
WPI-CS-TR-WPI-CS-TR-09-03 March 2009

Skyline and Mapping Aware Query Evaluation Across Disparate Data
Sources

by

Venkatesh Raghavan
Shweta Srivastava

Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Skyline and Mapping Aware Query Evaluation Across
Disparate Data Sources∗

Venkatesh Raghavan, Shweta Srivastava and Elke A. Rundensteiner
Department of Computer Science, Worcester Polytechnic Institute, USA

{venky, shweta.sriv, rundenst}@cs.wpi.edu

ABSTRACT
Growing interests in multi-criteria decision support applications
have resulted in a flurry of efficient skyline algorithms. In prac-
tice, real-world decision support applications require to access data
from disparate sources. Existing techniques define the skyline op-
eration to work on a single set, and therefore, treat skylines as an
“add-on" on top of a traditional Select-Project-Join query plan. In
many real world applications, the skyline dimensions can be anti-
correlated (e.g., attribute pairs {price, mileage} for cars or {price,
distance} for hotels). Anti-correlated data are skyline-unfriendly
and thus ignored by existing techniques. In this work, we propose
a robust execution framework called SKIN to evaluate skyline over
joins. The salient features of SKIN are: (a) effective in reducing the
two primary costs, namely the cost of generating the join results
and the cost of dominance comparisons to compute the final sky-
line of join results, (b) shown to be robust for both skyline-friendly
(independent and correlated) as well as skyline-unfriendly (anti-
correlated) data distributions. SKIN is effective in exploiting the
skyline knowledge in both local (individual data source), as well as
across disparate sources – to significantly reduce the above men-
tioned two primary costs incurred during the evaluation of skyline
over join. Our experimental study demonstrates the superiority of
our proposed approach over state-of-the-art techniques to handle a
wide variety of data distributions.

1. INTRODUCTION
The intuitive nature of specifying user preferences has made sky-
line computation critical for many multi-criteria decision support
(MCDS) applications. Skyline evaluation is characterized by the
following features: (1) the user is interested in minimizing (or max-
imizing) a variety of criteria, and (2) the underlying data set may
not contain a single overall best match [2]. Traditional queries re-
turn only exact matches. Instead, the goal of MCDS queries is to
return a set of non-dominated results meaning each result is better
than the others in at least one criterion.

∗This work is supported by the National Science Foundation under
Grant No. IIS-0633930 and CRI-0551584.

1.1 Motivation
In recent years several skyline algorithms have been proposed [2,
6, 11] to provide this capability. The skyline operation, similar to
aggregate computations, is traditionally evaluated last after joins
and group-bys in a query plan, thus assuming its input to be a sin-
gle set of homogeneous data [2]. However, this common assump-
tion is rather limiting since a many MCDS applications in practice
do not operate on just a single source. Instead, they are required
to: (1) access data from disparate sources with varying schemas,
and (2) combine several attributes across these sources by possi-
bly complex user-defined functions (mappings) to characterize the
final composite product. In many real world applications the at-
tributes values exhibit anti-correlation, for example in a hotel reser-
vation application the cost of the hotel increases with the nearness
to popular tourist interests, and in an automobile purchase system
the mileage on the car is inversely proportional to its asking price.
Existing techniques proposed to handle skyline over joins [9, 19]
are not viable for such anti-correlated data sets. For this reason,
existing techniques in the literature simply do not test against data
sets that exhibit such correlations, and rather they limit themselves
to the skyline-friendly correlated and independent data sets. The
focus of this work is to present a robust evaluation strategy that
handles all three extreme distributions. We first substantiate these
requirements by drawing from a diverse set of applications.

Supply-Chain Management. A manufacturer in the supply chain
aims to maximize profit and market share while minimizing over-
head and delays. This is achieved by structuring an optimal pro-
duction and distribution plan through the investigation of various
alternatives. Q1 identifies suppliers that can produce “100K” units
of part “P1” and pairs them with transporters who can deliver it.
The preference is to minimize both costs and delays.

Q1: SELECT R.id, T.id, (T.shipTime) as delay
(R.uPrice + T.uShipCost) as tCost,
FROM Suppliers R, Transporters T
WHERE R.country = T.country AND
‘P1’ in R.suppliedParts AND R.manCap >= 100K
PREFERRING LOWEST(tCost) AND LOWEST(delay)

Internet Aggregators. The rapid increase in the number of on-
line vendors has resulted in Internet aggregators such as Froogle1

for durable goods, and Kayak2 for travel services, are fast growing
in popularity. Aggregators access and combine data form several
sources to produce complex results that are then pruned by the sky-
line operation. Consider the query Q2 , where the user is planning
1http://froogle.google.com/shoppinglist, 2www.kayak.com

a holiday in Europe visiting both Rome and Paris. The user has
different preferences in each leg of the journey. For instance since
Rome is an ancient city, the user is willing to walk twice as much
in Rome than in Paris. In addition, the user has a cumulative goal
of minimizing the total cost of the trip.

Q2: SELECT R.id Rome, T.id Paris,
(R.price + T.price) as tCost,
(2 * R.distance+T.distance) as tDistance
FROM RomeHotels R, ParisHotels T
PREFERRING LOWEST(tCost) AND
LOWEST(tDistance)

Drug Discovery. The life cycle for drug discovery spans over sev-
eral years starting with the synthesis of the compound first in the
laboratory until the finished product is introduced in the market.
Molecular modeling plays a vital role in drug discovery and is used
to identify protein-ligand pairs that can point to potential direc-
tions of further investigation. This involves screening large data
banks of ligands against a protein, and then ranking the protein-
ligand pair interactions according to scoring functions based on
structure, energy forces or empirical data of each pair with the goal
of maximizing the intermolecular interaction energy between the
molecules [5].

To summarize, in this work we target user queries that involve com-
bining both skyline and mapping operations over disparate data
sources, here known as SkyMapJoin queries.

1.2 State-of-the-Art Approach

P1 = min(tCost); P2 = min(delay); P = {P1, P2}
SKYLINE operator

MAP operator

F = { f1 ,f2 ,f3 ,f4 } 1 :R.id, f2 :T.id
f
3

:(R.manTime+T.supplyTime) as delay f4
X = {R.id, S.id, tCost, delay}

200K

100K

1,000K

1,000K

203

[F ,X]

SP

100K

:(R.uPrice + T.uShipCost) as tCost
f

JOIN operator

R.country = T.country (with Join Selectivity = 0.1)

Figure 1: Traditional Query Plan For Motivating Query Q1

The traditional approach is to view skylines as an independent op-
eration to join evaluation that is, a join-first, skyline-later (JF-SL)
paradigm. [2, 12] tends to employ this paradigm by dividing the
query execution into disjoint steps. As illustrated in Figure 1, the
objects in relation R which satisfy the filter conditions are first se-
lected, followed by the join evaluation. The join results are then
transformed by the mapping operator. Finally, the skyline evalua-
tion returns the output skyline of supplier-transporter pairs. In our
particular data sets with |R|=200K and |T |=100K objects, the se-
lectivity of the filter conditions is 0.5 and join selectivity = 0.1. JF-
SL first generates all 1 million join results. The skyline evaluation
requires ≈ 1 million comparisons.

