MTP: A Streaming-Friendly Transport Protocol

Jae Chung, Mark Claypool and Robert Kinicki
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA, 01609, USA
{goos| cl aypool | rek}@s. wpi . edu

Abstract— Today’s streaming applications typically use TCP
or UDP to transmit media over the Internet. However, streaming
over UDP is problematic due to firewalls that restrict UDP
penetration and because of the potential for excessive congestion
induced by unresponsive UDP flows. Streaming over TCP is
also troublesome because media scaling is difficult given current
TCP’s application programming interface (API) and because
the TCP reliable in-order delivery requirement yields damaging
media frame reception jitter. Recently proposed TCP-Friendly
protocols have faced deployment resistance due to the firewall
situation and the inability to demonstrate stability equivalent
to that of TCP. To enhance TCP support for delay-sensitive
streaming media, this paper proposes the Multimedia Transport
Protocol (MTP), a unreliable data transport mode for TCP.
MTP gracefully disables TCP retransmissions, uses delay-aware
sender buffer queue management, and provides a transparent
API that enables streaming media applications to make informed
media scaling decisions. MTP is simple to implement, has the
proven stability of TCP, and inherits the full benefit of network
support for TCP. Through a simulation study that includes
implementation and validation of a streaming media client and
server, this paper shows that MTP offers streaming performance
comparable to that provided by UDP, while doing so under a
TCP-Friendly rate.

I. INTRODUCTION

Streaming applications today choose either TCP or UDP
as their transport protocol, depending on individual needs.
It has been a myth that UDP is the dominant choice for
streaming media on the Internet, believing that it is difficult to
achieve acceptable streaming performance over TCP. However,
Merwe, Sen and Kalmanek [1] report that video on demand
(VoD) and live broadcasting applications predominantly use
TCP over UDP, with TCP used for about 72% to 75% of all
bytes transferred.

Streaming over UDP is undesirable when firewalls block
UDRP to limit the penetration of streaming traffic. This restric-
tion for UDP also occurs when network address translation
(NAT) is employed at end-user routers in home and small cor-
poration networks. Furthermore, the unresponsiveness of UDP
streams can lead to excessive congestion at the bottlenecked
router. While media scaling can be effectively employed by
streaming applications to respond to network congestion, it
is often not deployed in an appropriate congestion avoidance
fashion [2], [3]. Using streaming repair techniques [4], [5],
[6], [7], can partially or fully conceal UDP packet losses
thus reducing the incentive for UDP flows to be responsive
to congestion.

Recent research has proposed TCP-Friendly streaming
transport protocols [8], [9], [10], [11] in the hope they will
be used by streaming media applications. However, most
TCP-Friendly protocols focus on achieving smooth and TCP-
Friendly transmission rates, but with little concern for an
application programming interface (API) to meet media scal-
ing performance requirements. Thus, most proposed TCP-
Friendly protocols are not streaming-friendly in that they
make it difficult to acquire network information and effectively
perform media scaling over the protocols. Additionally, very
little progress has been made on deployment of TCP-Friendly
protocols because they do not have stability equivalent to that
of TCP and cannot obtain support from current firewalls.

Taking into account the problems with both UDP and TCP-
Friendly protocols for streaming applications, recent research
analyzes cases where TCP streaming provides satisfactory
performance [12], and suggests ways to improve streaming
performance over TCP [13], [14], [15]. Nevertheless, TCP
streaming remains problematic due to following reasons: 1)
Performing media scaling over TCP is difficult, since TCP’s
API hides network information such as packet loss rate and
round-trip times that are essential for making efficient media
scaling decisions [2]; 2) Overestimating the available TCP data
rate leads to stream quality degradation due to large queuing
delays at the TCP sender [2], [16]; 3) TCP’s reliable in-order
packet delivery often induces large frame reception jitter that
can interrupt streaming media playout.

When a TCP sender’s transmission rate is less than the
streaming bitrate, media frames are queued and delayed at
the sender’s protocol buffer. Since high-quality media frames
can block transmission of lower-quality media frames in the
sender buffer, the delay added by the protocols sender buffer
can significantly degrade stream quality when the streaming
system is downscaling the media quality. While delay-aware
TCP input queue adaptation, such as in [16], can reduce
media frame reception jitter, the queue length adaptation
alone does not resolve the difficulties in obtaining network
state information over TCP nor reduce retransmission-induced
jitter. Explicit Congestion Notification (ECN) does avoid TCP
packet losses that cause media frame reception jitter, but ECN
deployment has been severely hampered by the requirement
for router support and serious network security concerns [17],
[18].

This paper presents Multimedia Transport Protocol (MTP),
a modified form of TCP for streaming that favors prompt
and timely datagram delivery service over reliable in-order

transmission service. By removing retransmissions from the
TCP protocol, MTP instead sends the packet with the highest
sequence number in place of a retransmission. By removing
both retransmissions and ordered packet delivery from TCP,
MTP reduces the high delay and jitter characteristics that
make TCP impractical for interactive applications, and makes
network information such as packet loss and round-trip time
transparent for making media scaling decisions.

MTP offers two modes of transmission at the API: 1) non-
blocking transmission mode offering UDP API semantics,
and 2) the block-on-full-queue mode of default TCP. It is a
common practice that streaming media servers, particularly
ones over UDP, operate in a rate-based frame transmission
mode, a so called “fire-and-forget” mode, receiving no indica-
tions of packet delivery [19]. The non-blocking transmission
mode of MTP supports the contemporary rate-based streaming
applications by requiring little modification to switch to MTP.
Offering UDP transmission semantics requires MTP senders
to use a best-effort queue management mechanism to drop
packets from applications when the sender buffer is full. For
implementation of the non-blocking transmission API, MTP
uses a simple drop-front queue management that works well
with streaming media. On the other hand, the block-on-full-
queue mode of MTP offers prospective streaming applications
an advanced control over frame transmissions. For both trans-
mission modes, MTP may additionally use a dynamic queue
length adaptation mechanism introduced in [16] to support
interactive streaming applications.

MTP has advantages over other TCP-Friendly transport
protocols: 1) MTP has the proven stability of TCP since
it has the exact congestion avoidance mechanism of TCP;
2) MTP can be implemented as a mode for TCP in the
deployment phase as well as a separate protocol to get full
support from the existing firewalls; 3) MTP can be easily
made available for all operating system distributions, since
an MTP implementation can reuse most of an existing TCP
implementation; 4) Existing UDP streaming applications can
easily switch to MTP with a minimum change using the
non-blocking transfer mode, while new streaming applications
may use block-on-full-queue option as well. In addition, the
Internet community proposes to build an unreliable transport
protocol incorporating end-to-end congestion control, called
Datagram Congestion Control Protocol (DCCP) [20]. DCCP
proposes to support a TCP-like window-based congestion
control mechanism (Congestion Control ID 2) similar to MTP
and to support TFRC [8] (Congestion Control ID 3), a rate-
based end-to-end mechanism. The design and evaluation of
MTP for streaming media is a valuable contribution toward the
design and evaluation of the DCCP ID 2 congestion control
mechanism.

MTP evaluation requires a realistic streaming application
that performs media scaling and simulates media buffering and
playout. While implementing and evaluating MTP on Linux
was considered, this approach was dropped when we were
unable to find a reasonable open-source streaming application
that could be modified to use MTP. Thus the alternative path
of evaluating MTP using NS [21] simulations was selected.
This required building MTP into NS based on the existing

TCP Reno implementation and designing and implementing
a video streaming system, called Goddard, into NS based on
streaming application behavior observed in [2], [3].

The simulations show that MTP video streams adapt as
quickly as UDP streams to available bandwidth and signif-
icantly reduce rebuffering events that are common in TCP
streams while maintaining other media qualities such as frame
rate and picture resolution at TCP stream levels. The results
also show that existing UDP streaming application can use
MTP with little modification to their media scaling mecha-
nisms to achieve better quality than TCP streams.

