
On Latency and Player Actions in Online Games

Mark Claypool and Kajal Claypool

claypool@cs.wpi.edu kajal.claypool@gmail.com

July 8, 2006

1 Introduction

The growth and penetration of broadband access networks to the home has fueled the growth of
online games played over the Internet. As we write this article, it is 5am on a typical weekday
morning and Gamespy Arcade1 reports more than 250,000 players online playing about 75,000
games! This proliferation of online games has been matched by an equivalent growth in both the
variety of online games and in the support provided for online players. The spectrum of online
games has shifted from a few people collaborating or competing on a Local Area Network (LAN)
in first person perspective games such as id’s Doom in the early 1990s, to thousands of players
interacting over the Internet in a wide variety of games ranging from first person shooter games
and role playing games to strategy and sports games. This escalation in the popularity of online
games is also reflected in the correspondingly high number of servers spread across the globe that
support and host thousands of players playing these games.

The best-effort nature of the Internet provides challenges for the real-time interaction required
for online computer games, since there are no guarantees of network capacity, timely delivery or
even delivery at all as Internet packets can be lost. Fortunately, by design, most online games
have low bitrate requirements, sending frequent but small packets that are typically well-below the
capacities of broadband or even dialup modem connections. In addition, the effects of packet loss
can be mitigated by frequent game state updates or even by repair techniques. This leaves delayed
delivery of packets, often in the form of network latency from a game player to a game server or
other players, as the primary bottleneck for online game performance.

Previous studies have empirically determined the lower bounds for network latency for different
types of networks. Typical LAN latencies, for example, are quite small, usually well under 10
milliseconds. Even Wireless LANs, increasingly popular for end-user connections, usually have
latencies less than 10 milliseconds. For home users, the bulk of the game player population, latencies
often depend upon the “last-mile” access networks. Dialup modems, for example, can add 100s
of milliseconds of latency, while broadband access networks such as cable and asymmetric digital
subscriber lines (ADSL) typically have lower latencies [8]. Cable modem latency, however, can vary
considerably with worst case latencies of over 100 milliseconds. Once on the Internet, there are

1Gamespy provides popular services for the online gaming community, including game server browsing and player
forums. Gamespy Arcade is online at http://www.gamespyarcade.com/.

1

lower bounds of approximately 50 milliseconds across a continent, with even higher latencies to cross
over to other continents. Overall latencies can vary from 100s of milliseconds to 500 milliseconds
up over even 1 second for some Internet connections [7].

Propitiously, not all aspects of player interactions are sensitive to latency. In particular, online
games go through phases, where a game server is setup, players seek other players out, data is
exchanged between game clients and local game data is loaded from the disk. None of these phases
are sensitive to latency. Upon completion of the above phases, the online game proceeds to the
play phase where players actually interact with the game world.

The play phase, arguably the most important and interesting aspect of online games, requires
different types and levels of interactions between the player and the game. A first person shooter
requires quick hand-eye coordination in moving the cross-hairs of a gun to target an opponent, a
real-time strategy game requires thoughtful, but rapid, selection of units and buildings to create
an army, while a sports game requires fluid key-presses and joystick movement to move an avatar
in response to action on the screen. Even within a single genre, not all games are the same. For
example, one first person shooter may have intense one-on-one combat with high precision weapons,
while another may require strategic movement of teams of players and less frequent combat with
lower precision weapons or even vehicles. The player actions in the play phase can be significantly
impaired by latency.

However, not all player actions are equally tolerant to latency. Some actions such as shooting
a sniper rifle at a moving opponent are greatly impacted by latency, while other actions such as
selecting a set of troops and moving them across a battlefield tend to be less sensitive to latency. To
explain this, this work contributes a novel categorization of the effects of latency on different player
actions based on two salient action properties: the precision required to complete the action and the
deadline by which the action must be completed. Actions with higher precision and tight deadlines
are sensitive to even modest latencies, while actions with lower precision and loose deadlines are
nearly impervious to typical Internet latencies. By this categorization, the effects of latency on
sniping in a first person shooter (tight and precise) and troop selection in a real-time strategy game
(loose and imprecise) can be explained in terms of their precision and deadline requirements. The
categorization of actions is related to games in general, as well as popular game genres, through a
new classification of games introduced in this article that emphasizes the player interaction model
and the player perspective.