Discussion. To draw a parallel to Select in Select-Project-Join
(SPJ) queries, there are scenarios when the skyline functionality
can be pushed inside as well as sometimes pushed-through joins
[2, 8]. Such rewrite rules aim to facilitate processing. For instance,
pushing Select inside the Cartesian product results in the theta-
join operator, for which then numerous efficient strategies such as
index-join, sort-merge join, etc., have been devised in the literature.
We observe that the skyline operation can be viewed as a complex
and expensive filter operation. In our motivating query Q1, the at-
tribute value of each skyline dimension is generated on the fly by
the join and mapping operations. [12] noted that skylines cannot be
correctly pushed-through in many scenarios. In traditional filters
increasing the number of conditions will usually increase its prun-
ing capacity. However, adding a preference to a skyline operation
will reduce their filtering capacity and increase the cardinality of
its result set up to the size of the entire relation [4]. Therefore, the
partial push-through of skylines can be an expensive and some-
times ineffective proposition. [9, 19] proposed techniques that rely
heavily on the effectiveness of making local partial push-through
decisions on each individual data source. By relying primarily on
the principle of partial push-through, [9, 19] are unable to see the
forest from the individual trees. Thus by only exploiting the partial
push-through they suffer from the following two limitations: (1)
not being robust for a wide variety of data sets as they themselves
report [19], and (2) for the generated join results [9,19] cannot fur-
ther optimize the skyline evaluation even when such opportunities
can be found provided the knowledge of the forest is exploited.

1.3 Problem Definition
In this work, we aim to design a query execution framework that is
able to: (1) leverage the skyline knowledge at various steps of query
evaluation, (2) minimize the number of join results generated, (3)
also reduce the number of skyline comparisons over this reduced
set of join results, and (4) exhibit competitive performance for all
distributions, including the skyline-unfriendly anti-correlated data
sets. The optimization-mantra in this work is to “avoid joining
objects that will not result in a skyline result and avoid evaluating
skylines for objects that will not join.”

1.4 Proposed Approach
We propose SKIN (SKyline INside Join) an efficient methodol-
ogy to evaluate SkyMapJoin queries. Guided not only by the in-
put space of each data source, SKIN is able to look ahead into
the final output space. This allows us to determine the interrela-
tions between the two spaces and identify optimization opportu-
nities missed by current techniques. In addition, SKIN is able to
efficiently evaluate the query at various levels of data abstraction.
As a result of these principles, we significantly reduce the expen-
sive object-level processing and achieve our optimization goals. In
this effort, we form a multi-dimensional, higher-level abstraction
of both the input and output data spaces. Thereafter, we exploit the
insight that the join, skyline and mapping operations can now be
performed in the coarser granularity data spaces. For our example
with |R|=200K and |T |= 100K objects, SKIN achieves nearly 2 or-
ders of magnitude reduction in the number of join results generated
to ≈14K from 1 million pairs as generated by JF-SL.

In addition, we succeed to minimize the skyline computation costs
to generated the join results and then mapped results (here known
as combined objects) by piggy backing the knowledge about the
output space obtained from the previous step. For each generated
combined object, we are now able to restrict the skyline compar-
isons to only those combined objects mapped to a subset of output

partitions that they can potentially dominate and vice-versa.

Our proposed SKIN execution strategy is shown to successfully re-
duce the total number of skyline comparisons in several cases by
orders of magnitude against state-of-the-art approaches, for the var-
ious data distributions as generated by the de-facto skyline stress
test [2]. For our example, we only require a manageable 11K dom-
inance comparisons instead of 1.2 million comparisons required by
JF-SL (Figure 1). This represents 2 orders of magnitude reduction
of skyline computations for this particular scenario.

1.5 Contributions
The contributions of this work include:

1. Propose SKIN, a robust methodology to process SkyMapJoin
queries. To our best knowledge, SKIN is the first algorithm to
efficiently exploit the insight that the join, skyline and map-
ping operations can not only be performed at different levels
of data abstraction, but also be simultaneously performed in
both input and output spaces.

2. Existing state-of-the-techniques [9, 19] do not test their ap-
proach over anti-correlated data sets, rather they restrict them-
selves to only the skyline friendly distributions such inde-
pendent and correlated. In this work, we provide a compre-
hensive experimental evaluation of the existing techniques
over all distributions commonly used in skyline literature as
a stress test [2].

3. Our performance analysis demonstrates the superiority of our
proposed approach for many cases (such as anti-correlated
and some independent data sets) by 1-2 orders of magnitude
faster over state-of-the-art methods. For the skyline friendly
data sets such as correlated data, SKIN has similar perfor-
mance as state-of-the-art techniques [9, 12, 19]. In addition,
we report that SKIN on an average produces 50% less number
of join results in comparison to state-of-the-art techniques
and achieves 1-2 orders of magnitude fewer skyline compar-
isons to produce the final result.

1.6 Organization
The rest of the paper is organized as follows. In Section 2 we re-
view the preference model used in skyline queries, and the map-
ping operator. In Section 2.3 we introduce the proposed extensions
to the algebra model. We present a brief overview of our PB-SMJ
methodology in Section 3, while details of our techniques are pre-
sented in Sections 4-8. In Section 9 we discuss our performance
study. The survey of related works is presented in Section 10, and
Section 11 concludes the paper.

2. PRELIMINARIES
In this section, we review the preference model [10] and the al-
gebra model used to represent an SMJ query such as Q1. Each
d-dimensional object is defined by a set of attributes A = {a1, . . .,
ad}. For a given object ri, the value of the attribute ak can be
accessed as ri[ak]. Dom(ak) is domain of the attribute ak and
Dom(A) = Dom(a1)× . . .×Dom(ad).

2.1 Mapping Functions and Map Operator
The map operator (µ) is defined based on a set of k mapping func-
tions. For each input object ri the mapping function fj , in a set of
k mapping functions F , takes as input a set of distinct attributes

Bj ⊆ A and returns a newly computed attribute xj . That is,
fj : Dom(Bj)→ Dom(xj) and F ={f1, f2, . . . fk}.

Map Operator (µ[F,X](R)) applies a set of k mapping functions
F to transform each d-dimensional input object ri ∈ R into a k-
dimensional output object r′i defined by a set of attributes X =
{x1, . . ., xk}, where xi is generated by the function fi ∈ F .

2.2 Preference Model and Skyline Operator
Given a set of attributes E ⊆ A, the preference Pi over the set of
tuples R is defined as Pi := (E,�P) where �P is a strict partial
order on the domain of E. Given a set of preferences {P1, . . .,
Pm}, their combined Pareto preference P is defined as a set of
equally important preferences.

DEFINITION 1. For a set of d-dimensional tuples R and pref-
erence P = (E,�P) over R, a tuple ri ∈ R dominates tuple
rj ∈ R based on the preference P (denoted as ri �P rj), iff
(∀(ak ∈ E) (ri[ak] � rj [ak]) ∧ ∃(al ∈ E) (ri[al] � rj [al])).

Skyline Operator (SP (R)), given a set of objects R and a prefer-
ence P , returns a subset of non-dominated objects in R.

