of §4.9.1), and cyclic
list and tree structures (see rationale discussion of §3.9).

C De-trivializing the theory of fexprs

The use of a term-reduction calculus to model any Lisp with fexprs has, in recent
years, acquired a folk reputation for theoretical inadmissibility, due to an overgeneral-
ization based on the (quite correct) central theoretical result of Mitchell Wand’s 1998
paper “The Theory of Fexprs is Trivial” ([Wa98]). The paper is precise in stating its
formal result:

We provide a very simple model of a reflective facility based on the pure
λ-calculus, and we show that its theory of contextual equivalence is triv-
ial: two terms in the language are contextually equivalent iff they are
α-congruent.

Throughout the paper’s lucid formal development of this result, no generalization is
made beyond this precise statement. However, the informal concluding remarks of the
paper do contain the overgeneralization (foreshadowed by the paper’s title). They first
observe that the provided model, with its trivial theory, is apparently adding no more
new capability than is strictly necessary to qualify as supporting fexprs — not really
a problematic observation, although the paper notably does not distinguish, when
making this point, between properties (such as capabilities) of the modeled Lisp and
properties of the model. Then, however, the remarks draw from this observation an
inference that the trivialization of theory cannot be avoided without failing to support
fexprs. This inference is apparently based on the assumption that the trivialization
of theory is caused by the new capability.

In fact, it is fairly easy to demonstrate (with the advantage of hindsight, i.e.,
once one has seen it done) that the observed trivialization of theory is an artifact of
properties of the model, not properties of the modeled Lisp.

Any modification of λ-calculus to model fexprs must somehow distinguish between
those subterms that are to be evaluated, and those that are not. Wand’s treatment
supposes that the only difference between these two is that subterms that are not
to be evaluated are marked by an evaluation-suppressing context (specifically, they
occur within an operand of a fexpr).18 It also supposes that “evaluating a term” is
just another name for reducing it; hence, calculus reduction of a subterm is itself
suspended when the subterm occurs within an operand to a fexpr. Because there
is a context that suppresses reduction, two terms cannot be interchangeable in all

18This evaluation-suppressing approach may be seen as an echo of the quote operator, which was
introduced in [McC60] to distinguish data S-expressions from control S-expressions.

175

contexts unless they can be recognized as identical without performing any reduction
on them — in other words, contextual equivalence is then a trivial relation.

The trivialization can be avoided if one disrupts these suppositions: rather than
marking subterms not to be evaluated by means of an evaluation-suppressing context,
mark subterms that are to be evaluated, by means of an evaluation-inducing context;
and introduce different syntax for a cons-cell than for an application, so that evalu-
ation becomes clearly separate from β-reduction. To illustrate the general method,
here are a series of straightforward successive alterations to pure λ-calculus, each of
which evidently preserves its equational strength, at the end of which sequence the
result is a pure calculus, called fx-calculus.19

To start with, here is our rendition of λ-calculus:

λ-calculus.

Syntax:
c ∈ Constants
x ∈ Variables

T ::= c | x | (TT) | (λx.T) (Terms) .
Schemata:

(λx.T1)T2 −→ T1[x← T2] .

Auxiliary function T1[x← T2] performs hygienic substitution of term T2 for variable
x in term T1; its definition is a standard exercise, which we omit here.

This is the traditional, call-by-name λ-calculus, which we prefer for the demon-
stration since it underscores that fexpr support does not in itself force such reduction-
ordering decisions. If we wanted the call-by-name λv-calculus (due to Gordon Plotkin,
[Plo75]), we would restrict the operand in the schema to be a value — for suitable
definition of value; choosing the correct definition of value was key to Plotkin’s con-
struction, and further care would be required when extending the definition to cover
the additional syntax needed for fx-calculus.

Our first alteration to the calculus is a straightforward replacement of its superfi-
cial syntax: we replace the combination notation “(TT)” with “[combine T T]”, and
the function abstraction notation “(λx.T)” with “〈 fx.T 〉”.

Syntax:
c ∈ Constants
x ∈ Variables

T ::= c | x | [combine T T] | 〈 fx.T 〉 (Terms) .
Schemata:

[combine 〈 fx.T1〉 T2] −→ T1[x← T2] .

The equational strength of the calculus is obviously unaffected; the formal equations
of λ-calculus now use the superficially altered syntax.