The paper is organized as follows: Section Il presents the
design of MTP; Section I11 describes the design of the Goddard
streaming server and client; Section IV evaluate MTP in
comparison with TCP and UDP using Goddard; and Section V
summarizes our conclusions and lists possible future work.

Il. MULTIMEDIA TRANSPORT PROTOCOL

Multimedia Transport Protocol (MTP) is a TCP modifica-
tion that disables retransmissions, while preserving the trans-
mission timings and congestion responsiveness characteristics
of TCP. MTP performs slow start, congestion avoidance, fast
retransmission and fast recovery as does TCP, yet offers a
UDP-like transparent APl and provides UDP packet delivery
semantics. Namely, MTP does not offer guaranteed or in-order
packet delivery.

MTP retains the same loss detection and recovery mecha-
nisms of TCP. Instead of a retransmission, the MTP sender
temporally inflates its transmission window and sends a new
packet.! The inflated transmission window is deflated back
when an acknowledgment for the retransmission-replacement
packet is received. This temporary transmission window in-
flation has the effect of not counting the retransmission-
replacement packet sent as a new transmission when making
the next new packet transmission decision and is required for
MTP to have the same transmission behavior at the network
layer as that of TCP.

In MTP, a retransmission replacement packet is marked
in the TCP header by the MTP sender to distinguish it
from a normal packet at the MTP receiver. On reception
of a retransmission-replacement packet, the MTP receiver
marks as received the oldest outstanding packet in its packet
reception window and advances the receiver window in the
same manner as a TCP receiver would upon reception of a
retransmitted packet. Additionally, the MTP receiver records
the sequence number of the replaced new packet, updates
the receiver window again and sends an acknowledgment for
the highest consecutively received packet sequence number.
An MTP receiver does not hold any received packets in the
receiver window for in-order delivery, but provides packets to
the application as soon as they are received. Thus, the receiver
window contains only sequence numbers of received packets
for management of acknowledgment packets.

In summary, an MTP implementation requires a mechanism
to keep track of replacement packets in the transmission

INote, for this discussion the terms segment and packet are used inter-
changeably.

Receiver State |
Recv Window |

[Sender State I
starting ssthresh=6 | Ack [Seq [Wnd [Note |

10 16 6 10
10 17 6+1 dupl 12
10 18 6+2 dup2 1213
fast-retransmit | 10 11 3+3 dup3 ___ 121314
TCP 10 3+4 dup4 ___12..15
fast-recovery 10 3+5 dup5 __12..16
10 19 3+6 dup6 __12..17
10 20 3+7 dup7 ___12..18
18 21 3 18
10 16 6 10
10 17 6+1 dupl 12
10 18 6+2 dup2 1213
fast-retransmit | 10 197 | 3+3+1 | dup3 __ 121314
MTP 10 3+4+1 | dupd ___12..15
fast-recovery 10 3+5+1 [dup5 __12..16
10 20 3+6+1 | dup6 __12.17
10 21 3+7+1 | dup? ___12..18
19 22 3 19
Fig. 1. An Example Duplicate Acknowledgment Management of TCP

(Reno) and MTP: Wnd = congestion window + the number of duplicate
acknowledgments (+ the retransmission replacement inflation for MTP),
and the notation n* for MTP represents packet n with the retransmission
replacement bit set in the TCP header.

window at the MTP sender and a bit in the TCP header,
referred to as the replacement bit, to distinguish retransmission
replacement packets from new packets. We implemented MTP
in NS by extending the built-in TCP Reno code. Thus, the
subsequent discussion describes the behavior of MTP built
upon TCP Reno.

A. Duplicate Acknowledgment Management

When encountering duplicate acknowledgments, the MTP
source performs congestion avoidance, fast retransmission and
fast recovery as does TCP, and yields identical congestion
window movement and packet transmission timings. However,
unlike TCP, on reception of a triple duplicate acknowledgment,
MTP inflates the transmission window size by the number
of not-yet-acknowledged retransmission-replacement packets
including the current one, advances the highest sequence
number sent thus far, and transmits a new data packet in
the place of the retransmission with the highest sequence
number and the replacement bit set in the TCP header. In
the case there is no new data available in the input buffer on
receiving a triple duplicate acknowledgment, the MTP sender
transmits the acknowledged lost packet in the transmission
window. Retransmission-replacement packets received by a
MTP receiver are handled as described above.

Figure 1 provides an example of MTP duplicate acknowl-
edgment management behavior as compared to TCP Reno.
In this example, both the TCP and MTP senders detect a
single packet loss while they have the congestion window size
(cwnd) of 6 and are in congestion avoidance mode indicated
by cwnd equal to the slow start threshold (ssthresh). TCP
retransmits the lost packet 11 when getting triple duplicate
acknowledgment for packet 10 and halves cwnd to 3. On
the other hand, MTP transmits the retransmission replacement
packet 19 when detecting loss of packet 11 and halves cwnd to
3. Thus, although the packet sequence number advancements
are different, the congestion window movement and packet
transmission timings at the network packet level of TCP and
MTP are identical for a single packet loss in a window. This

IN

" TCP (N=1 fp=0.014 bp=0.0) — —

|| T i

\‘ (| ” |
W \‘ \UH N‘ ‘\M w \\M M 4H “L \M ‘\‘M ‘,\ M\(H‘v

Tl w,“f”‘w W] Ml "H‘Vv‘! Wi \M«W /

L
0

w

Throughput (Mbps)
N

| \
| M‘\\

10 20 30
Seconds

; T MTP (N= 1WM

Seconds

w IS

Throughput (Mbps)
N

=

o
=
o
N
oS

Fig. 2. TCP versus MTP Throughput: The forward network packet loss rate
py = 0.014, the backward packet loss rate p, = 0.0, the round-trip time
RTT = 60 ms and the bottleneck capacity C' = 100 Mbps.

is also true for multiple packet losses in a window and for
acknowledgment packet losses as long as the sender does not
timeout due to lack of duplicate acknowledgments or loss of
a retransmitted (or retransmission-replacement) packet during
fast recovery.

Figure 2 compares the throughput (measured in 100 ms
intervals) of a single TCP and a single MTP flow on a
simulated network with capacity of 100 Mbps, round-trip
link delay of 60 ms and forward direction packet loss rate
ps = 0.014, where the same simulation was run once with
a TCP flow and then again with an MTP flow with packet
drops generated by the same random seed. The two lines on
top of each other before the timeout around 37 seconds show
that MTP packet transmission characteristics are identical to
that of TCP as long as the senders can effectively detect lost
packets via the triple duplicate acknowledgment mechanism.
In addition, the TCP and MTP throughputs are identical even
for the five timeouts before 37 seconds indicating that TCP and
MTP transmission characteristics are equivalent even for some
timeout recovery situations. However, the timeout recovery
behavior of MTP can be slightly different from that of TCP
under some conditions, as discussed in detail in the next
section.

B. Retransmission Timeout Recovery

Retransmission timeout in TCP and MTP occurs in two
cases: 1) When there are not enough outstanding packets
to generates three duplicate acknowledgments for all the
lost packets in a window, or there is a failure to deliver
the acknowledgments to the sender due to lost acknowledg-
ment packets; 2) When a retransmitted or retransmission-
replacement packet generated during fast retransmit is also
lost, making the sender unable to return to the congestion
avoidance mode after fast recovery.

