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Abstract

Because of the high volume and unpredictability arrival of data streams, stream processing systems may not al-
ways be able to keep up with the input — resulting in buffer overflow and uncontrolled loss of data. Load shedding,
the prevalent strategy for solving this overflow problem, has todate been considered for relational stream engines.
On the other hand face additional challenges and opportunities for ”structural shedding”, due to the complex
nested XML input and result structures. We now tackle this open XML shedding problem by a three-pronged
solution. First, we develop a preference model for XQuery toenable users to specify the relative importance of
preserving different subpattern in the complex XML result structure. This transforms shedding into the problem of
rewriting the user query into possibly several shedding queries that return approximate query answers yet with the
highest possible utility as measured by the given user preference model. Two, we develop a cost model to compare
both the performance and the utility of alternate shedding queries. Third,we propose two solutions: OptShed,
and FastShed. OptShed guarantees to find an optimal solutionhowever at the cost of an exponential complexity.
FashShed as confirmed by our experiments, efficiently achieves a close-to-optimal result in a wide range of cases.
Lastly we describe the in-automaton shedding mechanism forRaindrop system. The experimental results show that
our proposed preference-driven shedding solutions alwaysconsistently achieve higher utility results compared to
the existing “relational” shedding techniques.

1. Introduction

XML has been widely accepted as the standard data representation for information exchange on the web. XML
stream systems in particular have attracted interest recently [6, 10, 14, 20, 16, 22] because of the wide range
of potential applications such as auction, traffic monitoring and online stores. Different from relational stream
systems, XML stream processing experiences new challenges: 1) the incoming data is entering the system at
the granularity of a continuous stream of tokens, instead ofa tree structured XML element nodes. This means
the engine has to extract the tokens to form the XML elements.2) We need to do disection, restructuring, and
assembly of complex nested XML elements specified by XML query expressions, such as XQuery.

For most monitoring applications, immediate online results often are required, yet system resources tend to
be limited given voluminous high arrival rate data streams:1) Sufficient memory resources may not be available
to hold all incoming data or 2)CPU processing Note that for relational stream systems, tuples are the smallest
granularity for shedding. However, in XML stream systems, the query result is composed of possibly complex
nested structures. That means each output may be composed ofa variety of elements, each of them may possibly
be extracted from different positions of XML tree structurevary in their importance or processing cost. This



provides new opportunity for selectively sheding XML sub elements to achieve high processing speed. In this
work, we focus on how to trade off accuracy of XML query resultfor performance.

In recent years, several load shedding techniques for stream system have been proposed [25, 3, 13, 9]. The
current state-of-the-art in load shedding can be categorized into two main approaches. One is random load shed-
ding [25], where tuples are discarded randomly whenever therate of processing data cannot match the input rate
and thus the output rate is significantly affected. A certainselection rateσ maybe customized and adapted accord-
ing to the workload [13]. The other approach is semantic loadshedding. It assigns priorities to tuples based on
their utility to the application and then shed those with lowpriority first. Essentially semantic shedding is to shed
tuples that do not contribute to generate output.

An XQuery may return query results with complex tree structures. In this tree structure, subelements may differ
in their perceived importance (utility). Further, these subelements may consume rather different buffer space and
require different CPU resources for their extraction, buffering, filtering and assembly. Consider an online-store,
customers may have periods of heavy usage, say at some promotion time or on holidays. The online store would
receive huge numbers of orders from customers. The schema for transaction element is given in Figure 1. Given a
fixed buffer of size B. Assume the data arrival rate isλ. The system query processing speed isη, as is determined
by the available computational resources and the query workload. When the processing capacity is not sufficient
to keep up with data arrival rate, the data in the buffer will accumulate resulting in an overflow. In this case, we
have to either drop some data or improve the processing speed. However, dropping complete transaction elements
means that we may effectively lose some important information. In this scenario, dropping some unimportant
but resource-intensive sub elements from a root element maybe more meaningful to output receivers compared
to the complete-tuple-granularity shedding strategy. We call this type of ”element” granularity dropstructural
sheddingsince it changes the structure of query results. Let us consider a online store query issued below. The
corresponding query pattern tree is shown in Figure 2.

Q1:
FOR $a in stream(”transactions”)/list/transaction
WHERE $a/order/price> 100

RETURN $a//name, $a//tel, $a//email,
$a//addr, $a/order/items, $a/survey

survey

name

contact

addr

email

name

Transaction(0, �) )

order

price itemscardNo billing brand

citySt statezip

comments

id

1 1 1 1 1

1 * 1 1 11 * *

1111

1

Figure 1. The schema definition for Q1

This query is to return the customer’s contact information and item list when their transactions are spend more
than 100 dollars. The contact information including customer’s telephone, email and the items they bought. To
process as many transaction tuples as possible, output receiver may prefer to selectively obtain partial yet important
content in the query result while dropping less important subelements in each transaction tuple. In this case we
may choose to drop ”addr” information for two reasons: 1) ”addr” element is much more complex than ”email”, as
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can be seen in the schema. This means we have to process more tokens for each single “addr” element; 2) ”addr”
element may be ”optional” to output consumer because “email” may be the more likely means of contacting
customers. By dropping the ”addr” element, several savingsarise. First, we do not need to extract ”addr” element
from the input tokens. In this case, we save the processing cost of locating tokens from “<addr>” to “</addr>”.
Second, we no longer need to buffer “addr” element during query processing. Thus the buffering costs for ”addr”
element is saved. Note here the query is changed to a new one due to removing the “addr” element. Let us call the
new reduced queryshed query.