Thus, the goal of this work is to clarify the effects of Internet latency on online games by carefully
examining the actions in online games studied thus far in the context of the proposed categorization
of actions. This both validates the categorization of player actions presented here, and provides
a framework for studying and engineering online games of the future. The results presented in
this article are useful for: 1) game designers, so they may know the latency tolerances of different
player actions in order to apply latency compensation techniques, as needed; 2) network designers,
to create infrastructures to provide Quality of Service (QoS) for online games and other interactive
applications; and 3) game players themselves, allowing them to make informed choices about their
Internet connections or QoS purchases that may affect latency and hence game play.

2

Figure 1: Doom 3, An Avatar Game with a First
Person Perspective.

Figure 2: Madden NFL, An Avatar Game with
a Third Person Perspective.

2 Game Classification

A common conception among game players is that network latencies below 100 milliseconds are
required for unimpaired game play, with maximum tolerable latencies being just over 100 millisec-
onds [4], regardless of the game genre. However, as not all games have the same interactions, it
follows that latency does not effect all games equally. Games, and game genres, are typically defined
by how the player interacts with the game world and by how the player views the game world on
a screen. These two factors, interaction model and perspective, provide a game classification that
helps determine the impact of latency on games.

Our game classification, based on [11], broadly organizes games into either the Avatar model or
the Omnipresent model. In the Avatar model, the player interacts with the game through a single
representative character and the player actions are defined in terms of commanding the character.
The player’s character, called the avatar, exists at a particular location in the virtual world and
can influence only the immediate locality. Games with the Avatar interaction model typically have
either a first person perspective where the player looks through the eyes of the avatar, or a third
person perspective where the player follows an avatar in the virtual world. First person shooter
(FPS) games, role-playing games (RPGs), action games, sports games and racing games are all
examples of game genres that have an Avatar interaction model. These game genres often differ in
the perspective, for example FPS games have a first person perspective while RPGs typically have
a third person perspective. Some genres such as racing games allow the player to switch between
a first person and third person perspective. For reference, Figure 1 is a screen shot of Doom 3
showing an Avatar interaction model with a first person perspective, while Figure 2 is a screen shot
of Madden NFL showing a third person perspective.

In the Omnipresent model, the player has the ability to view and influence simultaneously different
aspects of the game world. While the player can not view or control the entire game world, the
player is said to be omnipresent controlling the entire set of resources under the player’s control.
The player’s actions, thus have a more global influence than do actions in an Avatar model. The
perspective of games with the Omnipresent interaction model is often variable, giving players an
aerial perspective to provide a bird’s eye view of the virtual world, but also allowing players to zoom

3

Figure 3: Warcraft III, An Omnipresent Game,
Featuring Real-Time Strategy Resource Man-
agement.

Figure 4: Simcity 4, An Omnipresent Game
Centered on Construction and Simulation.

in to a third person perspective to provide finer granularity of control over individual resources.
Real-time strategy games (RTS), and construction and simulation games (CMS) are examples of
game genres with the Omnipresent interaction model. Figure 3 is a screen shot of Warcraft III
showing the Omnipresent interaction model with an aerial perspective, while Figure 4 shows a
screenshot of Simcity 4, also with an interaction model and an aerial perspective.

3 Game Phases

Online games go through phases that differ in the player’s interactions with the game and in the
network traffic generated. Although the duration and frequency of each phase varies depending
upon the specific game, fundamental phases common to most online games include:

• Setup – During the Setup phase, players hosting a game wait for players to join the game,
and all game players select starting parameters appropriate for the game they are playing.
For instance, in a real-time strategy game, the hosting player would select the map and the
starting resources, while the joining players would choose colors and teams. In a football
game, the hosting player would choose the stadium and weather conditions while the joining
player would choose a specific team and uniforms. Some games may have multiple Setup
phases, such as a basketball tournament or a tennis circuit, while others have only one Setup
phase, such as a dungeon crawl. The Setup phase typically has infrequent interactions between
players since each player interacts with the local game only until the few setting choices are
made. Thus, the Setup phase is marked by minimal network traffic and is not significantly
affected by latency.