On a retransmission timeout, the MTP sender tries to
recover from the timeout in a manner similar to that of
a TCP sender. That is, MTP performs slow start until the
congestion window (cwnd) reaches the slow start threshold

starting [Sender State [[Receiver State | starting [Sender State [[Receiver State |
ssthresh=2 [Ack | Seq [Wnd T Note || Recv Window | ssthresh=2 [Ack | Seq [Wnd T Note || Recv Window |
11 1 1213 11 1 12 __14
TCP 13 14,15 2 13 12 13,147 2 14
14 16 2 14 TCP 14 15,16 2 14
15 17,18 3 15 14T |17 2+1 dupl 14
15* 1 wnd-base 1213 ___ 15 18 3 15
MTP 13 167177 | 2+0+1 | =14 -—-15 15* 1 wnd-base __12___14
16 18 2 wnd-base 16 12 167177 2+0+1 =14 —__14 15
17 19,20 3 = hi-ack 17 MTP 16 18 2 wnd-base 16
Fig. 3. Example Recovery of TCP and MTP from a Timeout Due to Lack g ;2‘20 g = hi-ack g
of Duplicate Acknowledgments: Packets 11 and 14 are lost in the previous
transmissions. Notions (Wnd and *) are the same as in Figure 1. Fig. 4. Example Recovery of TCP and MTP from a Timeout Due to Lack

(ssthresh), and returns to congestion avoidance mode. Yet,
unlike TCP which restarts the transmission from one below the
highest consecutively acknowledged packet sequence number
(hi-ack), MTP restarts by transmitting a new packet? with the
replacement bit set and advances the highest sequence number
sent so far (max_seq) by one.2.

At the beginning of timeout recovery, cwnd is set to one.
Thus, if the size of the sender’s transmission window is
computed as max_seq minus hi_ack as in TCP, MTP cannot
transmit a new packet. To resolve this situation, MTP uses
a new sender state variable called transmission window base
(wnd_base) as the lower bound of the the transmission window
for computing the transmission window size. When MTP is
not in a timeout recovery, wnd_base is set to hi_ack whenever
hi_ack is updated upon the arrival of a new acknowledgment
packet. This yields the same transmission window size as in
TCP. However, at the start of a timeout recovery, the MTP
sender sets wnd_base to mazx_seq before sending out a new
packet and declares timeout recovery until hi_ack is less than
or equal to wnd_base.

During a timeout recovery, all packets are marked as
retransmission-replacement packets by the MTP sender before
transmission. However, since the sender does not know the
state of the receiver’s window upon restart, the sender cannot
determine whether a new packet sent is indeed used as a re-
transmission replacement packet or not. Thus, the MTP sender
does not inflate the transmission window on the transmission
of an intended retransmission-replacement packet. Instead,
the sender monitors acknowledgment packets during timeout
recovery and inflates the transmission window when a new
acknowledgment packet with the acknowledgment number less
than or equal to wnd_base is received. Otherwise, since the
updated hi_ack (with the new acknowledgment number) is
greater than the value of wnd_base, MTP comes out of the
timeout recovery, sets the wnd_base to the updated hi_ack
and continues transmission in the normal transmission mode.

Figure 3 provides an examples that illustrates the timeout
recovery transmission behavior of MTP in comparison with
TCP. In the example, the loss of packets 11 and 14 in the
previous transmission window when cwnd = 4 cause the
retransmission timeout and ssthresh before the timeout is 4.
When the retransmission timer expires, TCP reduces cwnd =

2In case there is no new application data to send, the MTP sender waits
until new data is available.

3In an OS implementation stack, the packet sequence number and window
advancement should use bytes instead of packets.

of Duplicate Acknowledgments: Packets 11 and 13 are lost in the previous
transmissions. Notions (Wnd and *) are the same as in Figure 1.

1 and ssthresh = 2 and retransmits the packet hi_ack + 1
(packet 11). When the acknowledgment comes back for packet
13, TCP increases cwnd = 2 and retransmits packet 14 and
transmits a new packet 15. Since in this example, packet 14
was also lost in the previous transmission, the retransmitted
packet 14 was useful.

When the timeout occurs, MTP transmits wnd_base to
max_seq, Which is 14 in the example, and transmits packet 15
setting the replacement bit in the TCP header. The receiver,
upon reception of the retransmission-replacement packet 15,
sends acknowledgment for packet 13. On receiving the ac-
knowledgment, the sender updates hi_ack = 15 and cund =
2. Then, the MTP sender compares hi_ack with wnd_base,
and inflates the transmission window by one as hi_ack <
wnd_base. The sender transmits packet 16 and 17 as it can
transmit up to max_seq — wnd_base + the retransmission
replacement inflation (rrp_inf). Additionally, packets 16 and
17 are marked as able to replace retransmissions as the MTP
sender is still in timeout recovery mode. Upon receiving the
acknowledgment for packet 16 (> wnd_base), the sender
comes out of the timeout recovery by setting wnd_base =
hi_ack = 16 and returns to congestion avoidance mode.

In general, TCP and MTP transmission timings are identical
for timeouts due to a single packet loss for a small cwnd or
due to two packet losses in a window where the most recently
sent packet is lost as in Figure 3. In other cases, MTP behaves
slightly more efficiently than TCP.

Figure 4 illustrates the behavior of TCP and MTP under
the transmission scenario that is identical to the scenario of
Figure 3 except that packet 13 is lost instead of packet 14. In
TCP, the retransmitted packet 14 is wasted, since the receiver
already has packet 14 in the receiver buffer. This also generates
a duplicate acknowledgment that delays advancement of cund
at the sender. On the other hand, by transmitting new packets
each time, MTP avoids duplicate acknowledgments during
timeout recovery and may achieve a higher goodput than TCP.
Although TCP and MTP transmission timings may be slightly
different after a timeout in general, this makes little difference
on their throughput as long as the TCP sender does not face
three duplicate acknowledgments by unwisely retransmitting
packets that the TCP receiver already has in the buffer. In such
a case, the TCP sender unnecessarily reduces its congestion
window.

TCP (N=25 p=0.01 bp=0.10)
L MTP (N=25 fp=0.01 bp=0.10)
TCP (N=25 p=0.05 bp=0.10)
MTP (N=25 fp=0.05 bp=0.10)
TCP (N=25 p=0.10 bp=0.10)

i
VA
-

MTP (N=25 p=0.10 bp=0.10) ——

Throughput (Mbps)

w
Kt K
K¢

L L L L
0 20 40 60 80 100
Seconds

o B N W A O O N ® ©
T

Fig. 5. Aggregate Throughput of 25 TCP and 25 MTP Flows

C. TCP-Friendliness

MTP may improve goodput over TCP by avoiding retrans-
mission during a timeout recovery. However, the fact that
TCP may falsely back off due to unnecessary retransmissions
while MTP does not may bring up a concern about the TCP-
Friendliness of MTP. In practice, TCP may rarely get triple
duplicate acknowledgments during a timeout recovery, and
even so, it does not significantly reduces the TCP throughput.
Moreover, newer versions of TCP have option to use selective
acknowledgment (SACK) [22], which remedies this drawback
of Reno TCP.

Figure 5 compares the aggregate throughput of 25 MTP
flows with that of 25 TCP flows for a ranges different
packet loss rates in the simulated network. This simulation
uses a dumbbell topology with a 100 Mbps links, where the
round-trip delay of 25 source-edge node pairs are randomly
distributed over the range [140,480] ms. Random packet drop
modules are installed at the forward and backward backbone
links and backward packet drop rate is set to p, = 0.10 in
order to create a fair amount of acknowledgment compression.
Then, the forward packet loss rate p is varied over 0.01, 0.05
and 0.10. The same simulation is run with same random seed
twice for each p¢, once with 25 TCP flows and once with 25
MTP flows. The nearly identical aggregate throughput of 25
TCP flows and 25 MTP flows for all forward packet drop rates
in Figure 5 verifies the TCP-Friendliness of MTP flows.

D. Application Programming Interface

MTP offers two modes of transmission at the application
programming interface (API): block-on-full-queue mode of-
fering TCP transmission APl semantics, and non-blocking
transmission mode offering UDP transmission APl semantics.