There are many options to drop subelements based on the query. However, different shed queries vary on their
importance and their processing costs. Hence choosing an appropriate shed query is very important. This raises
many challenges. First, given a query, what are different ways to change the query via shedding while keeping
the query valid. Second, what model to we employ to specify the importance of each subelement. Third, which
of the potential shed query to choose to obtain maximum utility, and lastly how to implement structural shedding
in this XML context. Our solution tackles these challenges taking a three-pronged strategy. One, we develop
a preference model for XQuery to enable output consumers or user who issue the query to specify the relative
utility(a.k.a preference) of preserving different subpattern in the query. By comparing the utility of different shed
queries, we can judge which one yields highest utility, i.e.satisfies consumer’s preference best. Two, we develop a
cost model to estimate the processing cost for the candidateshed queries. The main goal of our shedding technique
is to maximize output utility giving the input rate and limited computational resources. We propose two solutions:
Utility-optimal, and Ratio-based Greedy (RG). Utility-optimal guarantees to find an optimal solution however at
the cost of an exponential complexity. RG as confirmed by our experiments, achieves a close-to-optimal result
in a wide range of cases. Lastly we discuss the implementation of an in-automaton shedding mechanism in the
Raindrop systems.

Our contributions are summarized as below:

1. We introduce the concept of structural shedding for XML stream systems. To our best knowledge, we are
the first to address shedding in the XML stream context and to exploit the utility for XML elements into
shedding decision.

2. To solve the shedding problem, we introduce two classes ofalgorithms, Utility-Optimal, and Ratio-based
Greedy (RBG).

3. We propose a simple yet elegant mechanism for performing shedding in our query engine at run-time,
namely, suspending the appropriate states in the automaton-based execution engine.

4. We provide a thorough experimental evaluation that demonstrates that our approach maximizes the utility
while keeping the CPU costs under the system capacity.

2. Background

2.1. Query Pattern Tree

We support a subset of XQuery. Basically, we allow “FOR... WHERE... RETURN...” expressions (referred
to as FWR) where the “return” clause can contain further FWR expressions; and the ”WHERE” clause contains
conjunctive selection predicates, each predicate being anoperation between a variable and a constant. Here we
assume the queries have already gone through the normalization steps in [7].

The query pattern tree for query Q1 is given in Figure 2. In Figure 2, each navigation step in an XPath is
mapped to a tree node. We distinguish between three types of nodes: context nodes, return nodes and select nodes
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as indicated by annotations in Figure 2. First,context nodeis the node that corresponds to a context variable in
the “for ” clause, e.g.,$a in Figure 2. Context nodes must evaluate to a non-empty set ofbinding for the FWR
expression to return any result. This implies that the querywould return nothing if we drop the context node. In
this case, dropping a context node would have the same resultas dropping the root element. Second, the nodes
that correspond to the pattern in the “return” clause, e.g.,itemor categoryare calledreturn node. Note that return
nodes are optional patterns meaning even if$a//tel evaluates to empty, other elements will still be constructed.
The third type of the nodes correspond to the pattern in the “where” clause. We call such nodesselection nodes.
For instance, if an XPath is an operand in a comparison predicate, then the destination node of the XPath, e.g.,
priceof $a/order/price in Figure 2, is a selection node. We add annotations on the nodes to indicate their types. A
context node is annotated with “c”. A return node is annotatewith “r ” and a selection node is annotated with “s”.

addr

transaction$a

name

tel email

order

itemsprice

contact
r

r r r rs

Figure 2. The corresponding pattern tree for Q1

Here we define destination nodes to be either “return” or “where” clausepatterns. Particularly we call return
nodes “r” patterns and selection nodes “s” patterns. In the query pattern tree shown in Figure 2, the “name”,
“email”, “tel”, “items” and “survey” are “r” patterns. The “price” node is an “s” pattern.

2.2. Generating Shed Queries

We now investigate the different shed queries that can be generated for one giving query via shedding. Clearly
we should avoid generating sub queries that would result in an increased output rate. Thus randomly choosing an
element to drop may not be meaningful. For instance, in Figure 2, dropping element$a is not a good idea because
$a is the outer loop binding variable. Thus this drop would cause the resulting shed query to return nothing. That
is, dropping the element corresponding to$a is equal to dropping the root element.

The shed query generation process being based for an original query Q0 has to follow three construction rules:

1. Only ”r” and ”s” nodes are allowed to be removed from the original treeT0.

2. Any shed subtreeTi always has the same root asT0.

3. The leaf nodes of a subtree have to be either ”r” node or ”s” nodes. For instance, the subtree depicted in
Figure 3 is not allowed. This tree does not need to keep the “contact” element because all children of the
“contact” element are removed and it is neither an ”r” nor an ”s” pattern.

Assume B denotes the number of all ”r” and ”s” patterns for a given query tree. When the query tree is very
bushy of width B, we can generate the maximum number of shed queries2B . When the query tree is deep and
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Figure 3. Not Acceptable Query Tree
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Figure 4. Some shed query trees

linear, we would generate at mostB shed queries. Thus the number of shed queries for a query can vary between
B and2B . Figure 4 shows some shed queries for query Q2.

3. XML Stream Systems: Processing and Cost Model

In this section, we describe the widely-adopted automata processing model for XML streams, which we assume
as underlying model for our systems. We then design a cost model for this XML stream processing model. As is
known, automata are widely used for pattern retrieval over XML token streams. [10, 20]. After pattern retrieval,
the relevant tokens are assembled into tuples to be further returned or filtered as final output elements. The formed
tuples then passed up to perform structural join and filtering. A plan for query Q1 is shown in Figure 5. Observe
that the context node$a in the “for” clause is mapped to a structural join in the plan.Thus we have the following
query processing tasks in XML stream systems:

1. Locating tokens. We use an automaton to retrieve the patterns.

2. Extracting tokens. After retrieving the tokens, we extract the tokens and compose them into XML tuples.

3. Manipulating buffered data. Algebra operator provide XQuery translation functionalities, including struc-
tural join and selection.
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Extr
$a/contact/tel

StructuralJoin $a

Extr
$a/contact/email

StructuralJoin $b
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$a/name

Extr
$a/contact/addr

Extr
$a/order/price

Extr
$a/order/item

Figure 5. An Example Plan

For instance, in query Q1, we perform structural join on $a tocollect all pieces to form a transaction tuple.
In addition we perform selection on $a/order/price to judgewhether the “price” is greater than 100.