19The choice of glyph ffor vau in this mathematical context is discussed in an appendix of [Sh09].

176

Next, we add primitive syntax for cons-cells.

T ::= c | x | (T . T) | [combine T T] | 〈 fx.T 〉 (Terms) .

We assume that the empty list is a constant, () ∈ Constants; and we will freely use
the usual abbreviated list notation, (T . (· · ·)) ≡ (T · · ·).

We add a primitive context to indicate that a subterm is to be evaluated, [eval T];
and, at the same time, we introduce a separate nonterminal S for terms that we
anticipate will be self-evaluating. (We also introduce a separate nonterminal A for
“active” terms, which is organizationally convenient although it has no bearing on
reduction in this call-by-name variety of the calculus.)

S ::= c | 〈 fx.T 〉 (Self-evaluating terms)
A ::= [eval T] | [combine T T] (Active terms)
T ::= x | S | (T . T) | A (Terms) .

All this additional syntax has, of course, no effect on the pre-existing formal equations,
and adds new formal equations formed by embedding the β-redex pattern in terms
that involve the additional syntax, such as ([combine 〈 fx.(x . x)〉 ()]) =β ((())).

Here are reduction schemata for evaluating the syntax we have so far.

[eval S] −→ S
[eval (T1 . T2)] −→ [combine [eval T1] T2] .

Variables and active terms naturally don’t have their own evaluation rules, since they
may represent evaluable data structures yet to be determined.

At this point, we only support operative combinations. To support applicative
combinations, we add syntax for applicatives 〈T 〉 (read as “wrap T”), a schema for
evaluating applicatives, and schemata for scheduling the argument evaluations of an
applicative combination (one schema for each possible number of operands).

Syntax (additional):
T ::= 〈T 〉 (Terms) .

Schemata (additional):
[eval 〈T 〉] −→ 〈[eval T]〉

[combine 〈T0〉 ()] −→ [combine T0 ()]
[combine 〈T0〉 (T1)] −→ [combine T0 ([eval T1])]

[combine 〈T0〉 (T1 T2)] −→ [combine T0 ([eval T1] [eval T2])]
...

These schemata evidently presuppose that operatives have some means to decom-
pose an operand list, before binding the operands to variables one at a time using
〈 fx.2〉. To provide this means we therefore add, finally, two parameterless function

177

abstractions: 〈 f0.T 〉, which matches an empty operand list, and 〈 f2.T 〉, which curries
a nonempty operand list.

Syntax (additional):
S ::= 〈 f0.T 〉 | 〈 f2.T 〉 (Self-evaluating terms) .

Schemata (additional):
[combine 〈 f0.T 〉 ()] −→ T

[combine 〈 f2.T0〉 (T1 . T2)] −→ [combine [combine T0 T1] T2] .

All together, we have

fx-calculus.

Syntax:
c ∈ Constants
x ∈ Variables

S ::= c | 〈 fx.T 〉 | 〈 f0.T 〉 | 〈 f2.T 〉 (Self-evaluating terms)
A ::= [eval T] | [combine T T] (Active terms)
T ::= x | S | (T . T) | 〈T 〉 | A (Terms) .

Schemata:
[combine 〈 fx.T1〉 T2] −→ T1[x← T2]
[combine 〈 f0.T 〉 ()] −→ T

[combine 〈 f2.T0〉 (T1 . T2)] −→ [combine [combine T0 T1] T2]
[eval S] −→ S

[eval (T1 . T2)] −→ [combine [eval T1] T2]
[eval 〈T 〉] −→ 〈[eval T]〉

[combine 〈T0〉 ()] −→ [combine T0 ()]
[combine 〈T0〉 (T1)] −→ [combine T0 ([eval T1])]

[combine 〈T0〉 (T1 T2)] −→ [combine T0 ([eval T1] [eval T2])]
...

Mostly because the left-hand sides of the schemata are mutually exclusive, fx-calculus
is a regular CRS in the sense of [Kl80], so it has the Church-Rosser property; and
because a term inside the λ-calculus subset (i.e., not using any of the syntactic ex-
tensions) can only be reduced via the β-rule, fx-calculus is a conservative extension
of λ-calculus.