When the block-on-full-queue transmission mode is used, a
user process sending a packet is blocked while the MTP sender
buffer is full. The block-on-full-queue mode is for prospective
streaming applications or existing TCP streaming applications
that use non-blocking socket write system calls in a polling
manner to detect whether the transport sender queue is full
and use the information to make media scaling decisions. For
the block-on-full-queue transmission mode, an MTP sender
may also use the dynamic queue length adaptation scheme
introduced in [16] to reduce MTP queuing delays. The block-
on-full-queue transmission mode is not discussed or evaluated
further in this paper.

The non-blocking transmission mode, which can also be
used with dynamic queue length adaptation for delay critical
interactive streaming, is designed for existing UDP streaming
applications, so that they can easily adapt to MTP with
little modification. In order to implement the non-blocking
transmission API, MTP uses drop-front queue management on
the MTP sender input queue. Drop-front queue management
works better with delay sensitive streaming media trans-
missions than does drop-tail queue management, because a
prompt notification of packet loss helps streaming applications
to timely perform media scaling or selective retransmission.
Especially when scaling down, dropping packets from high
quality media frames in the queue helps timely transmission
of the lower quality media frames. Thus, drop-front queue
management helps prevent the media buffer at the application
receiver from running out of frames avoiding an interrupt in
the media playout while re-buffering. As in the block-on-full-
queue mode, the non-blocking transmission mode can also be
used with a dynamic queue length adaptation mechanism to
enhance the support for delay-critical interactive streaming.
Evaluation of such a combination is left as future work.

Although MTP offers an API that transparently provides
underlying network information such as packet losses or
round-trip time to applications above, MTP can also explicitly
provide network information such as effective MTP transmis-
sion rate to help streaming applications. However, the exact
network information, computation and format that should be
provided to be useful for media scaling requires further study.

I1l. GODDARD STREAMING CLIENT AND SERVER

We design and implement in NS a streaming system (client
and server) called Goddard.* Goddard is designed based on
the behaviors of Real Networks streaming media and Windows
Stream media, as observed in measurements studies [2] and
[3], respectively. The Goddard streaming client and server
use packet-pairs [23], [24], [25] to estimate the bottleneck
capacity and select an appropriate media encoding level before
streaming. During streaming, Goddard client and server re-
select the media to stream (i.e., perform media scaling) in
response to network packet losses or re-buffering events that
occur when the client playout buffer empties. Goddard also
simulates frame playout of the received media at the client,
allowing frame rate and jitter to be measured for performance
evaluation. To the best of our knowledge, Goddard is the
first and only realistic streaming system available in NS. Our
contribution of Goddard to the research community® represents
an additional contribution of this work.

As in commercial systems, the Goddard server supports
multiple levels of encoded media that are configured by giving
the frame size and the frame rate for each scale level. A
sample media scale configuration that simulates multiple level
encoding of a high quality Internet video is shown in Figure 6.
In addition, the Goddard server has an option for setting the
maximum fragment size for fragmenting large media frames

40ur streaming system is named after Robert Goddard, the “Father of
Modern Rocketry” and a WPI alumnus.
Shttp://perform.wpi.edu/downloads#goddard

[Level | Frame Size | Frame Rate | Bitrate |
0 1KB 10 FPS 80 Kbps
1 1KB 15 FPS 120 Kbps
2 2 KB 15 FPS 240 Kbps
3 2 KB 20 FPS 320 Kbps
4 4 KB 20 FPS 640 Kbps
5 4 KB 30 FPS 960 Kbps
6 8 KB 30 FPS 1,920 Kbps
Fig. 6. Sample Media Scale Levels
[Parameter | Default Value | Description |
pkp_timeout_interval 2 seconds Packet-pair timeout interval
buf_factor 15 Buffering rate factor
play-buf_thresh 5 Seconds Threshold to start playout
loss-monitor_interval 5 seconds Loss monitoring interval
downscale-frameloss-rate | 0.05 Down-scale frame loss rate
upscale_interval 60 seconds Up-scale decision interval
upscale_frame_loss_rate 0.01 Up-scale frame loss rate
upscale_limit_time_factor 3 Up-scale limit time factor
Fig. 7. Goddard Client (Gplayer) Parameters with Default Values

before transmission. Typically, the maximum fragment size
would be set to the maximum transmission unit (MTU) of the
underlying network. The Goddard client, also called Gplayer
for Goddard Player, has the configuration parameters shown
in Figure 7. The default parameter values are set based on the
observations in [2], [3].

Similar to commercial streaming systems, the Goddard
client and server use three communication channels for a
streaming session: a control cannel using a TCP connection,
a UDP packet-pair channel, and a media streaming channel
that can be TCP, UDP or MTP. When setting up a streaming
session, the Goddard server sends the list of supported media
scale levels to the Gplayer using the control channel. Then,
Gplayer sets a timer with pkp_timeout_interval and requests
the server to send a pair of UDP packets to estimate the
capacity of the network path. If any one of the packet-pairs
is lost, the packet-pair timer expires and Gplayer will send
a request for another packet-pair to the Goddard server. On
successful reception of a packet-pair, the capacity of the
network path is computed by dividing the packet size by the
dispersion [26]. Then, Gplayer selects the largest media scale
level with a bitrate less than the computed capacity and notifies
the server.

Gplayer also notifies the server of the buf_factor before
starting streaming to determine how much the server should
increase the transmission rate during media buffering periods.
The Goddard client and server operate in two modes: buffering
or streaming. During buffering, the Goddard server transmits
the chosen media frames at the rate of buf_factor times
the streaming bitrate, where bu f_factor used for commercial
streams typically ranges from 1.5 to 4 [2], [3]. Gplayer
maintains a media playout buffer and a playout threshold
(play-buf_thresh). When the Goddard server starts media
transmission in buffering mode, the Gplayer buffers the frames
received in the media buffer. When the media buffer size
(given in playout time) reaches the play_bu f thresh, Gplayer
tells the server to switch to streaming mode and starts playing
the media according to the timing described for the current
media scale level. If the media buffer runs out of frames,
Gplayer stops media playout and switches back to buffering

mode. At this time, Gplayer re-selects the largest media scale
level with a bitrate less than the average received throughput
for the previous control interval. Then, Gplayer tells the server
to transmit frames of the new scale level at the buffering rate,
that is the streaming bitrate times bu f_factor.

When a Goddard streaming session uses UDP or MTP
for the media channel, Gplayer can also use frame loss
information to make media scaling decisions. In this case,
Gplayer monitors the frame loss rate each time it receives
a media frame. When it is at least loss_monitor_interval
since the last scale adjustment decision was made and the
frame loss rate is greater than downscale_frame_loss_rate,
Gplayer scales the media down one level if the current scale
level is not already at the minimum. If the current scale is at
the minimum, Gplayer maintains the current scale level. The
default value for downscale_frame_loss_rate is set to 0.05
according to [3].

Gplayer also makes decisions to scale the media up to a
higher level, but does so slowly and gently. Gplayer increases
the scale level by one if the frame loss rate of the stream
is less than upscale_frame_loss_rate for upscale_interval
since the last time scaling decision was made and the bitrate
of the stream after the increase is less than or equal to the
estimated network capacity. Also, in order to reduce the chance
of playout interruption, Gplayer limits scaling up to one below
the last scale level that caused media re-buffering. This limit
on scaling up is heuristically relaxed by one scale level if the
stream maintains good quality (i.e., no scale down events) for
upscale_limit_time_factor times the upscale_interval. The
default for upscale_interval is set to 60 seconds, a value from
the observed range (30 to 90 seconds) during the streaming
measurement studies in [2], [3].

Thus, Goddard simulates a realistic streaming video appli-
cation that performs media scaling, buffering and playout.
Implementation of support for video frame dependencies,
selective retransmission or other media repair mechanisms are
left as future work.