3.1. Automaton-based Implementation
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s0
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Figure 6. Snapshots of Automaton Stack

We briefly describe how the automaton functions. A stack is used to store the history of state transitions. The
bottom of Figure 6 shows the snapshots of the stack after eachtoken is processed. Initially, the stack contains only
the start states0 (see the first stack). The automaton behaves as follows:

• When an incoming token is a start tag:

When we see a start tag, we need to check whether this start tagwill lead us to any transitions in the
automaton. There are two possibilities, either such next state exists or not. In the first case, we transition to
a new state. Within this state, tasks to be undertaken may include setting a flag to henceforth buffer tokens,
such as to record the start of a pattern, trigger a structuraljoin, etc. We call this costCtransit. Note that the
start tokens of all elements in the query tree will cause sucha transition. The other case is that there are
no states to transition to. In this case, an empty state is simply pushed onto the stack top without any other
actions. For instance, when<time> is encountered, the stack pushes an empty state onto the top.Note that
all start tags of patterns that do not appear in the query treewill lead to such a transition. The cost associated
with this case isCnull.
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Notation Explanation
NPi Number of elementsPi for topmost element.
Nstart, Nend Total number of start or end tags for a topmost ele-

ment.
SPi Number of tokens contained for aPi element.
QA Set of states in automaton A.
QPi The set of states which include the state correspond-

ing to patternPi and all its following states.
nactive(q) the number of times that stack top contains a state q

when a start tag arrived
Ctransit cost of processing a start tag of an element in the

query tree
Cnull cost of processing a start tag of an element not in the

query tree
Cbacktrack cost of popping off states at the stack top
Cbuf (q) cost of buffering a token
Cjoin(e) cost of performing a structural join on a single ele-

ment e
Csel(predi) cost of evaluating predicatepredi

σ(e) selectivity for predicate evaluation on all elements e
for a bottom input element

Table 1. Notations Used in Automaton Costing

• When an incoming token is a PCDATA token:
The automaton makes no change to the stack.

• When an incoming token is an end tag:
The automaton pops off the states at the top of the stack (see the sixth stack when</emph> is processed).
We call such popping off cost asCbacktrack. Note that the popping cost for all end tags is the same, regardless
of if thestack top is empty or not.

3.2. CPU Cost Model for a Query

Traditional database models defined the cost of a plan as the processing time of the entire input data. However
for XML stream processing, this is not possible, as the stream could potentially be infinite. One solution here is
to define the cost on a finite input chunk while the entire stream can be seen as a sequence of the chunks. It is
natural to consider a complete topmost element (except the start and the end of the whole XML stream) since it is
the basic unit based on which we generate query results. We call the processing time of handling such a top most
element theunit processing cost. We measure the cost of a query based on its unit processing cost. For instance,
the cost of query Q1 thus is the unit processing cost of handling onetransaction element.

Based on the above analysis of the basic functioning of an automaton-based implementation, we divide the
processing cost (UPC) for XQuery into three parts: Unit Location Cost (ULC) that measures the processing time
spent on automaton retrieval, Unit Buffering Cost (UBC) spent on pattern buffering and Unit Manipulation Cost
(UMC) spent on algebra operations including selection and structural join. The relevant notations are given in
Table 1. The Unit CPU Cost for a queryQi can be written as below:

UPC = ULC + UBC + UMC (1)

3.2.1 Unit Location Cost (ULC)

We split the total ULC into two parts, one part considers the cost of locating the start and end tags for elements
in the query tree, and the other part considers the cost for locating the start and end tags for other elements. The
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first part can be measured by considering the invocation times for each state and the transition cost for a token as
below:

∑

q∈B(A)
nactive(q)(Ctransit + Cbacktrack) (2)

∑

q∈B(A) nactive(q) denotes the number of times new states are transitioned to for start tags of all elements in
the query tree. The number of other start tags, namely for elements which are not in the query tree, can be written
asnstart −

∑

q∈B(A) nactive(q). Thus the second part of the transition cost is as below:

(nstart −
∑

q∈B(A)
nactive(q))(Cnull + Cbacktrack). (3)

In total, the ULC for a given automaton A is:

transition cost for all tokens in a bottom input element

= transition cost for tags in query

+ transition cost for other tags

=
P

q∈B(A)
nactive(q)(Ctransit+Cbacktrack)

+ (nstart−
P

q∈B(A)
nactive(q))(Cnull+Cbacktrack)) (4)

3.2.2 Measuring Unit Location Cost (ULC) Savings for SubQueries

We now look at how to estimate the location cost we can save by switching from the initial query to a shed query.
Assume the shed query is the query with patternpi chosen to be dropped. This means that the patternpi and all its
descendant patterns will be dropped. Then in the automaton for the shed query, as the state corresponding topi and
all its subsequent states will be cut from the initial automaton A of Q. Let us call the set of states corresponding to
pi and its dependant statesBPi . The location cost for patternpi in initial automaton can be represented as:

∑

q∈Bpi
nactive(q)(Ctransit + Cbacktrack) (5)

However, in the automaton for the shed query, since these patterns are now treated as elements that are not in
the query. Their location cost is now changed to:

∑

q∈Qpi
nactive(q)(Cnull + Cbacktrack) (6)

Thus the savings in location costs gained by switching from the initial query to the shed query can written as:

∑

q∈Qpi nactive(q)(Ctransit + Cbacktrack) −
∑

q∈Qpi nactive(q)(Cnull + Cbacktrack)

=
∑

q∈Qpi nactive(q)(Ctransit −Cnull) (7)

For instance, suppose the pattern “name” is chosen to be dropped from the shed query. Then in the automaton
for the shed query, states3 will be cut from the automaton for the initial query. Here thethe number of times that
states3 was invoked is equal to the number of start tags of “name”. Thesavings are:

∑

q∈Qname nactive(q)(Ctransit − Cnull)

= Nname((Ctransit − Cnull) (8)
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3.2.3 Unit Buffering Cost and Saving

In our query engine, not all incoming tokens are stored. We only store the tokens that are required for further
processing of the query. For a given query, all “r” and “s” patterns are to be stored, since they need to to be returned
or filtered. We associate such pattern information with their corresponding states in the automaton. For example,
in Figure 6, stateq4 represents an “r” pattern. Note that it is associated with the algebra nodeExtract$a$b. Once
s4 is activated by the arrival of<name>, Extract$a$b raises a flag. As long as the flag is raised, the incoming
tokens will be stored to compose thesellerelement nodes. Whens4 is popped off the stack by the arrival of end
tag, i.e., a</name>, Extract$a$b revokes the flag and thus terminates the extraction of thenameelement. We
assume that for each individual token, the buffer cost is fixed. The buffer cost for a topmost element is defined as
UBC (Unit Buffering Cost).