2.3 Extended Algebra Model
To facilitate the pushing of the skyline operation into the map and/or
the join, we introduce three new operators, namely SkyMap (bµ),
SkyJoin (b./) and SkyMapJoin (bΨ).

SkyMap (bµ[F,X,P]) performs the following operations in order:
(1) apply the set of k mapping functions F to transform each d-
dimensional object ri ∈ R into a k-dimensional object r′i defined
by the set of attributesX , and then (2) generate the skyline of trans-
formed objects by the preference P = (E,�P), where E ⊆ X .

SkyJoin (b./[C,P]) combines objects from its input data sets based
on the conditions in C and returns a set of non-dominated combined-
objects based on the preference P . If C = φ then the operator
returns the set of non-dominated Cartesian product results.

SkyMapJoin (bΨ[C,F,X,P]) performs the following operations in
order: (1) combine objects from the input data sets based on the
conditions in C, (2) apply the set of mapping functions F to trans-
form each combined-object to generate a transformed combined-
object with attributes X , and (3) generate the skyline of combined-
objects by the preference P = (E,�P), where E ⊆ X .

Example 2: Figure 2.a depicts the traditional query plan forQ2 us-
ing canonical algebra operators where the results of the Cartesian
product are fed to the map operator. For each Rome and Paris hotel
pair, the map operator calculates tCost and tDistance. The trans-
formed combined-objects are then given as inputs to the skyline
operator to generate the final result. Figures 2.b and 2.c represent
the equivalent SkyMap- and SkyMapJoin-based query plans of Q2
generated by pushing first the skyline operation into the map oper-
ator, and then pushing both into the join.

3. SKIN: THE PROPOSED APPROACH
In the remainder of this paper, we introduce our proposed SKIN
(SKyline INside Join) methodology for evaluating the SkyMapJoin

P = P1 P2

P1 = min(tdistance); P2 = min(tcost)

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :S.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

X = {R.id, S.id, tdistance ,tcost}

!

µ
[F ,X]

!

S
P

!

R

!

T

!

R

!

T!

µ
[F ,X ,P]

!

R

!

T

!

"
[C=# ,F ,X ,P]

(a) Traditional Query Plan (b) Using SkyMap (c) Using SkyMapJoin

P1 = min(tdistance); P2 = min(tcost)

P = {P1, P2}

X = {R.id, S.id, tdistance ,tcost}

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :T.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

P = P1 P2

P1 = min(tdistance); P2 = min(tcost)

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :S.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

X = {R.id, S.id, tdistance ,tcost}

!

µ
[F ,X]

!

S
P

!

R

!

T

!

R

!

T!

µ
[F ,X ,P]

!

R

!

T

!

"
[C=# ,F ,X ,P]

(a) Traditional Query Plan (b) Using SkyMap (c) Using SkyMapJoin

P1 = min(tdistance); P2 = min(tcost)

P = {P1, P2}

X = {R.id, S.id, tdistance ,tcost}

F = { f1 ,f2 ,f3 ,f4 } f1: :R.id, f2 :T.id,

f3: (2 * R.distance+T.distance) as tdistance,

f4: (R.price+T.price) as tcost

Figure 2: Multiple Equivalent Plans for SkyMapJoin query Q2

operator. The SkyMap operation is straightforward and thus omit-
ted for conciseness. The SkyJoin operator can be viewed as a spe-
cial case of the SkyMapJoin operator where each of the k mapping
functions is a trivial projection.

!"! #$%&&'()*+,)-(./*)0.$1,)

2"! 3,*,%4-(,)*+,)'/*./*)%,5-'()6'%),$1+)-(./*7.$%&&'().$-%)

8"! 9:,(&6;)-(./*7.$%&&'(7.$-%0)*+$*)(,,:)('*)<,)1'4<-(,:)

!")#%/(,)=:'4-($*,:>)'/*./*).$%&&'(0)

?@A9BC7D@E@D)@D9F9CGH9BC)

!" #"

!"#"$$%&'()*+)

,-+#(")#$./*0$&1$#2*$&'#3'#$+3")*$$

BIH#IH7#G?H9H9BC7D@E@D)@D9F9CGH9BC)

453'#67"(88&567"/(+)

%9:$;'*(<$

=+*($)

J'%),$1+)-(./*7.$%&&'(7.$-%K)

!"! A,(,%$*,)*+,)L'-()%,0/M*0)*+$*)4$.)*')*+,)0,M,1*,:)%,5-'()

2"! #,%6'%4)0N;M-(,)1'4.$%-0'(0)

8"! F-(-4-O,)*+,)*'*$M)(/4<,%)'6)0N;M-(,)1'4.$%-0'(0)(,,:,:))

)*')5,(,%$*,)*+,)0N;M-(,)%,0/M*0)

>'#3'#$?*+'@#+$

BPQ@RH7D@E@D)@S@RIH9BC)

A&56B&C/5"#*B$>D7$3"(88&5+)

?*E/&5$F*.*@$

7"(88&5$F*.*@$

>-G*)#$F*.*@$

H("5'@"(/#<$

Figure 3: Overview of the SKIN Approach

In Figure 3 we present the overview of the foundation of our ap-
proach called SKIN. For each input data source, we form an m-
dimensional abstraction where m is the number of skyline dimen-
sions in the combined object. Then, the first phase, called region-
level elimination phase, targets to avoid the generation of com-
bined objects altogether. Given a pair of input partitions from R
and T , we determine: (1) whether the join operation between the
objects in the input partition pairs will result in at least one combined-
object (see details in Sections 4–7), and (2) the region in the mapped
output space into which the future combined-objects will fall dur-
ing the actual object-level evaluation. Next, we identify output re-
gions that are dominated by other regions. As we will show in
Section 4 (Lemma 1), dominated regions are guaranteed to not con-
tribute to the final skyline. Therefore, the join evaluation that gen-
erates objects that map to such dominated output regions need not
be performed altogether, thereby saving on combined-object gen-

eration costs as well as dominance comparison costs (see Section
4).

Partition-level elimination, our second phase aims to reduce dom-
inance comparisons between combined-objects. Here, we perform
query evaluation at the abstraction of partitions in the output space.
In other words, we partition the output space such that the each out-
put regions is composed of a set of output partitions. We observe
that for some regions, a subset of their output partitions are dom-
inated by other regions. Unlike in the above region-level elimina-
tion such partially dominated regions cannot be entirely discarded.
However, we show by Lemma 2 that such dominated output parti-
tions are guaranteed to not contribute to the final skyline. There-
fore, combined-objects that map to these dominated output parti-
tions can be immediately discarded without conducting any skyline
comparisons (Section 5). In summary, region- and partition-level
elimination phases eliminate many output regions and partitions re-
spectively without any object-level access.

Finally, the third phase, called object-level execution, further re-
duces the total number of dominance comparisons needed to gener-
ate the final skyline. For each generated combined-object rf tg we
minimize the number of comparisons by: (1) eliminating all output
partitions dominated by rf tg , and (2) restricting the object-level
skyline comparisons to only a small subset of partitions containing
combined-objects, namely those in output partitions that it can po-
tentially dominate, and vice-versa (see Section 6). This third phase
piggybacks the former steps by reusing the partition information
produced by them. We present the details; both underlying the-
ory as well as concrete algorithms for each of the three phases in
Sections 4, 5, and 6 respectively.