1V. EVALUATION OF MTP

This section evaluates MTP by comparing the performance
of Goddard streaming video over TCP, UDP and MTP through
detailed simulations. MTP is evaluated under two different
network configurations: a network with limited capacity on
the local link, and a network with a congested backbone link.
The limited capacity local link simulations are designed to
evaluate the media scale adaptation of Goddard over TCP,
UDP and MTP on the network where the end-host connection
link capacity is less than the maximum stream capability, as
will often occur for the home user. The congested backbone
link simulations are designed to evaluate the performance of
the Goddard streams over TCP, UDP and MTP on a network
path congested with many flows.

The simulations use an extended dumbbell network topol-
ogy that adds an intermediate node for each of the end-user
nodes (ex) as shown in Figure 8. The intermediate nodes
(7x) simulate a 750 Kbps DSL modem (symmetric up- and
down-link capacity) for the limited local bandwidth study

300 Web (+ 24 FTP)

10 Mbps

Goddard + Competing FTP
Ci = 0.75 Mbps (DSL) or 10 Mbps (LAN)

Fig. 8. Network Topology

in Section IV-A, and a 10 Mbps router for the congested
backbone link simulations in Section 1V-B. The backbone link
(n1 < no) capacity is set to 10 Mbps, whereas all the other
network link capacities are set to 100 Mbps. The link delays of
the streaming and the competing FTP paths (¢, — ej) are set
to 70 ms giving 140 ms of round-trip link delay. The round-
trip link delays of the other normal dumbbell paths (s; — d;)
are randomly uniformly selected over the range [60:1000] ms,
based on measurements in [27]. All the links use drop-tail
queues. The physical queue limit is set to 20 Kbytes for the
750 Kbps links, and 500 Kbytes for the 10 Mbps and 100
Mbps links. The queue limits have little effect on the non-
saturated 100 Mbps link traffic, and are approximately equal
to the bandwidth-delay product for the 750 Kbps and 10 Mbps
links given the mean round-trip time. The maximum network
packet size is set to 1000 bytes.

On the normal dumbbell paths (s; < dy), each simulation
has 25 backward direction bulk transfer FTP flows and 300
forward direction background Web sessions (using the Webtraf
code built into NS) that start evenly distributed during the
first 30 seconds. Based on settings from [28], [29], each Web
session requests pages with 2 objects drawn from a Pareto
distribution with a shape parameter of 1.2 and an average
size of 5 Kbytes. The Web sessions have an exponentially
distributed think time with a mean of 7 seconds, which results
in an average utilization of about 2.5 to 3 Mbps of the 10
Mbps capacity, a fraction typical of some Internet links, such
as in [30]. For simulations in Section I1V-B, additional 24
forward direction bulk transfer FTP flows are used on the
normal dumbbell paths to load the backbone link.

The Goddard server uses configuration with the seven media
scale levels shown in Figure 6 and a fragment threshold of
1 Kbyte. The Goddard client uses the default configuration
parameters shown in Figure 7.

MTP is evaluated by analyzing the network and application
layer performances of Goddard video streams over TCP, UDP
and MTP. The streaming performance is measured in terms of
average sustained scale level, frame rate, durations of initial
buffering and media playout, re-buffering event count, TCP-
Friendliness, TCP-Friendly rate adaptation time, and frame
reception jitter. When there are lost frames, frame reception
jitter is computed by taking the inter-frame arrival time of two
consecutively received frames divided by the number of lost
frames between the two received frames plus one.

A. Limited Local Bandwidth

This experiment shows the media scale adaptation of the
Goddard streams over TCP, UDP and MTP on the network
where the end-host connection link capacity is less than the
maximum stream capability. For this study, the intermediate
link capacity (C;) is set to 750 Kbps, a typical capacity of
a DSL modem. This creates a capacity limited streaming
condition since the Goddard streams are configured to support
the maximum streaming bitrate of 1,920 Kbps. On the capacity
limited paths (¢, — ex), 3 Goddard streams (TCP, UDP and
MTP) and 4 bulk FTP flows are simultaneously started at 100
seconds and stopped at 400 seconds, where the background
Web traffic and reverse FTP traffic are running from the
beginning of the simulation. This traffic aggregate does not
cause a congestion at the backbone link, since the total
maximum expected traffic rate is well under the backbone link
capacity (10 Mbps). The maximum expected traffic rate is 8.75
Mbps (7x0.75 Mbps + 3 Mbps of Web and acknowledgments
traffic). However, the traffic is to simulate a utilized backbone
link for realistic transmission timing variations to the Goddard
streams. We run the simulation 7 times with different random
seeds to avoid biases in any one measurement.

Figure 9 shows the media scaling dynamics of the TCP,
UDP and MTP streams from one of the simulations, and
Figure 10 shows frame reception jitter for the corresponding
streams. Figure 9 show that for all three streams the packet-
pairs estimation of capacity choose the initial scale level of
4 providing streaming bitrate of 640 Kbps. The streams start
transmission in the buffering mode at the rate of 960 Kbps,
1.5 times faster than the streaming bitrate and larger than the
local connection capacity of 750 Kbps.

The high buffering bitrate causes TCP to probe for available
bandwidth, incurring packet losses at the local link. The TCP
stream experiences an unfortunate sequence of packet drops
at about 140 seconds, which causes the large frame jitter
and results in a media re-buffering event. TCP scales down
a media level and stays at that level for the life of the stream.
The smooth TCP stream jitter after 240 seconds in Figure 10
indicates that the TCP sender does not have enough packets
for bandwidth probing as the stream scales down and switches
to the streaming mode.

The high buffering bitrate also causes frame losses for the
UDP stream in the buffering period. However, the UDP stream
tolerates the initial frame losses and maintains its initial scale
level, since it can tolerate the packet loss rate for the initial
measurement interval is less than 5%. In addition, the UDP
stream mains low frame reception jitter at the mean (u) of
50 ms that is the playout interval of the 20 frames-per-second
(FPS) video, and a standard deviation (6) of 6 ms.

The MTP stream scales down the media bitrate like the
TCP stream but for to a different reason. The small number
of packet losses (or frame losses) during MTP bandwidth
probing scarcely affect the performance of the stream, since
MTP immediately delivers received packets to the application
and does not increase the frame reception jitter at the client.
However, scale-down decisions are made due to the frame
losses that occur during the initial buffering period at the

6
5 TCP Stream ——
4
- —
a2
1
0
100 150 200 250 300 350 400 450 500
Seconds
6 T
5 UDP Stream —+—
o 4
T 3
a2
1
0
100 150 200 250 300 350 400 450 500
Seconds
6 T
5 MTP Stream —+—
o 4
T 3 N
ﬁ 2 -‘
1
0
100 150 200 250 300 350 400 450 500
Seconds
Fig. 9. Example Media Scale Dynamics (Run 0)
3 : T T
w + TCP Stream +
°
§ 25| 1
8 .
(]
@
Py 2t g
£
=
g o1sp L 1
< +
e 1t]
g —+
fin +
ToosRr 4w % 1
= + g
0 .
100 150 200 250 300 350 400 450 500

Frame Reception Time (Seconds)

" UDP Stream +

Inter-Frame Arrival Time (Seconds)

100 150 200 250 300 350 400 450 500
Frame Reception Time (Seconds)

" MTP Stream -+

Inter-Frame Arrival Time (Seconds)
o
N
a

0 L i L L L L L
100 150 200 250 300 350 400 450 500
Frame Reception Time (Seconds)

Fig. 10. Example Media Frame Reception Jitter (Run 0)

=]

input buffer of the slow-starting MTP sender. Figure 9 shows
that large frame loss bursts at the start of the MTP stream
cause it to scale down two levels consecutively in 10 seconds.
The MTP stream does scale back up to the initially selected
scale level, but slowly and conservatively due the large up-
scale decision interval (60 seconds). These inefficient scaling
decisions made by the MTP stream at the initial buffering
period can be avoided by using selective retransmission, which
is supported by most commercial streaming products [31].
In addition, Figure 10 shows that the MTP frame jitter (u
=52 ms, 8 = 11 ms) is as compatibly low as the UDP
jitter throughout the stream lifetime for the local connection

TCP Stream —+—
UDP Stream

09 I MTP Stream —*—

©

0.8 1

0.6 - B

CDF

05 B

0.4

0.3 1

0.2 B

0.1

2 3 4
Scale Levels

Fig. 11. CDF of Streamed Media Scale Levels
1 LI — RN L
09 B
0.8 4
0.7 q
0.6 - B
g
) 05 B
04 q
03 q
0.2 B
TCP St —
L UDP Stream b
-))) MTP Strea‘m —k—
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Inter-Frame Arrival Time (Seconds)
Fig. 12. CDF of Media Frame Reception Jitter

bandwidth constrained condition.