1
$a

r

2 3 4
r

1
$ar

2

3
r

4

r

r

r

r

1

2 3 4
r rr

(a) (b) (c)

Figure 7. Buffer Sharing Examples

We do not store the same token twice in our buffer, instead they are shared. Three query examples are shown
in Figure 7. In Figure 7(a) and 7(b), the parent pattern and its children overlap. Since both the parent and the
children are to be returned, we only need to store the parent patternp1 and set a reference for its childrenp1, p2
andp3 pointing top1. In this case, the buffer cost is equal to the buffer cost of the parent patternp1. However, in
Figure 7(c), since the parent is not a “r” pattern, only its children are to be returned. The buffer cost is equal to the
buffer cost of all the children.

Hence, for a given query, we need to find all the non-overlapping topmost patterns required to be buffered,
called henceforth thestoring pattern set. To obtain this storing pattern set, we traverse the tree from the root node
in a breadth-first manner. If the root node is an ”r” pattern, then add this root node to the storing pattern set and
stop here. Otherwise, for each its children, check from leftto right. if the node is a ”r” pattern or an ”s” pattern,
add this node into storing pattern set and label all its descendants as visited. If it is not, we move on and check its
children, repeating the above steps.

Assume the storing pattern set for our query Q is denoted asR. UBC can be written as

UBC(Q) =
∑

p∈R
NpSpCbuf (9)

For instance, the storing pattern set for query tree in Figure 7(a) is{p1}. However the storing pattern set for
Figure 7(c)is{p2, p3, p4}. For the query tree shown in Figure 7(a), if patternp2 is chosen to be dropped, no
buffering cost is saved since the buffering cost for the query is equal to the buffering cost of patternp1. However,
for the query tree shown in Figure 7(c), if patternp2 is chosen to be dropped, the buffering cost for the new query
will be reduced byNp2Sp2Cbuf .
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3.2.4 Unit Manipulating Cost (UMC) and Measuring Manipulating Cost Saving

The Unit Manipulating Cost is defined as the cost spent on selection and structural join operations( the cost of
Extract operator is measured by the buffer cost). Note that in the plan shown in Figure 5, the algebra operators
consist of selection and structural join operators. For each operator in the plan, we must estimate the cost of
performing such an operator. In addition, we must estimate the size of the result for each operator, since this result
is the input for the downstream operators. Note that the leaves of the plan can only be Extract operators since
tokens for each pattern have to be extracted first. Here we denote the cardinality of the output from each Extract
operator on patternpi N

pi . We now look at how to estimate the unit cost of the whole plan.First we will look at
how to estimate the cost and result size of the selection operator. Then we will examine how to estimate the cost
and result size of a structural join operator.

For a selection patternps in the query, several predicates may be defined on it. We definetwo concepts for
selection operators, selectivity and non-empty probability. The selectivity for predicatepredi on patternps is
defined as

σPs(predi) =
Number of elements satisfying predi

Number of input elements
(10)

For each selection operator, we need to estimate whether each element of patternps satisfies the predicate
predi. We call this result non-empty probability. As long as at least one element of patternpi is evaluated to be
true, the result of this selection operator is true and we canstop checking other elements. In other words, the return
result for selection operator is equal to the disjunction ofevaluation result for each element. Thus the non-empty
probability for selection on a predicatepredi is defined as:

p 6=φ(predi)

=
⋃Nin

j=1
P (No jth element satisfies predi) (11)

If the patternps needs to be returned, we also need to count how many elements of patternps satisfy the
predicatepredi among the input elements, in other words, the result size. Assume there arei − 1 predicates
located upstream of selection operator onpredi. Note that the input cardinality for the bottommost selection
operator isNpi . Its result size of selectionpredi is equal to:

Nout(predi) = Npi

i
∏

k=1

σPs(predk) (12)

The cost for a selection operator of patternps onpredi,C
ps

sel(predi), is decided by the number of input elements
for the operator and unit predicate evaluation cost on one predicate. The selection cost for predicatepredi on
patternps can be written as:

Cps

sel(predi) = Nps

inCsel(predi) (13)

The structural join cost is decided by the types of input operator and the number of the elements in each input.
If the structural join has a selection operator descendant,it needs to consider the selectivity of the the selection
operator before since the structural join is performed onlywhen the predicate is evaluated to be true. Thus the cost
of the structural join on the elemente Csj(e) can be defined as below:

Csj(e) = (
∏

B∈Ie NB) ∗ Cjoin (14)
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Figure 8. Structural Join Cost Example

Note thatIe denotes the input operators of structural join operator on elementa andNB denotes the number of
elements in input operator B.Cjoin is the processing time for joining one element from one input.