The principle of skyline partial push-through is complimentary to
our approach and is applied as a pre-filtering phase to our core idea
(see Section 9.3).

Notations:
• Each input partition in R is denoted as IR

i

• Each output partition is denoted as Oi

• IR is a set of all input partitions in R
• O is a set of all output partitions
• [IR

i , I
T
j] input-partition pairs whose combined-objects

map to regionRi,j

•R is a set of all output regions called as Region Collection
• LOWER(X):
Returns the lower-bound point of the region or partition X
• UPPER(X):
Returns the upper-bound point of the region or partition X
•MAP_OBJECT(rctd, F , δ):
Returns the output partition to which rctd maps to.
•MAP_REGION(Ri,j , F , δ):
Returns a set of output partitions thatRi,j maps to.
•MARK(Oi):
Marks the partition Oi as “non-contributing”
• IS_MARKED(Oi):
Return true if output partition Oi is marked, false otherwise.

Table 1: Notations Used In This Work

4. PHASE I: REGION-LEVEL ELIMINATION
We now present the first phase of our SKIN methodology named
region-level optimization. This phase avoids the generation of many

combined-objects. To easily highlight the core areas of optimiza-
tion we first consider the motivating query Q2 where the join con-
dition C=φ. In Section 7 we slightly extend the core approach to
handle general join predicates, as in query Q1.

We first partition each of the input data source. For the remainder
of this elaboration we employ an m-dimensional grid for partition-
ing the data space, withm being the number of skyline dimensions.
In Section 8 we provide a more general discussion on partitioning
methods. In Figure 4.b the input data set T is partitioned into a 2-D
grid. Each partition is uniquely identified by its bottom-left coordi-
nates, the lower bound retrieved by the function LOWER(IT

i). We
define IT as the set of all non-empty input partitions for T and
IT ={IT

1 [(1,5)(2,6)], IT
2 [(3,1)(4,2)], IT

3 [(5,0)(6,1)]}.

price [normalized]

distance

[normalized]
0 1 2 3 4 5 6

5

1

2

3

4

6

(b) ParisHotels (T)

price [normalized]

distance

[normalized]
0 1 2 3 4 5 6

5

1

2

3

4

Non-empty partitions

Empty partitions

(a) RomeHotels (R)

I
1

R

I
3

R

I
4

R

I
1

T

I
2

T

I
3

T

2

R
I

Figure 4: Partitioning Of Input Datasets

In region-level elimination, for each non-empty partition, IR
i ∈ IR

and each non-empty partition IT
j ∈ IT , we determine the region

of the output mapped space to which their join results will map
to. This is achieved by applying the set of k mapping functions
F to lower- and upper- bounds of the two input partitions respec-
tively. The region corresponding to an input-partition-pair [IR

i , I
T
j]

is called an output region (denoted asRi,j).

To elaborate, for query Q2 the mapping functions f1 and f2 com-
pute two attributes, namely (f1:R.price+T.price) computes tprice
and (2 ∗ R.distance + T.distance:f2) tdistance. The objects
that map to the partition IR

1 [(0, 4)(1, 5)] in Figure 4.a when com-
bined with objects in partition IT

2 [(3, 1)(4, 2)] in Figure 4.b re-
sulting combined-objects that are guaranteed to fall into the region
bounded by the points b(3, 5) and B(6, 7) in Figure 5.

We observe that: (1) the mapping and skyline functionality can now
be applied at this higher level of abstraction, (2) output regions can
always be determined a priori without any object-level data access,
and (3) as long as both of the input partitions are non-empty, the
corresponding output region is guaranteed to be populated. The set
of all populated regions is called the Region Collection (R).

In query Q2 the preference is to minimize all skyline-dimensions.
In a pessimistic scenario for each output regionRi,j , all the combined-
objects that map to it would lie on the upper-bound point of Ri,j .
We introduce the notion of the pessimistic output skyline, denoted
as Spes to identify the dominated output regions.

DEFINITION 2. For the preference P , the region collection R,
U = {UPPER(Ri,j) | ∀(Ri,j ∈ R)}, i.e., the set of upper-
bounds of all output regions in R. Pessimistic skyline Spes is de-
fined as the skyline over U based on P, i.e., Spes = SP (U).

A

B

CR 1,2 R 4,1

R 3,1

D

d

g

F

K

LR 1,3

a

b

c e

G

E

H

f

J
I

j

i

k
l

tCost

tDistance

Output Partitions dominated by S

Regions dominated by S

Potential Combined Partitions

pes

pes

Lower Bound

Upper Bound Not in Spes

Upper Bound in Spes

pessimistic skyline ()Spes

h

R 2,1

Figure 5: Pessimistic Skyline, Spes

In Figure 5 the region R1,2 with the upper bound B(6, 7) clearly
dominatesG(12, 9), the upper bound of the regionR3,1. Therefore
H is not in the pessimistic skyline, Spes = { A, B, C, E, F, K, L }.

Lemma 1. For a region collection R, its pessimistic skyline
Spes, preference P and an output region Ri,j ∈ R, if ∃s ∈ Spes

such that s �P LOWER(Ri,j) then no combined-object rf tg ∈
Ri,j can be contained in the output skyline.

Proof: Proof by contradiction. Assume that ∃(rf tg ∈ Ri,j),
∃s ∈ Spes and s � LOWER(Ri,j), but rf tg in the output skyline.
By Definition 2, ∃ Rx,y s.t. s =UPPER(Rx,y). Since Rx,y 6= φ,
let rbtc ∈ Rx,y . Since s � LOWER(Ri,j), rbtc � rf tg and thus
rf tg is not in the output skyline. This is a contradiction. Therefore,
the output regionRi,j will not contribute to the output skyline.

RULE 1. Region Elimination. For a region collection R, its
pessimistic skyline Spes, and preference P and a regionRi,j ∈ R,
if ∃s ∈ Spes s.t., s � LOWER(Ri,j), then by Lemma 1, the objects
in the input partitions IR

i need never be combined with those in IT
j

since the resulting combined-objects are guaranteed to not be in
the final skyline.

For example, in Figure 5 the output region R3,1 with the lower-
bound g(9, 7) is dominated by the pessimistic skyline pointsB(6, 7)
as well as C(8, 6). By Lemma 1 the combined-objects generated
from the input partition pair [IR

3 , I
T
1] are guaranteed to not con-

tribute to the output skyline, thus need not be generated. Algorithm
1 is the pseudo-code for the region-level elimination.

To summarize, the properties of region-level elimination are:

1. Only the output regions that are guaranteed to be populated
are considered for join evaluation.

2. Dominated regions are guaranteed to not contribute to the
final results and therefore need not be considered for join
evaluation.