Figure 11 and Figure 12 provide cumulated density function
of the streamed media scale level dynamics and the inter-frame
reception time (jitter) of all seven simulations. Figure 11 shows
that the UDP streams stay at level 4, the highest level allowed
by the local link, all the times, and the TCP streams stay at
level 3 about 85% of the times. The MTP streams achieve
the scale level of the UDP streams (level 4) about 60% of
times, although about 12% of the times they stay at the level
2 due to the inefficient scaling decisions made during the initial
buffering periods.

Figure 12 confirms that that the frame reception jitter of
the MTP streams is as smooth as that of the UDP streams
under a normal condition where the local connection link is
the only bottleneck of the network path. In addition, Figure 12
reveals the ineffectiveness of media scaling over TCP as well
as the effect of TCP’s reliable in-order packet delivery on
frame reception jitter. The TCP streams’ inter-frame arrival
times less than 50 ms, the playout interval of the 20 FPS
video (level 3 and 4), indicate that about 40% the frames are
sent in the buffering mode and/or delayed in the TCP receiver
buffer due to packet losses. Especially, the inter-frame arrival
time of zero in Figure 12 indicate that two or more consecutive
frames are delayed in the TCP receiver buffer and delivered
to the Gplayer at once.

Figure 13 shows the initial buffering time (top), the streamed
video play duration including re-buffering time (bottom) for
the TCP, UDP and MTP streams. Figure 13 (top) shows that

TCP Stream —+—
12 UDP Stream
Buffer Size = 5 Seconds MTP Stream —&—

Buffer/Stream Ratio = 1.5

Initial Buffering Time (Seconds)

400 T T T T T

350 B

300 ab/—*‘\#/#'//’—'i{g

200 B
150 | B

100 q
TCP Stream —+—

Media Play Duration (Seconds)

50 UDP Stream
MTP Stream —S—
0 1 1 1 1 1
0 1 2 3 4 5 6
Trial Number
Fig. 13. Initial Buffering Time, Video Play Duration (including intermediate

buffering times)

the TCP streams need significantly more initial buffering time
than the UDP streams. The MTP streams also require more
time for initial buffering than the UDP streams, however a half
as much as the time taken by the TCP streams in average.
Figure 13 (bottom) shows that the media play durations of
the UDP and MTP streams are bounded almost exactly by the
playout length of the video. TCP streams do take a little more
time to finish playing the video due to re-buffering events.

Lastly, Figure 14 shows the re-buffering event count (top)
and the average frame playout rate (bottom) computed as
the number of played frames divided by the play durations
including the play-halted re-buffering periods. Figure 14 (top)
shows that all the TCP streams incur one or two re-buffering
events, while the UDP and MTP streams have none. Figure 14
(bottom) shows that the UDP streams achieved frame rate
close to the maximum, 20 FPS. The TCP streams achieve
about 19 FPS on average although they experience couple of
long pauses in media playout due to media re-buffering. The
MTP streams achieved between about 18 to 19 FPS, since
the MTP streams often scale down to the 15 FPS level-2
encoded media in the beginning. Thus, all three types of stream
perform similarly to one another in terms of frame playout
rate, although the TCP streams have a couple of pauses during
the playout.

This section showed that streaming over TCP, UDP and
MTP can achieve compatible performances under a lightly-
loaded network condition where the network usage is mostly
limited by the local connection capacity. In addition, it is
shown that MTP eliminates media play interruptions caused
by TCP, and works well with a streaming application designed
for UDP with little modification.

B. Backbone Link Congestion

This experiment shows the performance of the Goddard
streams over TCP, UDP and MTP on a network path congested
with many flows. For this study, the intermediate link capacity

3 T T T T T
TCP Stream —+—
UDP Stream
= MTP Stream —&—
3
S 2t f f
g
o
>
]
j=
£
5}
5 14 1
@
@
4
0 @ o a @ @
0 1 2 3 4 5 6
Trial Number
25 T T T T T
p Ve
D
a
L
T 15f p
o
3
)
%)
@ 10 | q
]
£
<
[y 5L i
TCP Stream —+—
UDP Stream
MTP Stream —&5—
0 1 1 1 1 I
0 1 2 3 4 5 6

Trial Number

Fig. 14. Re-buffering Event Counts and Average Frame Playout Rate

(C;) is set to 10 Mbps, not to be a bottleneck in the network
path. As each simulation starts, the backbone link is loaded
with 300 Web sessions (using the Webtraf code built into NS)
and 24 FTP flows in the forward direction dumbbell path
(s; — dj), and acknowledgments of 25 FTP flows in the
backward direction (s; < d;). A Goddard stream and a bulk
FTP flow are started at 100 seconds on ¢; — e; and t5 — eg,
respectively, and stopped at 400 seconds. The simulation set is
composed of three simulations with the same random seed but
different streaming transport protocols, TCP, UDP and MTP.
Each simulation set is repeated 7 times with different random
seeds to account for variance in the measurements.

Figure 15 shows the media scaling dynamics of the TCP,
UDP and MTP streams from one of the simulation sets, and
Figure 16 shows the frame reception jitter of the corresponding
streams. During streaming (100 to 400% seconds), a fair
bandwidth share with this traffic load is about 270 Kbps ((10
Mbps — background_traffic) / 26 flows), where the background
traffic takes about 2.5 to 3 Mbps. Thus, a TCP-Friendly
streams’ will chose a media scale level of 2 (a 240 Kbps
stream) given the traffic conditions.

Figure 15 shows that the TCP stream suffers from overes-
timating the available network bitrate in the beginning. The
TCP stream makes a scale-down decision about 42 seconds
after it starts streaming. During this period, the Goddard server
is in buffering mode and pushes about 15 Mbytes of frames
into the underlying TCP buffer, taking about 450 seconds to
transmit all the high quality frames based on the 270 Kbps
fair share assumption. In fact, the TCP stream takes about
500 seconds to drain the frames from the TCP sender queue.
This huge TCP sender queue size is due to the unrealistic NS
TCP implementation that does not simulate a limited input
buffer size. For most current Unix kernels, TCP uses a send
buffer of at least 64 Khytes [16]. Although exaggerated, the
TCP streaming simulation results show the difficulty in media
scaling over TCP.