The result size of a structural join operator on elemente is decided by how many elements are bound toe in
a top most element and whether each elemente successfully generates non-empty query result when it has non-
returned selection operator. Assume there areN e elements bound toe, the result size of a structural join operator
one is thus written as:

Ne
∑

k=1

∏

p 6=φ(B), here B ∈ Ie and B is selection (15)

For the shed queries, we can estimate the unit manipulation cost savings by checking which input pattern is
dropped in the shed query. Suppose the patternPk is dropped from the shed query, the Extract operator and the
selection operatorspred1... predi are then removed from the plan. Assume there is one structural join on top of
it, the UMC savings in the new plan can estimated by:

δ(UMC) = Cpk

sel(pred1) +Cpk

sel(pred1) + ...Cpk

sel(predi)

= (
∏

B∈Ie NB −
∏

B∈{Ie−predi}
NB) ∗ Cjoin (16)

When there is no predicate under the structural join, the selectivity σ(pred) is set to 1 default. For example,
there is a structural join on patternp1 shown in Figure 7. Assume we drop patternp2 in the shed query, the
structural join cost for the shed query is equal toNp3 ∗ Np4 ∗ Cjoin instead ofNp2 ∗ Np3 ∗ Np4 ∗ Cjoin in the
initial query.

4. Runtime Statistics Collection

We now sketch how we collect the statistics needed for the costing using the estimation methods described in
Section 3. We piggyback statistics gathering as part of query execution. We attach counters to automaton states
and algebra operators to collect the statistics. During query execution, statistics collection for an automaton-based
operator for instance proceeds as follows: when a stateq is activated, its associated counter will be incremented
to collectnactive(q). Then for k most recent tompmost elements, we combine the statistics gathered in this period
with the last statistics using a weighted function that gives higher priority to the more recently collected statistics
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over older ones. We then use these statistics to estimate thecost of the candidate sub queries using the formula
given in Section 3.

Note that some of the cost parameters in table 1 such asCtransit,Cnull,Cbuf andCjoin are constants. We do not
need measure them in the query execution. Other parameters,namely, cardinality and counts such asnactive(q),
Np, Sp andnstart. Note thatNp is actually equal tonactive(q) where q is the corresponding states for pattern p in
the automaton.

5. Preference Model for Query Pattern Trees

Different elements may vary in their importance to real applications. For instance, the ”name” element may be
more important than the ”email” element for query Q1 because”name” is the unique identifier of atransaction
while ”email” may in fact be an optional item fortransaction. Thus we need a metric to measure the importance
of each pattern for a given query. In this work, we define a quantitative preference model to represent preference
of different elements for a query. THe preferences can be specified by the user who issue the query or the output
consumer. By binding different nodes with their respectivepreference, shed queries would vary in their overall
perceived utility to the user. In this way, we can rank the queries derived from the initial query. The notion of
preference model has been investigated in the literature [18]. Instead of using the preference model to represent
the preference between tuples as in previous work [18, 12, 8], we are using the preference model to represent the
preference between different nodes in the query tree. We support two types of preferences representations, one
using prioritized preference [17] to explicitly express the relevant ranking among different elements, and the other
is using a quantitative approach [12, 11] that by scoring function to represent the importance for the nodes. In this
work, we allow user to choose either model to represent theirpreference. For prioritized preference model, we
provide a default score assignment to assign scores to different nodes.

Before we describe our proposed preference model, we first analyze what nodes user needs to assign prefer-
ences. As we mentioned in Section 2.1, there are three types of nodes in the query tree. Recall that ‘c” nodes are
considered essential, i.e., they cannot be shed. So we only need to consider the preference of the “r”(return nodes)
and “s” patterns (selection nodes).

5.1. Prioritized Preference Model(PPM)

If a user chooses to use the prioritized preference, they describe the partial-order relationship between nodes. It
means that given a query tree, for all the nodes on the query tree, the user has to declare the ordering of all “r” and
“c” nodes in term of their importance.

An example prioritized preference for query Q1 could be:
name ≻ order ≻ price ≻ items. ≻ tel ≻ email ≻ survey
Note that prioritized preference satisfies the structural importance relationship, that is, the parent pattern is more

important that its children pattern. This is because the pattern always contains its child pattern. After ranking, a
default score assignment strategy is applied based on relevant ranking. The score calculation formula is given as:

ν(Pattern Ranking k) = 1
2k

For instance, the utility for “name” is equal to12 and the utility of order is equal to1
22 . Note this score assignment

method can conserve the structural importance relationship since it guarantees that the utility of pattern ranking k
is greater that the sum of utility for patterns ranking afterk.
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5.2. Numerical Preference Model (NPM)

If users choose to use a quantitative approach, they can assign their customized importance (a.k.a utility) for
different elements in the query in a numerical form. We definethe scoring function to represent the importance of
each node in the query tree. The scoring function for a pattern in the query tree is defined as below:

v(Pi) 7→ [0, 1]

wherePi is an ”r ” or an ”s” node in the query tree and v(Pi) is a constant value between (0,1). An example of
utility for query Q1 is shown in Figure 9.

order

transaction

s

r r

$a

name tel email survey

itemsprice

r r

r

0.2 0.1 0.1

0.25 0.3

0.05

Figure 9. The Query Tree Augmented by Preference

Based on the literature [26], we can easily extend the syntaxto integrate the preference into the query below:

Q1:
FOR $a in stream(”transactions”)/list/transaction
WHERE $a/order/price> 100

RETURN $a//name, $a//tel, $a//email,
$a//addr, $a/order/items, $a/survey

with ν(name)= 0.2,ν(tel)= 0.1,ν(email)=0.1...

In some cases a user may not be able to or want to specify the scores for all nodes. Thus only some scores of
“r” and “s” nodes are determined. In this case, we would consider the other nodes to be not as important as the
scored nodes. Thus the scores of other nodes will be set to “not important” being represented by the infinitely
small numberǫ.

When no scores foranynodes are specified, then we would assign default scores for all the “r” nodes and “s”
nodes. In this case, the default score of all “r” nodes and “s”nodes would be set to 1.

The utility of a query pattern tree indicates the amount of utility we expect to gain by running this particular
query on a topmost element. It is defined as below:
ν(Qi) =

∑

Pj∈Si

ν(Pj) .