Algorithm 1 Region-Level Elimination

Input: F , P , IR, IT

Output: R {Region Collection}
1: R = φ; U = φ
2: for each partition IR

i ∈ IR do
3: for each partition IT

j ∈ IT do
4: Ri,j ← Associated output region for [IR

i , I
T
j]

5: Add UPPER(Ri,j) to U ; AddRi,j to R
6: end for
7: end for
8: Spes = SP (U)
9: for each output regionRi,j ∈ R do

10: if ∃(s ∈ Spes) (s �P LOWER(Ri,j)) then
11: RemoveRi,j from R {By Lemma 1, Rule 1}
12: end if
13: end for
14: return R

Time Complexity. The total number of input partitions for the
input data sets R and T is denoted by nR and nT respectively.
If nR = nT = n, then the time complexity to determine all n2

output regions is O(n2). The time complexity of generating the
pessimistic skyline is in the worst case O(n4) based on the Block-
Nested-Loop (BNL) skyline algorithm [2]. Therefore, region-level
elimination has the time complexity of O(n2 + n4) ≈ O(n4).
This optimization is beneficial because it: (1) is at the granularity
of output regions and does not require any object-level data access,
(2) has the potential to eliminate n2 − 1 out of n2 output regions
in the best case scenario, and (3) has a significantly cheaper time
complexity than O(N4) for popular skyline algorithms [2], where
|R|=|T |=N . Since typically, n << N , O(n4) << O(N4).

5. PHASE II: OUTPUT-PARTITION LEVEL
ELIMINATION

The partition-level elimination phase aims to reduce dominance
comparisons needed to produce the final skyline. Each regionRi,j

is mapped to one or possibly several output partitions. In Fig-
ure 5, R1,1 maps to the set of output partitions {O[(1,9)(2,10)],
O[(1,10)(2,11)], O[(2,9)(3,10)], O[(2,10)(3,11)], O[(3,9)(4,10)],
O[(3,10)(4,11)]}. Different regions may map to common output
partitions. For example, R1,2 and R1,3 in Figure 5 share the out-
put partition O[(5, 5)(6, 6)]. The set of all output partitions in the
mapped output space is denoted as O.

We observe that for some regions, only a subset of the output parti-
tions they contain are dominated by the pessimistic skyline Spes. In
Figure 5 forR2,1 the output partitions: O[(6,8)(7,9)],O[(6,9)(7,10)],
O[(7,8)(8,9)] and O[(7.9)(7,10)] are dominated by point B(6, 7)
∈ Spes. Prior to the actual generation of combined-objects that
map toR2,1 we cannot easily determine which of the output parti-
tions for R2,1 the combined-objects will fall into. For this reason,
unfortunately we cannot entirely discard the partially dominated
output regionR2,2 as in Section 4. Therefore, we have to first gen-
erate the combined-objects that map to such partially dominated
regions. As we show next, we can however exploit this fact of
partially dominated output regions. The intuition here is that for a
point B to be in Spes there must exist an output region, hereR1,2,

such that UPPER(R1,2) = B. All output regions are guaranteed
to be populated i.e., R1,2 6= φ and ∃rbtc ∈ R1,2 such that rbtc
dominates a subset of output partitions mapped to R2,1. There-
fore, combined-objects that map to output partitions: O[(6,8)(7,9)],
O[(6,9)(7,10)], O[(7,8)(8,9)] and O[(7.9)(7,10)] are guaranteed to
not contribute to the final skyline.

Lemma 2. Given a region collection R, its pessimistic skyline
Spes, preference P and an output partition Ol ∈ O s.t., ∃(s ∈
Spes) (s �P LOWER(Ol)), then no combined-object rf tg ∈ Ol

can be contained in the output skyline.

We omit the proof for By Lemma 2 for conciseness. Combined ob-
jects that map to dominated output partitions during actual object-
level evaluation can safely discard thereby avoid performing any
skyline comparisons on such combined-objects. In addition, we
mark all such dominated output partitions as non-contributing.
Algorithm 2 is the pseudo-code for the partition-level elimination.
For each region Ri,j , it determines its corresponding partitions by
the function MAP_REGION(Ri,j ,F , δ) (Line: 2). For each output
partition Ol we determine if it is dominated by a pessimistic sky-
line point (Line: 4-5). All dominated output partitions are marked
as “non-contributing" by the function MARK(Ol) (Line: 6).

Algorithm 2 Output Partition-Level Elimination
Input: R {Region Collection}, Spes {Pessimistic Skyline}
Output: O {Set of output partitions}
1: for each output regionRi,j ∈ R do
2: for each o/p partition Ol ∈MAP_REGION(Ri,j ,F , δ) do
3: Add Ol to O
4: end for
5: end for
6: for each output partition Ol ∈ O do
7: if ∃(s ∈ Spes) (s � LOWER(Ol)) then MARK(Ol)
8: end for
9: return O

Time Complexity. This phase eliminates the skyline comparisons
for combined-objects that map to any dominated output partitions.
In the worst case scenario, the region-level elimination is unsuc-
cessful in eliminating any output region. Then the pessimistic sky-
line has n2 points that correspond to the upper bounds of all n2

output regions. The total number of output partitions is denoted
as no. The time complexity of the partition-level elimination is
O(n2

o). This overhead is small because, (1) it is at the granular-
ity of output partitions and does not require any object-level data
access, and (2) in a typical database n2

o << N2.

6. PHASE III: OBJECT-LEVEL EXECUTION
We now introduce the processing logic for the actual generation of
combined-objects and skyline evaluation assuming the above prun-
ing steps have been carried out. For each remaining input parti-
tion pair [IR

i , I
T
j] the object-level execution logically involves three

steps. First, each object rf ∈ IR
i is combined with each object

tg ∈ IT
j to generate the combined object rf tg . Second, the newly

generated combined object rf tg is then mapped to its correspond-
ing output partition Oh. Finally, rf tg is compared against other
existing combined-objects to generate the output skyline. We op-
timize the skyline comparison step as follows: first, if the newly
generated combined object rf tg that maps to an output partition
that is marked as “non-contributing" we can safely discard with

out further processing. If rf tg maps to an output partition is not
marked “non-contributing" we cannot discard rf tg without having
to perform skyline comparisons. Second, in such scenarios we next
mark all partitions dominated by rf tg as being “non-contributing"
by following the principle stated in Lemma 2. Please note that this
sub-task of marking dominated partitions is done only for the first
combined object falls in the Oh. In Figure 6, the combined-object
rf tg ∈ Oh clearly dominates the output partitions in the top-right
corner, i.e., every Oq ∈ O where rf tg �P LOWER(Oq) holds.
Third, we minimizing the total number of combined-object com-
parisons during skyline computation. We exploit the knowledge
gained from the output space by the ordering the sequence in which
the input partition pair [IR

i , I
T
j] are considered for object-level ex-

ecution based on its nearness to origin given that we assume that
the preference is to minimize across all dimensions.

tCost

tDistance

Figure 6: Object-Level Comparison Criteria

We tackle the last goal of reducing the number of skyline compar-
isons. In Figure 6 we observe that (1) combined-objects that map
to output partitions in the top-left and the bottom right corner of
Oh cannot dominate rf tg and vice versa. Thus, such comparisons
can be avoided. (2) Partitions in the bottom-left corner of Oh are
guaranteed to be empty, else Oh would have been be marked as
“non-contributing” in an earlier iteration. (3) rf tg ∈ Oh can be
only dominated by combined objects that map to the slice of parti-
tions that either have the same price or distance as Oh.