Of course, fx-calculus doesn’t have symbols or environments, so it’s not a very
practical tool for reasoning about Lisp with fexprs; but it is a simple demonstration
of how a λ-like calculus can support fexprs with a nontrivial equational theory. Envi-
ronments would make the demonstration less immediate: one of the first things one
would do would be to replace syntactic form [combine T T] with [combine T T T]
—where the extra subterm is the dynamic environment of the combination— and
that would be the end of the “perfect” syntactic correspondence with λ-calculus.

178

Nevertheless, fx-calculus can be used to simulate evaluation of sufficiently tame
Lisp expressions, including all those evaluations corresponding to reduction of λ-
calculus terms with no free variables; a sufficient condition is that each symbol that
would be evaluated can be replaced by either a constant or a bound variable (since
fx-calculus has no symbols as such, and treating symbols as constants only works

so long as they aren’t evaluated). As an illustration of how this works, consider the
Lisp expression (eval (cons $quote (cons (cons 2 3) ()))). (Since the calcu-
lus doesn’t support environments, we simply omit the environment argument.) The
combiners in this example can be represented in fx-calculus as

eval ≡ 〈〈 f2.〈 fx.〈 f0.[eval x]〉〉〉〉
cons ≡ 〈〈 f2.〈 fx.〈 f2.〈 fy.〈 f0.(x . y)〉〉〉〉〉〉

$quote ≡ 〈 f2.〈 fx.〈 f0.x〉〉〉 .

Working up gradually to the example, we have

[eval eval]
≡ [eval 〈〈 f2.〈 fx.〈 f0.[eval x]〉〉〉〉]

−→ fx 〈[eval 〈 f2.〈 fx.〈 f0.[eval x]〉〉〉]〉
−→ fx 〈〈 f2.〈 fx.〈 f0.[eval x]〉〉〉〉
≡ eval ,

and similarly [eval cons] −→∗
fx cons and [eval $quote] −→ fx $quote . For any

term T ,

[eval (eval T)]
−→ fx [combine [eval eval] (T)]
−→∗

fx [combine eval (T)]
≡ [combine 〈〈 f2.〈 fx.〈 f0.[eval x]〉〉〉〉 (T)]

−→ fx [combine 〈 f2.〈 fx.〈 f0.[eval x]〉〉〉 ([eval T])]
−→ fx [combine [combine 〈 fx.〈 f0.[eval x]〉〉 [eval T]] ()]
−→ fx [combine 〈 f0.[eval x]〉[x← [eval T]] ()]
≡ [combine 〈 f0.[eval [eval T]]〉 ()]

−→ fx [eval [eval T]] .

Thus, [eval (eval T)] = fx [eval [eval T]]. Also,

[eval ($quote T)]
−→ fx [combine [eval $quote] (T)]
−→ fx [combine $quote (T)]
≡ [combine 〈 f2.〈 fx.〈 f0.x〉〉〉 (T)]

−→ fx [combine [combine 〈 fx.〈 f0.x〉〉 T] ()]
−→ fx [combine 〈 f0.x〉[x← T] ()]
≡ [combine 〈 f0.T 〉 ()]

−→ fx T ,

so [eval ($quote T)] = fx T . For any terms T1 and T2,

179

[eval (cons T1 T2)]
−→ fx [combine [eval cons] (T1 T2)]
−→∗

fx [combine cons (T1 T2)]
≡ [combine 〈〈 f2.〈 fx.〈 f2.〈 fy.〈 f0.(x . y)〉〉〉〉〉〉 (T1 T2)]

−→ fx [combine 〈 f2.〈 fx.〈 f2.〈 fy.〈 f0.(x . y)〉〉〉〉〉 ([eval T1] [eval T2])]
−→∗

fx [combine 〈 f2.〈 fy.〈 f0.([eval T1] . y)〉〉〉 ([eval T2])]
−→∗

fx [combine 〈 f0.([eval T1] . [eval T2])〉 ()]
−→ fx ([eval T1] . [eval T2]) ,

so [eval (cons T1 T2)] = fx ([eval T1] . [eval T2]). Finally,

[eval (eval (cons $quote (cons (cons 2 3) ())))]
−→∗

fx [eval [eval (cons $quote (cons (cons 2 3) ()))]]
−→∗

fx [eval ([eval $quote] . [eval (cons (cons 2 3) ())])]
−→ fx [eval ($quote . [eval (cons (cons 2 3) ())])]
−→∗

fx [eval ($quote [eval (cons 2 3)] . [eval ()])]
−→ fx [eval ($quote [eval (cons 2 3)])]
−→∗

fx [eval ($quote ([eval 2] . [eval 3]))]
−→∗

fx ([eval 2] . [eval 3])
−→∗

fx (2 . 3) ,

so [eval (eval (cons $quote (cons (cons 2 3) ())))] = fx (2 . 3).