Unlike the TCP stream, the Goddard server and client over

6
5 TCP Stream —— -
o 4
83
1 1
0
100 200 300 400 500 600 700 800 900 1000
Seconds
6 T T
5 UDP Stream —+— |
o 4
S 3
w2
1
0
100 200 300 400 500 600 700 800 900 1000
Seconds
6 T T
5 i.-L MTP Stream —+— 4
2 4
S 3
I} 2 i
1
0
100 200 300 400 500 600 700 800 900 1000
Seconds
Fig. 15. Example Media Scale Dynamics (Set 0)
4 T T T
% * TCP Stream +
g o3sf g
S . .]
@ +
P + + + + + +
£ 25[+ + 1
= + +
© 2+ 4
§ + 4 + o+t Lot
< 15} +++ * +r + + T 4
g ot + ++ L te
+ + +
L + + + + ot ++ 4
S irs ﬁi ++i‘ oy %%3 A st
- %, +
5 05 fg M W g
£
ol
100 200 300 400 500 600 700 800 900 1000
Frame Reception Time (Seconds)
0.6 T T T T T
= UDP Stream +
k=l
§ 05]
o
O
2
o 04 q
15
=
g 03 q
<
o 4
£
S
I+ -
g
£
o 1. e I I I I I
100 200 300 400 500 600 700 800 900 1000
Frame Reception Time (Seconds)
= ‘ ‘ ‘ MTP Stream‘ +
k=l
2
s 4
o
@
2
° 4
15
=
= 4
>
<
o 4
£
g
I+ -
g
£
o B i i Sl I I I I I
100 200 300 400 500 600 700 800 900 1000
Frame Reception Time (Seconds)
Fig. 16. Example Media Frame Reception Jitter (Set 0)

UDP finishes streaming and playout of the media with no
delay. However, it streams the highest quality media that has
a streaming bitrate much higher than the fair share, since the
streamed media quality is not significantly degraded by small
network packet losses. The measured packet loss rate at the
backbone link during streaming is about 0.005. This illustrates
how a UDP stream can be TCP-unfriendly during congestion,
although the stream can adapt to the limited local connection
capacity.

The MTP stream shown in Figure 15 inherits the good
characteristics of both the TCP and UDP streams. That is,
the MTP stream quickly finds an appropriate scale level in

10

TCP Stream —+— i
09 F UDP Stream =
. MTP Stream —*— ¥
L
a 1
[9)
| | h
3 4 5 6
Scale Levels
Fig. 17. CDF of Streamed Media Scale Levels
R
L —— b
s
TCP Stream —+— |
UDP Stream
))) MTP Stream —x—
0 0.1 0.2 0.3 0.4 05 0.6

Inter-Frame Arrival Time (Seconds)

Fig. 18. CDF of Media Frame Reception Jitter

response to network congestion and achieves both uninter-
rupted stream playout and a TCP-Friendly streaming bitrate.
In the beginning, the MTP stream quickly scales down to the
level-1 media, and then at 200 seconds, scales up to level-2
media. When the MTP stream tries level-3 media at around
260 seconds, the buffer in the MTP sender overflows and the
Goddard client and server scale back.

Figure 16 shows that the TCP stream has the highest frame
reception jitter (u = 82 ms, 6 = 213 ms), followed by the MTP
stream (. = 64 ms, § = 60 ms) and the UDP stream (i = 33
ms, 0 = 16 ms). Comparing the MTP and UDP streams, the
UDRP jitter is lower than that of MTP. The mean UDP inter-
frame arrival time of about a half that of the MTP stream
is due to the differences in the scale level. The UDP stream
uses the highest quality media with playout interval of 33 ms,
while the MTP stream’s media playout interval is about 67
ms. Comparing the 6/u ratio shows UDP is a little smoother
than, but comparable to MTP. However, the jitter of the TCP
stream is an order of magnitude higher than UDP or MTP ,
even after the TCP sender clears the highest quality frames
from its buffer at 600 seconds. This confirms that the main
source of the TCP’s streaming unfriendly delay and jitter is
the retransmission mechanism that provides reliable in-order
packet delivery.

Figure 17 and Figure 18 summarize the streamed media
scale level dynamics and the inter-frame reception time (jitter)
of all seven sets of simulations in cumulative density functions.
Figure 17 confirms that Goddard over MTP streams chooses

50 T T T T T
TCP Stream —+—
UDP Stream

MTP Stream —5— |

40

Buffer Size = 5 Seconds
Buffer/Stream Ratio = 1.5

30

20
mm

Trial Number
900 T T T T

Initial Buffering Time (Seconds)

T
TCP Stream —+—
UDP Stream

750 |- MTP Stream —5—

450 | g

300

150 1

Media Play Duration (Seconds)

0 L L L L L
0 1 2 3 4 5 6

Trial Number

Fig. 19. Initial Buffering Time and Video Playout Duration (including
buffering times)

15 T T T T T
1
€ 12 | —
5
o
(o]
s 9r +
]
=)
£
] 6 4
£
5
aQ
¢ 3L i
& TCP Stream —+—
UDP Stream
. —o—0— MTP Stream —O—
0 5 N by

0 1 2 3 4 5 6
Trial Number

30
25 Bl

20 B

15 +
4

Frames/Second (FPS)

5F TCP Stream —+—
UDP Stream
MTP Stream —S—
0 1 1 1 1 1
0 1 2 3 4 5 6
Trial Number
Fig. 20. Re-buffering Event Counts and Average Frame Playout Rate

the correct media scale level (it has a media TCP-Friendly
bitrate so it must choose a scale level 2 or lower) most of
the time. In addition, Figure 18 shows that the MTP frame
reception jitter is consistently low. About 95% of MTP’s
inter-frame arrival times are under 134 ms, two times the
playout interval (67 ms) of the streamed media. This means
that Gplayer can play 95% of the received video frames after
a buffering delay of only 67 ms when the one-way delay
of the stream path is about 100 ms and the average packet
loss rate is 0.44%. Given that streamed video bitrate is about
120 to 240 Kbps, typical of Internet videoconferencing, these
results suggest the potential for MTP to be used as a streaming
transport protocol for interactive applications as well as non-
interactive applications.

Figure 19 shows the initial buffering time of the streamed

11

TCP Stream —+—|
UDP Stream
r MTP Stream —&—

N WA OO N ® ©
T

Stream Bitrate / FTP Throughput

[
T

oy

0 1 2 3 4 :5 6
Trial Number

500 T T T T
450
400
350
300
250
200
150
100

o

T
TCP Stream ——
MTP Stream —O—

T S SR

UDP stream did not adapt |

T T T T T T T T

o
S

o

TCP-Friendly Scale Adaptation Time (Seconds)

N7 A7) ANZJ
3 4
Trial Number

o
=
N
o
o

Fig. 21. TCP-Friendliness of Media Streams and TCP-Friendly Rate
Adaptation Time

video (top) and the playout duration including re-buffering
time (bottom), and Figure 20 shows the re-buffering event
count (top) and the average frame playout rate (bottom) for
the TCP, UDP and MTP streams. Figure 19 (top) shows that
the TCP streams need significantly more initial buffering time
than the UDP and MTP streams. Figure 19 (bottom) shows
that the media play durations of the UDP and MTP streams
are bounded almost exactly by the playout length of the video,
while the TCP streams take two to three times longer to
playout. Figure 20 (top) shows that the TCP streams incur
frequent re-buffering events, while the UDP and MTP streams
have none or at most one. Figure 20 (bottom) shows that the
TCP streams achieve a low average frame playout rate due to
frequent re-buffering pauses, while the UDP and MTP streams
achieve frame playout rates close to the encoded frame rates.

Lastly, Figure 21 (top) shows the average throughput ratio
of the media streams in comparison to the competing bulk
FTP flow, and Figure 21 (bottom) shows the time each stream
takes to adapt to the TCP-Friendly rate. The UDP streams
are extremely TCP-unfriendly, taking about 6 to 9 times the
throughput of the competing bulk FTP, and never adapt to
a TCP-Friendly rate. Both the TCP and MTP streams have
throughput less than that of the bulk FTP flow, since the
Goddard servers do not always have frames available when
MTP or TCP can send. The MTP streams quickly adapt their
media scale bitrate to the TCP-Friendly rate, while the TCP
streams take two to three minutes to adapt their media scale
bitrate to the TCP-Friendly rate.