RULE 2. Comparable Partitions. Given a newly generated
combined-object rf tg , let MAP_OBJECT(rf tg,F , δ) = Oh, and
letA= LOWER(Oh). Then, rf tg needs to only be compared against
combined-objects in output partitionOq ∈ O withB = LOWER(Oq),
where ∃(1 ≤ v ≤ m)(A[lv] = B[lv]).

Algorithm 3 lists the pseudo-code for the object-level execution.
For each generated combined-object rf tg , we first identify the par-
tition Oh to which it maps by the function MAP_OBJECT (Line:
4). If Oh is marked “non-contributing” we immediately discard
rf tg without any further processing (Line: 5-6). Otherwise, we
mark all partitions Oq ∈ O which are dominated by Oh as “non-
contributing” Line (9-11). Next, we begin the comparisons of rf tg
by first comparing it against other existing combined-objects that
are mapped to the same Oh (Line: 12). If rf tg is dominated in
Oh we stop and move to the generation of the next combined-
object. Otherwise, we compare rf tg against combined-objects that
are mapped to “comparable partition” as defined by Rule 2 (Line
13-14). After all these comparisons if rf tg remains not dominated
then and only then we insert rf tg into Oh.

Optimization Benefits. Let each dimension in the output space be

Algorithm 3 Object-Level Execution

Input: IR, IT , F , R, P
Output: Set of non-dominated combined-objects
1: for each output regionRi,j ∈ R do
2: for each object rf ∈ IR

i and tg ∈ IT
j do

3: Generate combined object rf tg
4: Oh←MAP_OBJECT(rf tg , F , δ)
5: if IS_MARKED(Oh) then
6: discard rf tg
7: else
8: for each Oq ∈ O do
9: if rf tg �P LOWER(Oq) then MARK(Oq)

10: end for
11: Call UpdatePartition(Oh, rf tg , P)
12: for each Oq satisfying Rule 2 AND rf tg not domi-

nated do
13: Call UpdatePartition(Oq , rf tg , P)
14: end for
15: Add rf tg to Oh if rf tg is still not dominated
16: end if
17: end for
18: end for
19: return all combined objects mapped to all output partitions
20: procedure UpdatePartition(Oq , rf tg , P)
21: for each rxty ∈ Oq do
22: if rxty �P rf tg then discard rf tg
23: else if rf tg �P rxty then remove rxty from Oq

24: end for

partitioned into k partitions, so the d-dimensional grid has kd out-
put partitions. For any skyline algorithm in the worst case scenario
all objects are in the final skyline. A naïve approach in the worst
case scenario will need to compare against objects in all kd parti-
tions. Instead, for each newly generated object in the worst case
we only perform dominance comparisons against objects that are
mapped to a smaller set of [kd − (k − 1)d] partitions.

7. HANDLING JOIN PREDICATES
We now illustrate the full solution of our approach to also handle
join predicates in queries such as Q1 (in Figure 1) where suppliers
and transporters have to be from the same country. Unlike the sce-
nario in Section 4 where we utilize all input partition pairs, we now
only need to consider those input partition pairs that are guaranteed
to have at least one tuple each with matching attributes values. That
is, they indeed join and populate the corresponding region. Clearly,
otherwise no input objects will find matching join partners, and thus
the region will be empty. Intuitively, for this determination we per-
form join evaluation at a higher-level abstraction instead of actual
object-level joins. In our example as in Figure 7, the input parti-
tion IR

2 shares with input partition IT
2 the domain values {Brazil,

China, Mexico}, while both input partitions IT
1 and IT

3 share the
attribute value {China}. Therefore, objects in IR

2 are guaranteed
to find at least one join pair in each of the partitions IT

1 , IR
2 and

IT
3 . Conversely, in Figure 7, we do not consider the pairs [IR

3 ,IT
1],

[IR
3 ,IT

2] and [IR
3 ,IT

3], since there is no partition in T that shares
any domain value with IR

3 , in this case Indonesia.

To determine if an input-partition shares at least a single domain
value, we maintain a signature for each partition to capture the do-
main values of its member objects. This signature could either be
a Bloom Filter, bit vector, etc. In Figure 7 for each partition in R

shipCost [normalized]

shipTime

0 1 2 3 4 5

5

1

2

3

4

6

 Transporters (T)

price [normalized]

supplyTime

0 1 2 3 4 5 6

5

1

2

3

4

Non-empty partitions

Empty partitions

 Suppliers (R)

I
1

R

I
2

R

I
3

R

I
1

T

I
2

T

I
3

T

China, India, Germany, US

Brazil, China, Mexico

Indonesia

China, India, US

 Brazil China, Germany, Mexico

China, US

Figure 7: Partitioning For Suppliers (R) and Transporters (T)

(or T) we maintain a list of countries to which the suppliers (or
transporters) belong to, e.g., IT

3 has suppliers from China and US.

For finite domains, to efficiently maintain the occurrence of join
values within a partition we use a bit vector with size equal to
the cardinality of the domain of the join attribute. In the moti-
vating example as in Figure 7, Dom(country)= {Brazil, China,
Germany, India, Indonesia, Mexico, USA}, and input partition IR

1

has a bit vector BR
1 (0111001). For our bit vector method, to de-

termine if the input partition pair [IR
i ,IT

j] will generate even a sin-
gle join result, a simple bit-wise AND operation between BR

i and
BT

j is sufficient. If the resulting bit vector BR
i ∧ BT

j is greater
than 0, the region Ri,j is guaranteed to be populated. Otherwise,
the output region Ri,j is guaranteed to be empty and so we move
on to the next input partition pair. In our motivating example,
BR

1 (0111001) ∧BT
1 (0101001)=(0101001) > 0 and therefore we

generate regionR1,1. Conversely, BR
3 (0000100)∧BT

1 (0101001)
= (0000000) and we do not generate regionR3,1.

Region- and Output Partition-level Elimination:. When an out-
put region or partition is populated by at least one member, we
proceed with the techniques described in Section 4-5 without any
modification. This is because both output region- and partition-
level reasoning are independent of domain values and only con-
cerns itself exclusively with dominance properties of output regions
or partitions that are known to contain some join pairs.

Object-level execution. We now only generate combined objects
that satisfy the join condition. The strategy presented in Section 6
is used as is to generate the final skyline.

For infinite domains, we start by assuming that no region is guar-
anteed to be populated. Then, we iteratively trigger the region and
partition-level eliminations when a priori empty output region or
output partition becomes populated.

8. DISCUSSIONS
8.1 Handling Larger Data Sets
Our experimental evaluation reveal that a main memory based im-
plementation of SKIN can safely handle SkyMapJoin queries over
data sources of 500K each. We now briefly discuss an adaptation
to SKIN when the available main memory is not sufficient.

Pre-processing Phase: The objects associated with the same in-
put partition are clustered together in one or possibly multiple disk
pages. The index loading time is similar to that of other indexing

techniques such as R-Trees, Bit Map-Index, etc. For each source,
we maintain the input-partition abstraction in main memory, i.e.,
the meta-data describing each of its input partitions such as the
identifier, upper and lower bounds and number of tuples.

Region- and Partition- Level Elimination: To determine which re-
gion is dominated, the region-level elimination phase solely needs
to access the meta-data for each input source. Similarly, the partition-
level elimination phase can be performed without any disk access.