180

References

[AbSu85] Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure
and Interpretation of Computer Programs, New York: McGraw-Hill, 1985.

The first edition of the Wizard Book [Ra03, “Wizard Book”]. Mostly su-
perseded by [AbSu96].

[AbSu96] Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure
and Interpretation of Computer Programs, Second Edition, MIT Press, 1996.
Available (as of October 2009) at URL:
http://mitpress.mit.edu/sicp/sicp.html

The second edition of the Wizard Book [Ra03, “Wizard Book”].

[Ba78] John Backus, “Can Programming Be Liberated from the von Neumann Style?
A Functional Style and its Algebra of Programs’, Communications of the ACM
21 no. 8 (August 1978), pp. 613–641.

Augmented form of the 1977 ACM Turing Award Lecture, which proposes
the function programming paradigm, and coins the term “von Neumann bot-
tleneck”.

[Cl85] William Clinger, editor, The Revised Revised Report on Scheme, or An Un-
common Lisp, memo 848, MIT Artificial Intelligence Laboratory, August 1985.
Also published as Computer Science Department Technical Report 174, Indi-
ana University, June 1985. Available (as of October 2009) at URL:
http://www.ai.mit.edu/publications/

This is the first of the RxRS s with a huge pile of authors (for two perspec-
tives, see [ReCl86, Introduction], [SteGa93, §2.11.1]). There is, as one might
expect from a committee, almost nothing in the way of motivation; however,
there is also —as one would not normally expect from a committee— a verse
about lambda modeled on J.R.R. Tolkien’s verse about the Rings of Power.

[Cl98] William Clinger, “Proper Tail Recursion and Space Efficiency”, SIGPLAN
Notices 33 no. 5 (May 1998) [Proceedings of the 1998 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), Mon-
treal, Canada, 17–19 June 1998], pp. 174-185. Available (as of October 2009)
at URL:
http://www.ccs.neu.edu/home/will/papers.html

Formally defines Scheme proper tail recursion (but not proper tail recursion
in general).

[ClRe91b] William Clinger and Jonathan Rees, editors, “The Revised4 Report on
the Algorithmic Language Scheme”, Lisp Pointers 4 no. 3 (1991), pp. 1–55.

181

Available (as of October 2009) at URL:
http://www.cs.indiana.edu/scheme-repository/doc.standards.html

[CrFe91] Erik Crank and Matthias Felleisen, “Parameter-Passing and the Lambda
Calculus”, POPL ’91 : Conference Record of the Eighteenth Annual ACM Sym-
posium on Principles of Programming Languages, Orlando, Florida, January
21–23, 1991, pp. 233–244. Available (as of October 2009) at URL:
http://www.ccs.neu.edu/scheme/pubs/#popl91-cf

[Di03] Ray Dillinger, “External Representation for Data with Shared Structure”,
SRFI-38, finalized 2 April 2003. Available (as of October 2009) at URL:
http://srfi.schemers.org/srfi-38/

[Gu91] David Gudeman, “Re: Complexity of syntax”, usenet posting, Message-ID:
<373@coatimundi.cs.arizona.edu>, Newsgroup: comp.lang.misc, January
1991.

Recommends four criteria for a first-class object. Quoting from the article:

“(1) The object can be produced as the value of general expressions of the
correct type.

(2) The object can be used in any expression of the correct type.

(3) The lifetime of the object is unbounded (I’m talking high-level semantics
here, so I don’t have to mention garbage collection.)

(4) It is not (in general) decidable that a given object is produced by no
expression in a program. (In other words, the object may be created at run-
time).”

[IE85] IEEE Standard 754-1985. IEEE Standard for Binary Floating-Point Arith-
metic. IEEE, New York, 1985.

[Ka93] Alan C. Kay, “The Early History of Smalltalk”, SIGPLAN Notices 28 no. 3
(March 1993) [Preprints, ACM Sigplan Second History of Programming Lan-
guages Conference, Cambridge, Massachusetts, April 20–23, 1993], pp. 69–95.