• Synchronization – After the Setup phase but before the gameplay actually begins, many
games Synchronize game state and parameter settings between games. For example, a custom
map or stadium selected may be sent from the game host to the other games, or the team
selections and uniforms may be exchanged among games. The Synchronization phase is

4

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160 180

B
itr

at
e

(K
bp

s)

Time (Seconds)

Setup

Synchronization

Transition Transition

Play

Figure 5: Example of Game Phases (Untold
Legends)

Figure 6: Screenshot of Untold Legends, an
Avatar Model, Third Person Perspective Game.

generally marked by high bitrates in order to exchange data as fast as possible to proceed on
to gameplay. Players do not interact at all during Synchronization and so are unaffected by
latency.

• Play – During the Play phase, the game is actually played, with players responding to the game
state and their interactions communicated to other players, as appropriate. For example, a
combat game might communicate the movement of an avatar and firing of a weapon to other
players, while a hockey game may communicate the direction and velocity of the puck. The
Play phase generally has moderate bitrates with frequent exchanges of small network packets
to keep latency low, but without much data to exchange. It is during the Play phase that
the effects of latency on player actions are of most interest and it is the core subject of this
article.

• Transition – In between Play phases, some games have a Transition phase where game infor-
mation is loaded and processed locally from a game disk into memory. For example, in an
exploration game, the map may be loaded and the location of the puzzles and prizes deter-
mined, while in a racing game, the attributes of each car could be loaded and processed. The
Transition phase generally has low network bitrates since most data is processed locally from
disk and not over the network. Players do not interact during the Transition phase and so
are unaffected by network latency.

Figure 5 depicts an example of the game phases for the Sony PSP game Untold Legends, a third
person action game where players do a dungeon crawl (a screenshot is shown in Figure 6). During
the Setup phase, players load avatars used in previous games or create new avatars and the hosting
player decides where in the story to start. During the Synchronization phase, game state infor-
mation is communicated between games, such as the quests that have been completed and magic
items that have been found. During the Transition phases, the players choose to move between
different world locales (such as from a town into the woods or from the woods into a dungeon) and
local game data is loaded from the disk and processed in memory. During the Play phases, the
players interact with the game, mostly by controlling their avatars through movement, combat and
inventory management.

5

Figure 7: Primary Player Actions during the
Play Phase of Different Game Genres.

Figure 8: Taxonomy of Different Player Ac-
tions along the Precision and Deadline Axes.

In general, the length and frequency of each phase depends upon the game and often on the player
choices made within the game. For example, the length of a half in a sports game or the frequency
of a player returning to town for healing in a combat game directly determine the length of a play
phase.

4 Player Actions

The Play phase of a game can be further categorized by the different types of player actions. For
example, in first person shooter (FPS)2 games the two most common types of player actions are
movement and shooting, with movement shifting the view of the player in the virtual world, and
shooting placing the cross-hairs of a weapon on the target and firing. Similarly, during the Play
phase in a real time strategy (RTS) game, player actions can be classified in terms of build, combat
and explore. Build begins construction of a building, such as barracks to recruit soldiers, combat
instructs avatars to engage in battle and explore moves avatars (as opposed to movement of the
player perspective in an FPS) in the virtual world. The Play phase of other game genres can be
similarly classified in terms of the player actions. Figure 7 summarizes the primary player actions
for the Play phase of different game genres (FPS, RTS, Sports, and Racing). It should be noted that
individual games may vary in the quantities of each type of interaction. For example, some FPS
games may require lots of shooting with little movement while others may require more movement
and less shooting.

Across all genres, player actions vary along two primary axes, deadline and precision. Deadline is
the time required to complete the action, that is the length of time it takes to achieve the final
outcome of the action. For example, in Diablo 2 deadline for a portal is the time it takes for an
avatar to read a magic scroll and invoke a town portal that will transport the avatar to town.
Precision is the degree of accuracy required to complete the interaction successfully. For example,
in Battlefield 1942 precision is the accuracy required to shoot a distant enemy with a sniper rifle.

2For better exposition, this section uses popular game genres rather than the perspective introduced in Section 2.
This can be directly translated to perspectives, as appropriate.

6

Different player actions have disparate deadline and precision requirements. This disparity can
even be observed across game genres, within a game genre and even within a specific game. For
example, shooting in an FPS game generally has high precision and tight deadline requirements,
meaning the player must place the gun cross-hairs exactly on the target to hit and the action
must be carried out immediately or the target may move. However, the precision and deadline
requirements for shooting can vary with the weapon used. For example, shooting with a sniper
gun requires high precision with a tight deadline, shooting with a machine gun relaxes both the
precision and deadline, and shooting with a rocket launcher imposes relatively lower precision and
deadline requirements than either the sniper gun or the machine gun.