The query tree with preference for query Q1 is shown in Figure9. In this case, the utility for Q1 is equal to:
0.2 + 0.1 + 0.1 + 0.25 + 0.4 + 0.05= 1.1
In addition, we have two special queries which are also considered to be shed queries: empty queryQ0 and

initial query. The utility for the initial query can be calculated easily. The empty query indicated dropping the
whole root element. This is equal to shed all patterns. Thus we haveν(Q0) = 0.
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5.3. Total Data Utility

After discussing the utility for a query running on single topmost element, we now examine how much total
utility we can gain by apply a query given some input data. Forinstance Q1 is applied to some topmost elements
while Q2 is applied to other topmost elements. Assume totally m shed queries are chosen in shedding phase. There
arex0 topmost elements that execute empty query(dropped),x1 topmost elements that execute Q1,x2 topmost
elements that executeQ2, and so on. The total utility for n topmost elements can be written as below:
φ =

∑j
i=1 xi ∗ ν(Qi), where

∑j
i=1 xi = n.

5.4. User Preference Model to Prune Candidate Query Set

As we discussed in Section 2.2, when the initial queryQ1 is in a “bushy” shape, for instance, all k patterns are
independent,2k possible shed queries where k is the number of patterns inQ1 exist. However, some of them may
contain too few patterns and thus not be meaningful to users.One idea is to use the preference model to prune
these shed queries. We can set up a threshold utility value for candidate queries, e.g., half of the utility of initial
queryQ1. By setting up this threshold, we can avoid generating the queries with low utility values. The other
advantage of applying the utility threshold on the candidate query set is that we guarantee that our query result
in the shedding have some lower-bound on the utility for eachoutput result, similar to satisfying the accuracy on
some degree.

6. CPU constraint shedding

We allow different tuples executing different queries in shedding phase, for instance, we can let first 500 tuples
executing initial queryQ0, the later 300 tuples executing another shed queryQ1. First, we describe when to
trigger structural shedding. Then we describe choose shed query set. o choose so to maximize the total utility. We
present two solutions, OptShed and FastShed. Finally the advantages and disadvantages of these two approaches
are analyzed.

6.1. Decide When to Shed

We assume a fixed memory buffer to store the input XML data. As long as all the tokens in an XML element
are processed, we clean those tokens from the buffer. We set abuffer threshold for the system. From the beginning
of the execution, we have load monitoring step to check the current memory buffer periodically. As long as the
buffer occupancy exceeds the threshold, we would trigger shedding phase.

6.2. Problem Statement

Given the candidate shed query set{Qǫ, Q0, Q1, ..Qn} whereQǫ is empty query andQ0 is the initial query.
Note utility of empty queryQ0 ν0 and the UPC ofQ0 are both assume to be zero. We have the following inputs
for our cpu-oriented shedding problem: 1. data arrival rateλ; 2. utilities of candidate query set{ν0, ν1, ..νn}. 3.
processing cost of candidate query set{C0, C1, ..Cn}.

Our goal is to find a coefficient vector{xǫ, x0, x1, ..xn}for candidate shed query set, to make the utility of the
total processed XML tuples maximal while keeping the processing cost below the CPU processing capability. The
formal problem can be represented below:

We have the following constraints:
1. The total number of processing XML elements(including topmost element who run empty queryQǫ) equal

to number of input XML elements:
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∑

xi = λ

2. Total execution cost should be less than or equal to unit time.
∑j

i=0 xi ∗ Ci = x0 ∗ C0 + x1 ∗ C1 + ..+ xj ∗ Cj <= 1000ms

3. The number of tuples running queryQiprocess cannot exceed its processing speedηi (Except empty query
whose unit processing cost can be looked as zero).

xi <= 1
Ci

For queryQǫ, its coefficientx0 should be less than arrival rate. Because the number of dropping topmost
elements cannot exceed arrival elements, meaningxǫ <= λ

Given the above constraints, we want to maximize the total data utility:

max{
∑n

i=0 xi ∗ νi}
Observe that the objective function is linear, i.e., it has two linear constraint functions. The variables all have

be to non-negative integers. We thus conclude that this problem is an instance of the bounded knapsack problem.
We have two solutions for this problem, one is dynamic programming approach, the other is greedy approach.

6.3. OptShed Approach

The OptShed solution is using a dynamic programming solution from [23]. To state our approach, we construct
a matrix of sub-problems:

ψ0(0) ψ0(1) ... ψ0(1000)

ψ1(0) ψ1(1) ... ψ1(1000)

... ...

ψn(0) ψn(1) ... ψn(1000)

Hereψj(c̃) only uses queries fromQ0 toQj and its total cost satisfies
∑j

i=0 xi ∗Ci ≤ c̃. Clearly,ψn(1000) is the
original problem we want to resolve.

Now, we defineφj(c̃) to be the maximum utility of sub-problemψj(c̃), the dynamic programming approach
can be presented recursively as follows:
φj(0) = 0(0 ≤ j ≤ n)

φj(c̃) =

max

{

φj−1(c̃)
φj−1(c̃− kCj) + kνj (1 ≤ k ≤ ⌊c̃/Cj⌋)

Here the maximum utility is set to zero initially. Tabulating the results fromφ0(0) up throughφn(1000) gives
the solution. Each time the algorithm will check which sub query would contribute to the maximum utility if it is
added.

Since the calculation of eachφ(c̃) involves examining n query pattern trees (all of which have been previously
computed), and there are1000 values ofφ(c̃) to calculate, the running time of the dynamic programming solution is
thus O(1000n). The time complexity for the dynamic programming can be improved to:O(

∑n
j=1⌊log2(1000+1⌋)

according to [23].