[KeClRe98] Richard Kelsey, William Clinger, and Jonathan Rees, editors, “Revised5

Report on the Algorithmic Language Scheme”, 20 February 1998. Available
(as of October 2009) at URLs:
http://groups.csail.mit.edu/mac/projects/scheme/index.html

http://download.plt-scheme.org/doc/202/html/r5rs/index.htm

[Kl80] Jan Willem Klop, Combinatory Reduction Systems, Ph.D. Thesis, University
of Utrecht, 1980. Also, Mathematical Centre Tracts 127. Available (as of Oc-
tober 2009) at URL:
http://web.mac.com/janwillemklop/Site/Bibliography.html

182

[La00] P. J. Landin, “My Years with Strachey”, Higher-Order and Symbolic Compu-
tation 13 no. 1/1 (April 2000), pp. 75–76.

[McC60] John McCarthy, “Recursive Functions of Symbolic Expressions and Their
Computation by Machine”, Communications of the ACM 3 no. 4 (April 1960),
pp. 184–195.

The original reference for Lisp.

[McC+62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin, LISP 1.5 Programmer’s Manual, Cambridge, Massachu-
setts: The MIT Press, 1962. Available (as of October 2009) at URL:
http://www.softwarepreservation.org/projects/LISP/book/

The second edition was 1965, same authors.

[MitGnu] MIT/GNU Scheme. Available (as of October 2009) at URL:
http://www.gnu.org/software/mit-scheme/

[Mor73] James H. Morris Jr., “Types are not Sets”, POPL ’73: Conference Record
of ACM Symposium on Principles of Programming Languages, Boston, Mas-
sachusetts, October 1–3, 1973, pp. 120–124.

[Mos00] Peter D. Mosses, “A Foreword to ‘Fundamental Concepts in Programming
Languages’ ”, Higher-Order and Symbolic Computation 13 no. 1/2 (April
2000), pp. 7–9.

[Pi83] Kent M. Pitman, The Revised Maclisp Manual (Saturday evening edition),
MIT Laboratory for Computer Science Technical Report 295, May 21, 1983.

[Pi07] Kent M. Pitman, The Revised Maclisp Manual (Sunday morning edition),
published Sunday, December 16, 2007, updated Sunday, July 6, 2008. Available
(as of October 2009) at URL:
http://maclisp.info/pitmanual/

[Plo75] Gordon D. Plotkin, “Call-by-name, call-by-value, and the λ-calculus”, Theo-
retical Computer Science 1 no. 2 (December 1975), pp. 125–159. Available (as
of October 2009) at URL:
http://homepages.inf.ed.ac.uk/gdp/publications/

[Qu61] W. V. Quine, “On What There Is”, in from a logical point of view, Second
Edition, revised, New York: Harper & Row, 1961, pp. 1–19.

The book is a collection of nine “logico-philosophical essays”.

[Ra03] Eric S. Raymond, The Jargon File, version 4.4.7, 29 December 2003. Available
(as of October 2009) at URL:
http://www.catb.org/~esr/jargon/

183

[ReCl86] Jonathan Rees and William Clinger, editors, “The Revised3 Report on
the Algorithmic Language Scheme”, SIGPLAN Notices 21 no. 12 (Decem-
ber 1986), pp. 37–43. Available (as of October 2009) at URL:
http://www.cs.indiana.edu/scheme-repository/doc.standards.html

The second of the RxRS s authored by a committee. Introduces a high-level
statement on language-design principles in the Introduction, which has been
passed on to all the RxRS s since.

[Sh08] John N. Shutt, “Abstractive Power of Programming Languages: Formal Defi-
nition”, technical report WPI-CS-TR-08-01, Worcester Polytechnic Institute,
Worcester, MA, March 2008, emended 26 March, 2008. Available (as of Octo-
ber 2009) at URL:
http://www.cs.wpi.edu/Resources/techreports.html

[Sh09] John N. Shutt, Fexprs as the basis of Lisp function application; or, $vau : the
ultimate abstraction, Ph.D. Dissertation, WPI CS Department, forthcoming.