Movement in an FPS game requires high precision but has a relatively looser deadline requirement
than does shooting, implying the precise location will determine if a player’s avatar can be hit,
while moving from one location to another takes on the order of seconds. Movement in FPS games
and exploration in RTS games are similar user actions, but have different precision, with RTS
exploration generally having lower precision than FPS movement. RTS exploration often moves a
large number of troops towards an area in the virtual world, as opposed to an exact location for an
FPS movement. However, the two interactions often have comparable deadline requirements since
moving across the virtual world can take a similar amount of time.

Figure 8 shows a taxonomy of the different player interactions along the precision and deadline
axes. The x-axis is the deadline requirement and the y-axis is amount of imprecision (indicated
as 1 - Precision). The FPS Sniper has high precision and a tight deadline, RTS Build has a high
precision but a loose deadline, RTS Combat has a lower precision than either FPS Sniper and RTS
Build, but a looser deadline than FPS Sniper and a tighter deadline than RTS Build.

In general, the further away an action is from the origin in the Precision-Deadline plane, the less
the impact that latency has on player performance. Thus, FPS Sniper and Racing are sensitive to
latency, while RPG Area Spell and RTS Explore are less sensitive to latency.

5 Player Actions and Latency

Most games today run on a client-server architecture with a single, authoritative server that handles
the game logic. When a player performs an action, the client sends a message to the server. The
server processes the action and sends any changes to the game state back to the waiting client
to render on the local display. The client then renders the new game state to the player and the
process repeats. Note, in cases where a player “hosts” a game, that player’s computer then acts
like a server for all players, as well as a client for the local player. This is still fundamentally a
client-server architecture, even though it may look like client-client (or peer-to-peer) on the surface.

All player actions in the client-server architecture are delayed by the round-trip latency between
client and server. If the latency between the client and server is large enough, the player is aware
of the delay between the commands given to the game and the response of the game. This delay,
or latency, can degrade online game performance. With online games played over the Internet,
latency for an action can be attributed to many network components, such as the time to transmit
the encoded action in an IP packet, the time for the packet to propagate from one link to another,
and time spent waiting in a router queue during network congestion.

7

(a) (b)

Figure 9: (a) Targeting Opponent with High Precision Weapon. (b) Targeting Opponent with Low
Precision Weapon.

The deadline and precision requirements for a given player action determine the effects of latency
on that action.

Precision. Consider a shooting action where the player targets an opponent moving across the
field of view from left to right, depicted in Figure 9. With a high precision weapon (see Figure 9(a)),
for example a sniper rifle, the player on the left sees the opponent as the solid outline, with the
target circle representing the precision of the sniper gun the player is shooting. When the player
aims and shoots, the gun will hit any opponent within the circle. However, with latency between
the player action and the game server recording that action, the opponent is no longer at the solid
outline, but instead has moved to the right to the dashed outline, resulting in a miss. However,
when the player is shooting a weapon with lower precision (see Figure 9(b)), such as a machine
gun, the target circle is larger. In this case, the latency between the player action and the game
recording that action still allows the opponent to move, but the opponent remains within the target
area, enabling the player to score a hit.

This example illustrates our first insight: For a given game action, the higher the precision required
the greater the impact of latency on performance.

Deadline. Consider a real-time strategy game where a player must construct a factory to produce
goods, as depicted in Figure 10. The player selects a location and instructs the construction to
begin. When the deadline to complete the building is tight as in Figure 10(a), a small amount
of additional latency is relatively large and causes the building to take much longer to complete
relative to the build time without latency. However, when the deadline to complete the building is
loose as in Figure 10(b), the same amount of latency is no longer as significant, and the building
takes approximately the same amount of time to complete.

This example illustrates our second insight: For a given game action, the tighter the deadline the
greater the impact of latency on performance.

There have been various studies that have measured the impact of latency on performance for
different player actions in several different games [6, 1, 2, 3, 4, 5, 9, 10]. These studies have
generally setup a network testbed that allows for careful control of network latency, typically by
having the online game played on a Local Area Network (LAN) and adding a middle-ware router
and application to add a controlled delay to all network traffic. While these studies were not setup

8

(a) (b)

Figure 10: (a) Constructing a Building with a Short Deadline. (b) Constructing a Building with
a Long Deadline.

specifically informed by the insights provided by this article, they allow illustration of the effects
of latency on performance for player actions with various deadline and precision requirements.