6.4. FastShed Approach

Since the time complexity of OptShed is big, we want to find a simple but effective way to solve this problem.
FastShed, Greedy approach is proposed to solve this problemin this case. FastShed approach is described as
follows:
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1. For every candidate queryQ0, Q1, ...Qn, compute their utility gain ratio
γ(Qi) = Utility of query tree Qi

Processing cost of query tree Qi
= ν(Qi)

Ci)

2. Sort the utility gain ratio in descending order.

3. Choose the queryQmax with the highest utility gain ratioγmax as the new query. Assume the UPC of query
Qmax is equal toC1st The number of the root elements we are going to adopt this query is equal to

xmax = ⌊1000000
Cmax

⌋

4. Calculate the remaining processing cost, which is equal to

1000000 − xmax ∗ Cmax

Find the queries which have the cost lower than1000000−xmax ∗Cmax. Pick the query with highest utility
gain ratioγsecond among these queries. The number of the root elements for thisratio is equal to

xsecond = ⌊1000000−xmax∗Cmax)
Csecond

⌋

Since the greedy approach always use the query with the highest utility gain ratio. The time complexity is only
the sorting cost. Thus the time complexity is O(nlgn), wheren is the number of candidate subqueries.

7. Shedding Mechanism Implementation

In this section, we examine the implementation of differentshedding approaches in Raindrop Systems [15].
For streams systems, one common implementation way is to insert drop boxes in plan [25, 2, 4]. However, in
XML stream system, many systems are using automata to recognize relevant elements from arriving data. We
adopt a unified framework which combines both automata and algebra plan. Instead of dropping tuples directly,
we need to look at which token is coming into the system and what to do with the arriving token. We provide
a state-disabling strategy which is able to drop tokens by disabling the state invocation. We then discuss how to
switch shed query from one to another.

7.1. In-Automata Shedding Mechanism: Disable Transition and propagate Drop Signal

For our shedding approaches, we use an state-disabling approach to drop tokens. Assume we want to drop pat-
tern $a/name and $a/contact/tel. Figure 10 shows where to insert drop box in automata. To drop pattern $a/name,
the automaton would temporarily removed the transition from state s2 to s3. When the start tag of name element
comes, the state s3 is never reachable. Thus it would not invoke its downstream operator:Extract$a/name. On
the other hand,Extract$a/name will be labeled with a “dropped” flag. This flag guarantees that the downstream
structuraljoin$a operator work correctly. Thus whenstructuraljoin$a check its input operator one by one, if
an input operator is labeled with ”dropped ” signal,structuraljoin$a would skip this input.

7.2. Random Shedding in XML Streams

In XML streams, we perform random shedding dropping at automaton level. because it conforms to the ”the
earlier dropping, the better” rule. since the unit of incoming data in XML Streams is a token, the start token of
the topmost elements is recognized by automaton. We then canset “shedding” flag to be true. As long as this
flag is true, the incoming token is dropped. At the same time, we add a counter to monitor how many topmost
elements we have dropped. When the end token of the topmost element arrived, the counter’s value is check. If
the counter’s value is reached, the flag is disabled and system can switch back to “non-shedding” phase.
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Figure 10. Disable Transition Strategy for XML Shedding

7.3. Shed Query Switching at Run-time

We support the mixture of shed queries in execution. Assume the OptShed approach provide a solution vector,
say{60, 10, 20}. In this case, we will first drop 60 topmost elements, then runqueryQ0 for 10 topmost element,
then switch to queryQ1 for the next 20 topmost elements. What we do is using a counterto record the number of
topmost elements have been run for queryQi. When the number of topmost elementsxi has been reached. After
processing the last end tag ofxith element, the system restore the removed state transition immediately and then
switch to the new shed query. Since the switching time only happens after the processing of the last token of the
topmost element, meaning the output has been generated, it is safe to switch to another query for next topmost
element. Furthermore, we only involve with the state transition disabling and labeling “dropped” flag, we do not
physically change the plan. Thus the overhead is very small.

8. Related work

In streaming systems, approximate query processing has been considered an effective method for trading off
performance with accuracy[21, 25, 9, 24]. However, no approximate query processing has been touched in XML
streams. Load shedding and sampling data are two most commonways to reduce system workload. Load shedding
on streaming data has firstly been proposed in the Aurora system [25]. This work introduces two types of load
shedding: random and semantic load shedding. Based on the analysis of the loss/gain rate, the random load
shedding strategy will determine the amount to shed to guarantee the output rate. For semantic drop, they assume
that different tuple value may vary in term of utility to application. In this case, maximizing the utility of output
data is their goal. We have the same goal of maximizing the output data utility in XML streams. However, instead
of a simplistic model of certain domain value denoting utility, we must consider the complexity as well as context
of XML structure and XQuery. we do not specify importance based on different value interval. Instead we let user
to denote the importance of different patterns in the query.

Most approximate query processing works focus on the max-subset goal, which is, to maximize the output
rate [13, 9, 2].[9] provides an optimal offline algorithm forjoin processing with sliding windows where the tuples
that will arrive in future are known to the algorithm. An online algorithm which does not know which tuples will
arrive in the future is giving under assumption about certain arrival possibilities. [24] proposes a novel age-based
stream model and give the load shedding approach for join processing with sliding windows under memory-
limited resources. We can apply their techniques into join processing among multiple XML stream systems if our
goal is to get max-subset instead of maximizing output utility. In addition, we are considering looking for shed
query for XML streams under CPU limited scenario. For CPU limitation scenario, [13] provides an adaptive CPU
load shedding approach for window stream joins in relational stream systems. It follows a selective processing
methodology by keeping tuples within the windows, but processing them against a subset of the tuples in the
opposite window.[1] also discussed how to perform sheddingunder CPU limited scenario. They proposes an
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Insert−No−Probe andProbe−No−Insert shedding approach which is limited to window join in relational
streams.

We can divide approximate query processing work into the twocategories based on the query execution
paradigm. One type is to keep the query unchanged and insteadtry to utilize available system resources effi-
ciently to maximize the output, which is a subset of output which would have been generate without resource
limitations. The other reduces workload by changing query explicitly. [21] mentioned changing query at operator
level. This is similar to our removal some patterns from the query. However, our goal is to maximize output utility
instead of maximizing output rate.