[Sp+07] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten,
“Revised6 Report on the Algorithmic Language Scheme”, 26 September 2007.
Available (as of October 2009) at URL:
http://www.r6rs.org/

[Sta75] Thomas A. Standish, “Extensibility in Programming Language Design”, SIG-
PLAN Notices 10 no. 7 (July 1975) [Special Issue on Programming Language
Design], pp. 18–21.

A retrospective survey of the subject, somewhat in the nature of a post-
mortem. The essence of Standish’s diagnosis is that the extensibility features
required an expert to use them. He notes that when a system is complex, mod-
ifying it is complex. (He doesn’t take the next step, though, of suggesting that
some means should be sought to reduce the complexity of extended systems.)

He classifies extensibility into three types: paraphrase (defining a new fea-
ture by showing how to express it with pre-existing features — includes ordi-
nary procedures as well as macros); orthophrase (adding new facilities that are
orthogonal to what was there — think of adding a file system to a language
that didn’t have one); and metaphrase (roughly what would later be called
“reflection”).

[Ste90] Guy Lewis Steele Jr., Common Lisp: The Language, 2nd Edition, Digital
Press, May 1990. Available (as of October 2009) at URL:
http://www-2.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

[SteGa93] Guy L. Steele Jr. and Richard P. Gabriel, “The Evolution of Lisp”, SIG-
PLAN Notices 28 no. 3 (March 1993) [Preprints, ACM SIGPLAN Second

184

History of Programming Languages Conference, Cambridge, Massachusetts,
April 20–23, 1993], pp. 231–270.

[SteSu78] Guy Lewis Steele Jr. and Gerald Jay Sussman, The Revised Report on
Scheme, a Dialect of Lisp, memo 452, MIT Artificial Intelligence Laboratory,
January 1978.

[Str67] Christopher Strachey, “Fundamental Concepts in Programming”, Lecture
notes for International Summer School on Computer Programming, Copen-
hagen, August 7 to 25, 1967.

These notes have been cited commonly when crediting Strachey with coining
the term polymorphism as it applies to programming languages. The discussion
of polymorphism is on page 10.

The discussion of first-class objects is on pp. 9–10.

Strachey later turned these notes into a paper, which remained unpublished
until it appeared as [Str00]. Although the finished paper is far more articulate
on most topics, some specific points are more clearly expressed by the notes.

[Str00] Christopher Strachey, “Fundamental Concepts in Programming Languages”,
Higher-Order and Symbolic Computation 13 no. 1/2 (April 2000), pp. 11–49.

This is Strachey’s paper based on his lectures, [Str67]. On the history of the
paper, see [Mos00].

[SumPi04] Eijiro Sumii and Benjamin C. Pierce, “A Bisimulation for Dynamic Seal-
ing”, SIGPLAN Notices 39 no. 1 (January 2004) [Proceedings of the 2004
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2004), Venice, Italy, January 14–16, 2004], pp. 161–172.

[Sus07] Gerald Jay Sussman, “Building Robust Systems”, essay, January 13, 2007.
Available (as of October 2009) at URL:
http://groups.csail.mit.edu/mac/users/gjs/6.945/readings

/robust-systems.pdf

[SusSte75] Gerald Jay Sussman and Guy Lewis Steele Jr., Scheme: an Interpreter for
Extended Lambda Calculus, memo 349, MIT Artificial Intelligence Laboratory,
December 1975. Available (as of October 2009) at URL:
http://www.ai.mit.edu/publications/

The revised0 report on Scheme.

[Ta99] Walid Taha, “Multi-Stage Programming: Its Theory and Applications”, Ph.D.
Dissertation, Technical Report CSE-99-TH-002, Oregon Graduate Institute of
Science and Technology, November 1999. Available (as of October 2009) at
URL:
http://www.cs.rice.edu/~taha/publications.html

185

[vT04] André van Tonder, “Primitives for Expressing Iterative Lazy Algorithms”,
SRFI-45, post-final version with bug fix, 4 August 2004. Available (as of Oc-
tober 2009) at URL:
http://srfi.schemers.org/srfi-45/

[Wa98] Mitchell Wand, “The Theory of Fexprs is Trivial”, Lisp and Symbolic Com-
putation 10 no. 3 (May 1998), pp. 189–199. Available (as of October 2009) at
URL:
http://www.ccs.neu.edu/home/wand/pubs.html#Wand98

This paper is a useful elaboration of the basic difficulty caused by mixing
fexprs with implicit evaluation in an equational theory. Along the way, the au-
thor makes various sound observations. “We care,” he notes in the concluding
section, “not only when two terms have the same behavior, but we may also
care just what that behavior is.”