V. SUMMARY

This paper presents the design and evaluation of Multimedia
Transport Protocol (MTP). MTP is an alternate to UDP for
streaming and other delay sensitive Internet applications that
favor prompt and timely datagram delivery service over the re-
liable transmission service of TCP. Removing retransmissions
from TCP removes delays due to retransmission at the TCP

sender and packet ordered preservation at the TCP receiver,
and allows MTP to reveal network information essential for
media scaling. MTP supports non-blocking transmission using
input queue management as well as block-on-full-queue trans-
mission to help existing UDP-based streaming applications to
switch to MTP with little modification. MTP has the exact
congestion avoidance mechanism and proven stability of TCP,
and can be implemented as a mode of TCP during incremental
deployment to take advantage of firewall support for TCP
traffic.

MTP is implemented in NS by modifying the built-in Reno
TCP implementation. In order to evaluate MTP, the Goddard
streaming client and server are designed and implemented.
Goddard estimates the bottleneck capacity, selects the media
level to stream, performs media scaling during streaming, and
simulates playout of the received media at the client. To the
best of our knowledge, Goddard is only realistic streaming
application in NS.

Our simulation results show that MTP video streams inherit
the good characteristics of both TCP and UDP streams. MTP
streams are TCP-Friendly, but can still quickly and effectively
perform media scaling and adapt to the available TCP-Friendly
bitrate. Thus, most of the time, MTP streams avoid interrup-
tions to the streamed media playout. Existing UDP streaming
application can use MTP with little modification to their media
scaling mechanisms, achieving better quality streams than TCP
streaming applications. Additionally, our simulation results
show that MTP dramatically reduces media frame reception
jitter from TCP’s reliable in-order packet delivery mechanism,
and illustrates the potential of MTP as a streaming transport
protocol for interactive as well as non-interactive applications.

Future work includes enhancing the MTP API to provide
useful network information that can be utilized to improve
media scaling and repair performance, and evaluate MTP with
dynamic queue length adaptation for interactive streaming.
Other future work is to implement and evaluate MTP under
Linux with an open-source streaming application.

REFERENCES

[1] J. van der Merwe, S. Sen, and C. Kalmanek, “Streaming Video Traffic:

Characterization and Network Impact,” in Proceedings of the 7th Inter-
national Workshop on Web Content Caching and Distribution, Boulder
CO, USA, August 2002.

[2] J. Chung, M. Claypool, and Y. Zhu, “Measurement of the Congestion
Responsiveness of RealPlayer Streaming Video Over UDP,” in Proceed-
ings of the Packet Video Workshop (PV), Nantes, France, April 2003.

[3] J. Nichols, M. Claypool, R. Kinicki, and M. Li, “Measurements of
the Congestion Responsiveness of Windows Streaming Media,” in
Proceedings of the 14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
June 2004.

[4] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-Based Er-
ror Control for Internet Telephony,” in Proceedings of |EEE INFOCOM,
March 1999.

[5] Y. Liu and M. Claypool, “Using Redundancy to Repair Video Damaged
by Network Data Loss,” in Proceedings of 1S&T/SPIE/ACM Multime-
dia Computing and Networking (MMCN), San Jose, California, USA,
January 2000.

[6] C. Padhye, K. Christensen, and W. Moreno, “A New Adaptive FEC
Loss Control Algorithm for Voice Over IP Applications,” in Proceedings
of IEEE International Performance, Computing and Communication
Conference, Feburary 2000.

[71

(8]

[]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

12

K. Park and W. Wang, “QoS-Sensitive Transport of Real-Time MPEG
Video Using Adaptive Forward Error Correction,” in Proceedings of
|EEE Multimedia Systems, June 1999, pp. 426-432.

S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-Based
Congestion Control for Unicast Applications,” in Proceedings of ACM
S GCOMM, Stockholm, Sweden, August-September 2000, pp. 43-56.
I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receivers
- Flow Control for Multimedia Streaming,” Department of Computer
Science, NCSU, Raleigh, NC, Tech. Rep., April 2000.

R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-End Rate-Based
Congestion Control Mechanism for Realtime Streams in the Internet,”
in Proceedings of IEEE INFOCOM, March 1999, pp. 1337-1345.

Y. R. Yang and S. S. Lam, “General AIMD Congestion Control,” in
Proceedings of the 8th International Conference on Network Protocols
(ICNP), Osaka, Japan, November 2000.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Streaming via TCP:
An Analytic Performance Study,” in Proceedings of ACM Multimedia,
New York, NY, USA, October 2004.

N. Seelam, P. Sethi, and W. chi Feng, “A Hysteresis Based Approach
for Quality, Frame Rate, and Buffer Management for Video Streaming
Using TCP,” in Proceedings of 4th IFIP/IEEE International Conference
on Management of Multimedia Networks and Services, Chicago, IL,
USA, October 2001.

C. Krasic and J. Walpole, “Priority-Progress Streaming for Quality-
Adaptive Multimedia,” in Proceedings of the Ninth ACM International
Conference on Multimedia, Ottawa, Canada, October 2001.

P. de Cuetos and K. W. Ross, “Adaptive Rate Control for Streaming
Stored Fine-Grained Scalable Video,” in Proceedings of the 12th In-
ternational Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), Miami, Florida, USA, May 2002.
A. Goel, C. Krasic, K. Li, and J. Walpole, “Supporting Low Latency
TCP-Based Media Streams,” in Proceedings of International Workshop
on Quality of Service (IWQo0S), Miami Beach, FL, USA, May 2002.
N. Spring, D. Wetherall, and D. Ely, “Robust Explicit Congestion
Notification (ECN) Signaling with Nonces,” RFC-3540, June 2003.

T. Miller, “ECN and it’s impact on Intrusion Detection,” SecurityFocus
InFocus Article, http://www.securityfocus.com/infocus/1205, November
2000.

T. Phelan, “Datagram Congestion Control Protocol (DCCP) User
Guide,” IETF Internet-Draft: draft-ietf-dccp-user-guide-02, July 2004.
E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” IETF Internet-Draft: draft-ietf-dccp-spec-11, March
2005.

VINT, “Virtual InterNetwork Testbed, A Collaboration among USC/ISI,
Xerox PARC, LBNL, and UCB,” http://www.isi.edu/nsnam/vint/.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” RFC-2018, October 1996.

J. C. Bolot, “Characterizing End-to-End Packet Delay and Loss in the
Internet,” Journal of High Speed Networks, vol. 2, no. 3, pp. 289-298,
September 1993.

V. Jacobson, “Congestion Avoidance and Control,” in Proceedings of
ACM SIGCOMM, Stanford, CA, USA, August 1988.

S. Keshav, “A Control-Theoretic Approach to Flow Control,” in Pro-
ceedings of the conference on Communications Architecture & Proto-
cols, 1991, pp. 3-15.

R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth Esti-
mation: Metrics, Measurement Techniques, and Tools,” |EEE Network,
vol. 17, no. 6, November/December 2003.

S. Jaiswal, G. lannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring
TCP Connection Characteristics Through Passive Measurements,” in
Proceedings of IEEE INFOCOM, Hong Kong, China, March 2004.

M. Arlitt and T. Jin, “Workload Characterization of the 1998 World Cup
Web Site,” Hewlett-Packard Laboratories, Tech. Rep. HPL-1999-35R1,
October 1999.

F. Hernandez-Campos, K. Jeffay, and F. Smith, “Tracing the Evolution
of the Web Traffic: 1995-2003,” in Proceedings of the 11th IEEE/ACM
International Symposium on Modeling, Analysis and Smulation of
Computer and Telecommunication Systems (MASCOTS), Orlando, FL,
USA, October 2003.

S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy, “An Analysis of Internet Content Delivery Systems,” in Usenix
Operating Systems Design and Implementation (OSDI), Boston, MA,
USA, October 2002, pp. 315 - 327.

J. Nichols, “Measurement of Windows Streaming Media,” Master’s
thesis, Worcester Polytechnic Institute, February 2004, advisor: Mark
Claypool and Robert Kinicki.