Preference model is a natural way for decision making purpose. It is used in many applications, such as e-
commerce and personalized web services. [18] proposes Preference SQL, an extension language SQL which
is able to support user-definable preference for personalized search engines. It supports some basic preference
types, like approximation, maximization and favorites preference, as well as complex preference. Preference
XPath [26] provides a language to help users in E-commerce toexpress explicit preference in the form of XPath
query. For view synchronization in dynamic distributed environments, EVE[19] proposes E-SQL, an extended
view definition language by which view definer can embed theirpreferences about view evolution into the view
definition. However, their preference model is different with ours:

9. Experiment Results

We use ToXgene[5], an XML data generator, to generate XML documents. All the experiments are run on a
2.8GHz Pentium processor with 512MB memory. We perform three sets of experiments. The first one shows
that when we run query on different utility settings, the output utility for greedy and exhaustive are better than
random shedding approach. The second set of experiments examine the possible factors to affect output data
utility. It shows that different preference model and the pattern sizes would impact the output utility. The third
set of experiments compares the overhead of three shedding strategies. It shows the greedy shedding approach
has little overhead which is similar as random shedding. However, the overhead of exhaustive is big when the
query size scales. The final set of experiments shows with random assignment of preference, greedy can achieve
close-to-maximum output utility compared to dynamic programming approach.

9.1. Effect of Arrival Rate

In this set of experiments, we study the output utility variation with varying arrival rate using different shedding
approaches. We use query Q1 as running query. The performance is measured by output utility by checking
the output utility per second. Once the structural join is performed, the joined tuples are purged from the buffer.
Fig. 11 shows the output data utility for query Q1 using exhaustive approach and greedy approach is about 20%
higher than that of random approach.

9.2. Effect of Preference Assignment and Pattern Size

The second set of experiments show that the output utility isaffected by the assignment of preferences as well
as the size of patterns in the query. It also implies that the assignment of preference affect which shed query will
be chosen to run at shedding phase. The definition of pattern size is given by:

Size of Pattern Pi

= {average number of Pi elements per topmost

element} ∗ {average number of tokens in an element}
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Figure 11. The output utility change with varying arrival ra tes for three shedding strategies

Note that the exhaustive and greedy approach tend to choose the query which has higher utility with low cost.
In this set of experiments, we use a different query Q3.

Q1:
$o in document(”a.xml”)/list/transaction

return<result>
$o/category, $o/addr, $o/item/price,
$o/item/name, $o/item/description

</result>

Q3 tries to find for every transaction element, its category,shipping address, prices of each item, name of each
item and description for each item.
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Figure 12. Data Utility Difference Between Random, Greedy a nd Exhaustive Shedding Strategies with
Varying Assignment of Preference Model

Figure 12 shows that the output utility is higher when there is bigger variance among preference values when
each pattern in query has same size. Observe that when the difference among preference values is very small,
there is little difference for the output utility for three approaches. However, the difference of output utility would
be different when the standard deviation of preference values reaches 0.5. Figure 13 shows the output utility
changes with varying pattern sizes given the same time period. Here all the patterns(assume they are independent)
in the query are independent and of equal preference. Observe that the output utility for data with greater standard
deviation using random approach is decreased because such data require higher processing cost than the data with
smaller standard deviation. However, this is not the case for greedy and exhaustive approach. The output utility
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Performance Comparison with Varying Data Size
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Figure 13. Data Utility Difference Between Random, Greedy a nd Exhaustive Shedding Strategies with
Varying Pattern Size

for these two approaches is much higher than random approachwhen the size deviation size is 5. This is because
the query with small size patterns have smaller location cost and buffering cost, which result in lower overall
processing cost. In this case greedy and exhaustive shedding approach would pick such shed query since they
have relative higher utility.

9.3. Overhead of Shedding Approaches

In this section, we study the overhead of three shedding strategies. The overhead of shedding approach is
measured by the time spent on choosing which shed query to runat shedding phase. We study whether the more
complex query is, the overhead is increased dramatically. We use five queries which vary on number of patterns.
From the figure shown in Figure 14, we can investigate even when the query become more complex, the overhead
of greedy approach is still very small, although it is a bit higher than random shedding. But it does not scale when
the query becomes more complex. However, for exhaustive approach, it is already very high when the number of
patterns in query is 5. This would cause the total data utility for a certain time period decrease. Thus the overhead
of exhaustive is very big and not desirable.
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Figure 14. Overhead difference between random, greedy and e xhaustive shedding approach
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9.4. Random Experiments on Three Shedding Approaches

In the first and second set of experiments, we can observe the greedy and exhaustive approach perform better
than random shedding approach on output utility. However, we only compare them based on limited number of
preference settings. People would be concerned about whichapproach can generate better results for most cases,
i.e. What is the general comparison result of these sheddingapproaches on output utility. In order to compare these
three shedding approaches, we generate 1000 sets of preference model which satisfy our constraints on preference
model. Then we compare greedy versus exhaustive and random versus greedy separately. We run experiments on
these 1000 sets of sample data and compare their output utility. Figure 15 shows the histogram on utility ratio of
output utility of greedy over exhaustive approach. We can observe that the output utility ratio of greedy approach
over exhaustive approach is skewed left. The height of the bar where the ratio equal to 1 is the highest. In addition,
about 80 percent data stay in the area where the ratio is over 0.8. This means that greedy can get close to optimal
result in most cases. Figure 16 shows that the histogram on output utility ratio of random over greedy approach.
Observe that the utility ratio of random over greedy approach is skewed right. Most data are staying in the area
where the ratio of random over greedy is less than 0.6. Only very few percent of data can reach the ratio 1 which
means random approach has same output utility as greedy approach.

Figure 15. Histogram of output utility Ratio of Greedy over E xhaustive Approach
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[25] N. Tatbul, U. Çetintemel, and et. al. Load shedding on data streams. InVLDB, 2003.

[26] H. B. Werner Kießling and F. S. Preference xpath- a querylanguage for e-commerce. In5th International
Conference Wirtschaftsinformatic, pages 43–62, Augsburg, Germany, 2001.

23