186

Alphabetical index

Items may be concepts, terms, types, key-
words, or combiners. The principal en-
tries for an item are listed first, in bold-
face, separated from the other entries by
a semicolon. Keywords prefixed by #, and
combiners prefixed by $, are alphabetized
without the prefix. (For example, $vau is
alphabetized under v.)

! 21
$ 21; 55
() 45
* 153
+ 152–153
- 153–154
-> 22
. 45, 149
/ 161
; 24–25
<=? 152
<? 152
=? 151–152
>=? 152
>? 152
? 21

abnormal passing 111–112; 119–120
see also: normal return

abs 156
abstractive power 10 (note)
acos 164
acyclic prefix length 69
and? 78–79
$and? 80–81
angle 164
append 83–85
append! 94–95
applicative 16–17

applicative type 53–54; 56–57, 63–64,
66–67

applicative? 54
apply 66–67; 73–74
apply-continuation 122
argument 16
argument evaluation order 28; 14,

59–60
asin 164
assoc 87–89
assq 96–97
atan 164

$bindings-environment 106–107
$binds? 99–100
boolean type 39–40; 31, 78–81
boolean? 40

caar 65
cadr 65
call-with-current-continuation

(Scheme procedure) 114
call-with-input-file 167; 166
call-with-output-file 167; 166
call/cc 114
car 64
cddddr 65
cdr 64
ceiling 162
char type 165
close-input-file 166; 166
close-output-file 166; 166
combination 16
combiner 16–17
combiner type 53–54; 81–82
combiner? 81–82
complex type 142–143, 146–147; 161,

163–164
complex? 164
$cond 67–69

187

cons 45–46
continuation type 111–112; 38,

112–124
continuation->applicative

117–121
continuation? 114
conventions

naming 21–23
typographical 19–21

copy-es 95–96
copy-es-immutable 46–48
cos 164
countable-list? 91
cycle length 69
cyclic see: self-referencing data

data structure 34–35; 69
$define! 50–53
delay (Scheme macro) 127, 129, 135
denominator 161
diagnostic information 32–33
div 154
div-and-mod 154
div0 155
div0-and-mod0 155
dynamic environment

see under: environment
dynamic extent 113
dynamic variable see under: variable
dynamic-wind (Scheme procedure)

120–121

eager (Scheme procedure) 135
eager argument evaluation

see: argument evaluation order
encapsulation type 125–126
encapsulation of types

see under: types
encycle! 72
environment

dynamic 27; 13–15, 55–57, 63
ground 26; 17
standard 26; 19–21, 27, 101, 167

static 54–55; 13, 27
environment type 26–27, 48; 49–53,

76–78, 99–110
environment? 49
eq? 41; 29–30, 33, 97–98
equal? 41–43; 29–30, 32, 98–99
eqv? (Scheme procedure) 40
error signaling 18–19; 29, 122, 125,

145–146, 172
error-continuation 121–122
eval 49
evaluation structure 46–47; 56, 95–96
evaluator algorithm 27–28, 36–38
even? 155
exact? 157–158
exit 124–125
exp 163
explicit-evaluation strategy

see: quotation
expt 164
extend-continuation 114–115
extensions of Kernel 28–30; 17–18
external representation 31–32; 29–30,

41, 42, 43
of particular types 39, 43, 44–45,

48, 148–150, 172

#f 39
features

library 17
permitted/required 26, 28
primitive 17

filter 86–87
finite-list? 90–91
finite? 150–151
first-class objects 173–175; 11, 29, 36,

51
floor 162
for-each 110–111
force 128
formal parameter tree see: matching

gcd 156–157

188

get-current-environment 100–101
get-current-input-port 166
get-current-output-port 166
get-list-metrics 69–71
get-module 167–168
get-narrow-arithmetic? 160
get-real-exact-bounds 158
get-real-exact-primary 158–159
get-real-internal-bounds 158
get-real-internal-primary