Object-Level Execution: For each input partition pair [IR
i , I

T
j],

during the join evaluation, we only fetch pages associated with the
two current input partitions IR

i and IT
j and the output partitions that

map to the regionRi,j . Next, to efficiently handle skyline compar-
isons we exploit the concept described in Section 6 to only fetch
pages that are associated with the comparable output partitions.

To summarize, our proposed SKIN approach can naturally handle
scenarios when the raw data resides on disk.

8.2 Handling Higher-Dimensional Data Sets
In this work, we target multi-dimensional applications (such as
those outlined in the introduction) where the number of skyline
dimensions is in the order of 2 to 6 dimensions. The reasoning
here is that as the number of attributes on which the skyline is ap-
plied to increases the cardinality of the output results also increases
drastically. Human analyst cannot make effective decisions when
faced with such high cardinality result sets. Thus, further process-
ing such as linear ranking of results or clustering, would be needed
to be employed [3]. Increasing usability of the results in an or-
thogonal problem to the one addressed in this work. In addition to
the above concern, high-dimensional skyline evaluation (even for
single sets) has exponential time complexity [2]. Therefore, to ex-
tend this effort to high-dimensional applications with say 100s of
dimensions is clearly a challenging task. However, the focus of this
work is low-dimensional applications, we leave high-dimensional
applications for our future work.

8.3 Adaptive Spatial Partitioning
In this work, we employ a traditional grid strategy for partition-
ing the data space and forming higher-level abstractions as plat-
form for dominance reasoning. And, as our experiments demon-
strate, this simple strategy has indeed shown to be extremely ef-
fective. However, it would be interesting in the future to also ex-
plore alternate partitioning methods. For instance, we could ex-
plore variable-sized partitioning, considering aspects of the popu-
lation of partitions. This could be achieved either with an adap-
tive re-partitioning method triggered by observed potential bene-
fit for dominance-driven region purging. Alternatively, consider
distribution-sensitive preprocessing to determine optimal partition-
ing based on criteria such as data density, relative closeness to the
origin, etc. We leave those interesting challenges for the future.

9. EXPERIMENTAL EVALUATION
In this section, we verify the effectiveness and efficiency of our
proposed approach to handle skyline queries over disparate sources.

9.1 Experimental Setup
Proposed Techniques. The principle of skyline partial push-through
[2, 8] is complimentary to the core approach presented in Section
3–7 and is incorporated by pruning each individual data source by

1e-01

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size (!)

()

100K
300K
500K

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size (!)

() p

100K
300K
500K

1e+00

1e+01

1e+02

1e+03

 3 4 5 6 7 8 9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Partition Size (!)

()

100K
300K
500K

(a) Correlated Distribution (b) Independent Distribution (c) Anti-correlated Distribution

Figure 8: Effects of Partition Size (δ) on the performance of SKIN (d = 2; σ = 0.1)

first applying Algorithm 4 on them separately.

Competitor Techniques. State-of-the-art techniques that handle
skylines over joins are as follows: first, JF-SL with the improve-
ment of incrementally maintaining the skyline of join results and
using a hash-based join implementation [12]. Second, an optimized
JF-SL+ which uses the principle of skyline partial push-through to
prune each individual data source. Third, Skyline-Sort-Merge-Join
(SSMJ) proposed by [9]. SSMJ maintains for each data source two
active lists of objects: (1) those objects that are in the set-level
skyline generated by ignoring the join condition, and (2) the ob-
jects that are in group-level skyline for each join attribute value
(as in Algorithm 4). Next, these lists are given for join evalua-
tion, set-level lists first followed by group-level lists. The skyline is
then computed over the join results to return the final query results.
Fourth, [19] noted that for very low join selectivity of≤ 0.000001,
SSMJ is ineffective in pruning many objects both at the set- and
group-level of each data source. To handle such scenarios, [19]
proposed an Iterative (IT) technique. Fifth, SAJ [12] extended the
popular Fagin technique [7] following the JF-SL paradigm.

Algorithm 4 Skyline Partial Push-Through
Input: Input Set R; Skyline dimensions {a1, . . . ad}; Join at-

tribute ad+1

Output: Set of objects which are non-dominated by other objects
with the same join attribute value ad+1

1: Group objects in input setR into groups Gi by the join attribute
ad+1

2: for each group Gi do
3: LRi = Generate local skyline on attributes {a1, . . . ad}
4: end for
5: return LRo ∪ LR1 ∪ . . . LRk

Experimental Platform. All experiments are conducted on a Linux
machine with AMD 2.6GHz Dual Core CPUs and 4GB memory.
All algorithms are implemented in Java 1.5.0_16.

Evaluation Metrics. For each algorithm we measure: (1) the to-
tal execution time, (2) the total number of intermediate combined-
objects generated, and (3) the total number of domination compar-
isons required to generate the final skyline. In addition, we measure
the time taken by each phase of our approach.

Data Sets. We conducted our experiments using data sets that are
the de-facto standard for stress testing skyline algorithms in the
literature [2]. The data sets contain three extreme attribute correla-
tions, namely independent, correlated, or anti-correlated. For each
data set R (and T), we vary the cardinality N [10K–500K] and the
of skyline dimensions d. The attribute values are real numbers
in the range [1–100]. The join selectivity σ is varied in the range
[10−4–10−1]. The mapping function used is an addition operation
between the attribute-values of the corresponding dimensions sim-
ilar to those in our motivating queries. We set |R| = |T | = N .

9.2 Experimental Analysis of SKIN
Purpose. We study the robustness of our approach by varying: (1)
partition sizes δ, (2) data distributions, (3) cardinality N , and (4)
dimensions d. For a dimension d, data distribution and cardinality
N , we measure the execution time for each partition size δ.

Partition Size (δ). The effectiveness of SKIN depends on the ratio
between the object-level vs. the partition-level granularity. Fig-
ures 8.a–c show the execution time of SKIN for dimension d=2,
and for the data sizes N= 100K, 300K and 500K. Smaller partition
sizes will result in many sparsely populated input partitions, and
therefore the overhead costs of region-level elimination will out-
weigh its benefits. Alternatively, as δ is increased the execution
costs of region-level eliminations is reduced. Larger δ however
may only marginally reduce the number of combined objects gen-
erated but will increase the number of combined objects to be com-
pared against the output space. This insight is confirmed in Figures
8.a–c for δ ≥ 6 for all distributions. In Figures 8.a–c and for allN ,
we observe that δ = 4 for all three distributions has the smallest
execution costs. Similarly, for the dimension d=3 and then d=4 we
observe similar trends for picking δ =12 or δ=17 respectively for
all distributions. In summary, selection of a suitable δ helps in ef-
fectively reducing both the number of combined-objects generated
as well as number of skyline comparisons, while still keeping the
overhead costs of optimization small.

Execution Time Analysis of SKIN steps. In Figure 9 we present
the CPU processing time incurred by the three pipelined steps in
our proposed SKIN methodology. In Figure 9, the time required to
generate the abstract-level output space and to evaluate the dom-
inance criteria on them (region-level elimination) is fairly cheap
in comparison to the object-level execution. For a given distribu-
tion, we confirm the intuition that query processing at the higher

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

100K
300K

500K
100K

300K
500K

100K
300K

500K

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

[L
o

g
 S

c
a

le
] Region-Elimination

Output-Partition-Elimination
Object-Level-Execution

Anti-CorrelatedIndependentCorrelated

Figure 9: Execution time for the phases in SKIN; d=4, σ=0.01

abstractions, namely the region-level elimination as well as out-
put partition-level-elimination steps, are consistent across different
cardinalities of the input data sets. In contrast, the time consumed
for object-level processing increases with N specifically for anti-
correlated and independent data sets.