In all of the below graphs, the x-axis is the amount of latency in milliseconds induced in the
experiments, while the y-axis is the measure of performance specific to the particular game. For
some graphs, a higher number on the y-axis is better, such as the accuracy of shooting a weapon.
For other graphs, a lower number is better, such as the time to move from point A to point B.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250 300

H
it

F
ra

ct
io

n

Latency (in milliseconds)

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250

T
im

e
pe

r
La

p
(in

 s
ec

on
ds

)

Latency (in milliseconds)

(b)

Figure 11: Avatar Model, First Person Perspective. (a) Hit Fraction versus Latency (Unreal
Tournament 2003, a First Person Shooter Game). (b) Lap time versus Latency (RC Racing, a
Racing Game).

Figures 11(a) and 11(b) show the effects of latency for two games in the Avatar model with a
first person perspective. Figure 11(a) depicts the effects of latency on shooting a high-precision
gun in Unreal Tournament 2003, a first person shooter [1]. The experiments measured the average
hit fraction during two-player battles with high precision weapons. There is a noticeable overall
downward trend in performance as latency increases, with a sharp drop (about 35%) in accuracy

9

at 100 milliseconds of latency. Figure 11(b) depicts the effects of latency in a car racing game [10].
The experiments measured the time to complete a lap around a race track for subjects of varying
degrees of driving skill. There is a noticeable upward trend in lap time as latency increases, with
a significantly steeper increase above 50 milliseconds and again above 150 milliseconds.

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000

Y
ar

ds
 P

er
 C

ar
ry

Latency (in milliseconds)

(a)

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200

C
om

ba
t T

im
e

(in
 s

ec
on

ds
)

Latency (in milliseconds)

(b)

Figure 12: Avatar Model, Third Person Perspective. (a) Yards per Attempt versus Latency (Mad-
den NFL football, a Sports Game). (b) Combat Length versus Latency (Everquest 2, a Third
Person Role Playing Game).

Figures 12(a) and 12(b) show the effects of latency for two games in the Avatar model with a
third person perspective. Figure 12(a) depicts the effects of latency on running3 in Madden NFL, a
sports game [9]. The experiments had players attempt a running play each time, and measured the
average yards per attempt. While there is an overall downward trend in the effects of latency, there
is no significant drop-off in performance until after 500 milliseconds of latency. Figure 12(b) depicts
the effects of latency on the length of combat in Everquest 2, a third person action game [5]. These
experiments had clients connect to an actual Everquest server over the Internet, while inducing a
controlled amount of additional latency near the client. With an increase in latency, the avatar’s
ability to deal damage decreases, making it take longer to complete a fight. However, the relative
decrease in performance from 0 to 500 milliseconds is small, adding only an additional 5 seconds
to about 2 minutes of combat.

Figures 13(a) and 13(b) show the effects of latency for two games with an Omnipresent model.
Figure 13(a) depicts the effects of latency on the time to construct the technology tree for Humans
in Warcraft III, a real-time strategy (RTS) game [2]. The experiments measured the build time
versus latency for all experimental runs, as well as a best-fit line for the data. When there is no
induced latency, building the technology tree takes about 8 minutes, while latency values of up
to 3.5 seconds increase total build time by at most 14 seconds, which is less than 1% of the total
time required to complete this action. Figure 13(b) depicts the effects of latency on the unit score
difference from combat between two armies in Age of Mythology, also a real-time strategy game.
The experiments pitted players with two small, equally matched armies against each other. The
unit score difference is the player without latency’s unit score minus the player with latency’s unit
score. There is a slight upward trend in that the score difference increases as latency increases, but

3The avatar carries the football and runs as far as possible without getting tackled by the opposing team.

10

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500

B
ui

ld
 T

im
e

(in
 s

ec
on

ds
)

Latency (in milliseconds)

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400

U
ni

t S
co

re
 D

iff
er

en
ce

Latency (in milliseconds)

(b)

Figure 13: Omnipresent Model. (a) Build Time versus Latency (Warcraft III, a Real-Time Strategy
Game). (b) Unit Score Difference versus Latency (Age of Mythology, a Real-Time Strategy Game.

the visual correlation is slight. Moreover, the difference in score from no induced latency to one
second of induced latency is only equivalent to about one unit, an insignificant amount in the large
battles that are typical in most RTS games.