158–159
get-strict-arithmetic? 160
ground environment

see under: environment
guard-continuation 115–116
guard-dynamic-extent 123–124

hygiene 12, 68, 139

identifier 23–24
$if 44
ignore type 48–49; 53, 54–55
#ignore 48
ignore? 49
imag-part 164
implementation

comprehensive 17
restrictions 19; 147, 150
robust 18

implicit-evaluation strategy
see: quotation

$import! 110
improper list

see under: list
inert type 43–44
#inert 43
inert? 44
inexact type 143–146; 157–160
inexact? 157–158
input-port? 166
integer type 142, 147; 155–157
integer? 150–151

isomorphically structured
see: self-referencing data

keyed variable see under: variable

$lambda 63–64
latent typing

see under: types
lazy (Scheme macro) 128–129
$lazy 128–133
lazy argument evaluation

see: argument evaluation order
lcm 156–157
length 82
$let 76–78
$let* 101–102
$let-redirect 104–105
$let-safe 105–106
$let/cc 123
$letrec 102–103
$letrec* 103–104
library features

see under: features
list

countable 91; 34
external representation 45
finite 90–91; 35
improper 69
tools 60–62, 69–72, 82–87, 91–95

list 60–61
list* 61–62
list-neighbors 85–86
list-ref 82–83
list-tail 71
load 167; 32
log 163

magnitude 164
make-encapsulation-type 126
make-environment 49–50
make-inexact 159–160
make-kernel-standard-environment

101

189

make-keyed-dynamic-variable

136–138
make-keyed-static-variable

139–140
make-polar 164
make-rectangular 164
map 72–76; 38
matching 51–52
max 156
member? 90
memoize 133–135
memq? 97
min 156
mod 154
mod0 155
module 17–18; 29
multiple-value returns 51–52, 117
mutation 33–34; 21

naming conventions
see under: conventions

narrow arithmetic 144–145; 149, 160
negative? 155
normal return 112–113; 111, 119–120

see also: abnormal passing
not? 78
null type 45
null? 45
number type 140–142; 151–154
number? 150–151
numerator 161

odd? 155
open-input-file 166; 166
open-output-file 166; 166
operand 16
operand tree 16; 55

see also: matching
operative 16–17
operative type 53–54; 54–57
operative? 54
operator 16
or? 79

$or? 81
output-only representation 32
output-port? 166

pair type 45; 45–46, 64–65
pair? 45
partitioning of types

see under: types
port type 165–166; 166
port? 166
positive? 155
predicate 40; 21

see also under: types
primary value (of a number) 143–146
primitive features

see under: features
primitive type predicates

see under: types
promise type 126–127
promise? 127–128
proper tail recursion

38–39; 14, 55, 63
see also: tail context

$provide! 108–110

quasiquotation see: quotation
quotation 15; 25, 57, 67

rational type 142, 147; 161
rational? 161
rationalize 162–163
read 166; 29–30, 32
real type 142–143; 154–156, 162–163
real->exact 160
real->inexact 160
real-part 164
real? 163
reduce 91–94
reduce-left 92–93
reduce-right 92–93
reference 26

see also: self-referencing data
$remote-eval 106

190

robust? 157–158
root-continuation 121
round 162

search tools 87–90, 96–97
self-referencing data 34–38; 47
$sequence 58–60
$set! 107–108
set-car! 46
set-cdr! 46
simplest-rational 162–163
sin 164
sqrt 164
standard environment

see under: environment
static environment

see under: environment
static scoping 13; 14–15
static variable see under: variable
strict arithmetic 160; 144, 148
string type 165
string->symbol 165
structurally isomorphic

see: self-referencing data
symbol type 43
symbol? 43

#t 39
tail context 38; 80, 111, 113, 123

(instances) 28, 44, 49, 55, 58, 66,
77, 80, 81, 106, 114

tan 164
truncate 162
types

encapsulation of 28–30; 12, 32
latent 13; 22, 31
partitioning of 30–31
primitive type predicates 30; 31
programmer-defined 29–30

typographical conventions
see under: conventions

#undefined 149

undefined? 157–158
unwrap 57

variable
keyed dynamic 135–136
keyed static 138
symbolic 16

$vau 54–56, 62–63

whitespace 24
with-input-from-file 166; 165
with-narrow-arithmetic 160
with-output-to-file 166; 165
with-strict-arithmetic 160
wrap 56
write 167; 29–30, 32

zero? 154

191