6 Summary

Figure 14 summarizes performance degradation for different classes of online games, depicted by
an exponential curve fit to the measured data. Online games that use the Avatar model of player
interaction are more sensitive to latency than games that use the Omnipresent model. Further
within the Avatar model, games that use the first person perspective are more sensitive to latency
than games that use the third person perspective. Within a given game, player actions that are
less precise or have looser deadlines tend to shift the curves in Figure 14 to the right, while more
precision and tighter deadlines shift the curves left. Within a given class of games, the relative
amounts of different player actions determine the exact location of the curve. For example, an FPS
game with more movement and less precise shooting may have the blue curve in Figure 14 shifted
more to the right and flattened.

The horizontal gray area in Figure 14 is a visual indicator of player tolerances for latency. Although
the exact threshold depends upon the game and to some extent the player, generally performance
degradations above this threshold are acceptable while performance degradations below this thresh-
old are unacceptable. Table 1 summarizes this effect of latency on performance in online games.

Model Perspective Example Genres Sensitivity Thresholds

Avatar
First Person FPS, Racing High 100 milliseconds
Third Person Sports, RPG Medium 500 milliseconds

Omnipresent Varies RTS, Sim Low 1000 milliseconds

Table 1: Summary of Latency and Online Games

11

 0

 0.25

 0.5

 0.75

 1

 0 500 1000 1500 2000

P
er

fo
rm

an
ce

Latency (in milliseconds)

Omnipresent
(ex: RTS)

Third Person Avatar
(ex: Sports, RPG)

First Person Avatar
(ex: FPS, Racing)

Figure 14: User Performance Under Different Induced Latencies for Several Classes of Games.
Above the grey region, quality is generally acceptable while below the gray region, quality is
generally unnacceptable.

References

[1] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and Mark
Claypool. The Effects of Loss and Latency on User Performance in Unreal Tournament 2003. In
Proceedings of ACM Network and System Support for Games Workshop (NetGames), Septem-
ber 2004.

[2] Mark Claypool. The Effect of Latency on User Performance in Real-Time Strategy Games.
Elsevier Computer Networks, Special Issue on Networking Issues in Entertainment Computing,
49(1):52–70, September 2005.

[3] Mark Claypool, Kajal Claypool, and Feissal Damaa. The Effects of Frame Rate and Reso-
lution on Users Playing First Person Shooter Games. In Proceedings ACM/SPIE Multimedia
Computing and Networking (MMCN) Conference, San Jose, CA, USA, January 2006.

[4] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of Factors Affecting Players’ Perfor-
mance and Perception in Multiplayer Games. In Proceedings of the 4th ACM Network and
System Support for Games (NetGames), October 2005.

[5] Tobias Fritsch, Hartmut Ritter, and Jochen H. Schiller. The Effect of Latency and Network
Limitations on MMORPGs: a Field Study of Everquest 2. In Proceedings of the 4th ACM
Network and System Support for Games (NetGames), October 2005.

[6] Tristan Henderson and Saleem Bhatti. Networked Games - a QoS-sensitive Application for
QoS-insensitive users? In Proceedings of the ACM SIGCOMM Workshop on Revisiting IP
QoS, pages 141 – 147, August 2003.

12

[7] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don Towsley. Infer-
ring TCP Connection Characteristics Through Passive Measurements. In Proceedings of IEEE
Infocom, Hong Kong, China, April 2004.

[8] Tom Jehaes, Danny De Vleeschauwer, Toon Coppens, Bart Van Doorselaer, Eva Deckers,
W. Naudts, K. Spruyt, and R. Smets. Access Network Delay in Networked Games. In Pro-
ceedings of the ACM NetGames Workshop, May 2003.

[9] James Nichols and Mark Claypool. The Effects of Latency on Online Madden NFL Football.
In Proceedings of the 14th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), June 2004.

[10] Lothar Pantel and Lars C. Wolf. On the Impact of Delay on Real-Time Multiplayer Games.
In Proceedings of the Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), May 2002.

[11] Andrew Rollings and Ernest Adams. On Game Design. New Riders, 2003. ISBN: 1-5927-
3001-9.

13