Cardinality (N). In Figures 8a–c, as N increases from 100K to
500K the execution cost of SKIN increases gradually. In Figure 9,
we present a closer investigation of the time required to perform the
various phases of SKIN. Among the three optimization steps, both
region- and partition- level execution time are relatively smaller
than the actual object-level evaluation. Here, we observe) within
each distribution the region-level and partition-level is relatively
insensitive to N . As expected for anti-correlated and independent
data sets the object-level execution rises in processing time propor-
tional to N .

Distributions. Correlated distribution is specially geared for sky-
line operation, since a few objects can potentially dominate the re-
mainder [2]. Efficient skyline algorithms tend to do the best for
such correlated data sets [2, 12, 16]. Figures 8.b, 10.a and 11.a
show clearly that our approach is efficient in handling correlated
data for all cardinalities and dimensions. Anti-correlated data usu-
ally does not favor skyline algorithms since they have large skyline
results [2]. It is interesting to observe in Figures 10.a and 11.a that
our method however is robust and has significantly better perfor-
mance that the state-of-the-art techniques in this most challenging
case scenario. The detailed comparison of the proposed approach
against state-of-the-art techniques, see Figure 12, confirms that for
anti-correlated data our optimization phases are highly effective in
reducing the number of skyline comparisons.

9.3 Comparisons with State-of-the-art
Purpose. We compare our approach against existing techniques
on three factors: (1) execution time, (2) the number of intermedi-
ate join results (combined objects) generated, and (3) the number
of skyline comparisons. [12] acknowledged that SAJ is beneficial
only for correlated data sets while JF-SL-based techniques exhibit
better performance for all distributions. [19] noted that IT has iden-
tical performance characteristics to SSMJ for all join selectivities
σ ≥ 10−5. Therefore, we focus our detailed comparative study on
JF-SL, JF-SL and SSMJ.

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(a) Correlated Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(b) Independent Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

JFSL
SSMJ
JFSL+

SKIN

(c) Anti-Correlated Distribution

Figure 10: Performance comparisons with state-of-the-art JF-
SL, JF-SL+ [12], and SSMJ [9] for d = 3; N=500K

Execution Time. Figures 10 and 11 compare the execution times
of the different techniques for d=3, and d=5 respectively. JF-SL
generates all possible join results which for most of cases range in
the order of several million combined-objects. Due to this draw-
back, JF-SL exhibits inferior performance as observed in Figures
10.a-c. For d=4 and anti-correlated data set, JF-SL ran out mem-
ory space and failed to return results. Therefore, for d ≥4 we only
compare our technique against JF-SL+ and SSMJ.

For d=3 and the data distribution – correlated data and independent,
SKIN has identical performance as JF-SL+ and SSMJ as shown in
Figures 10.a and 10.b. For the tougher anti-correlated data, SKIN
is effective and outperform both JF-SL+ and SSMJ on an average
1 order of magnitude for the join selectivity of σ ≥ 0.001. It is
important to note that even though JF-SL+, SSMJ, and SKIN all
receive the same set of pruned pre-filtered sources, and our pro-
posed approach SKIN is able to perform better than others due to

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

SSMJ
JFSL+

SKIN

(a) Correlated Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) [
Lo

g
Sc

al
e]

Join Selectivity

p

SSMJ
JFSL+

SKIN

(b) Independent Distribution

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0.0001 0.001 0.01 0.1

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

[L
o

g
 S

c
a

le
]

Join Selectivity

Distribution - Anti-correlated; Dimensions = 5; N = 500K

SSMJ
JFSL+

SKIN

(c) Anti-Correlated Distribution

Figure 11: Closer Investigation with only JF-SL+ [12], and
SSMJ [9] for d = 5; N=500K

its underlying principle of query processing at different data ab-
stractions. From Figure 10 we can therefore conclude that for d=3
and all distributions SKIN is shown to be robust. More specifically,
for σ ≥ 0.001, SKIN outperforms other techniques by an average
of 1 order of magnitude. Henceforth, we focus our discussion on
the tougher anti-correlated and independent data sets.

For d=5 and independent data set in Figure 11.b we observe that
for the join selectivity of σ = 0.0001 we observed that SSMJ is 15
seconds faster than SKIN. The cross over point is σ > 0.001 when
SKIN outperforms SSMJ by slightly less than 1 order of magnitude
and 2 folds better for σ = 0.1 and σ = 0.001 respectively. For
d=5 and anti-correlated data set, as shown in Figure 11 we observe
the following: (1) for join selectivity σ > 0.001, both JF-SL+ and
SSMJ fail to return results even after several hours, (2) Since SKIN
can exploit the knowledge of the output space it can further opti-
mize the generation of combined objects and minimize the number

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN

 1e+06

 1e+07

 1e+08

 1e+09

N
u
m

b
e
r

o
f
J
o
in

 R
e
s
u
lt
s

N
u
m

b
e
r

o
f
S

k
y
lin

e
 C

o
m

p
a
ri
s
o
n
s
 [
L
o
g
 S

c
a
le

]

Join-Results
Skyline-Comparisons

=0.1=0.01=0.001=0.0001

(a) Independent Distribution

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN
JFSL+

SSM
J

SKIN

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

N
u

m
b

e
r

o
f

J
o

in
 R

e
s
u

lt
s

N
u

m
b

e
r

o
f

S
k
y
lin

e
 C

o
m

p
a

ri
s
o

n
s
 [

L
o

g
 S

c
a

le
]

Join-Results
Skyline-Comparisons

=0.1=0.01=0.001=0.0001

(b) Anti-Correlated Distribution

Figure 12: Number of join results generated, and number of
skyline comparisons for d=4 and N=500K

of dominance comparisons, and (3) for σ = 0.0001 and σ = 0.001
SKIN outperforms both SSMJ and JFSL+ by a factor larger than 1
order of magnitude. We therefore conclude that for d = 5 SKIN
is robust and effective across all distributions in comparison to its
competitors. For d = 4 we observed similar performance benefits
of our SKIN approach.

No. of join results (combined objects) generated. For corre-
lated data sets a few tuples can dominate a large portion of the in-
put space. Thus the partial push through principle when used as a
pre-filtering phase is very effective. Therefore, correlated data sets
are less interesting. In Figure 12 we compare the number of in-
termediate join results generated by the different algorithms on the
y−axis. Here we observe that SKIN produces the least number of
join results across all join selectivities and for both independent as
well as anti-correlated data sets. This is because SKIN effectively
exploits the region- and partition-level elimination techniques pro-
posed in Sections 4 and 5 respectively. In 12.a for independent
data sets SKIN has an average performance benefit of producing
45% fewer intermediate join results across various join selectivities
when compared against both SSMJ and JFSL+. More specifically,
the minimum benefit is 7% lesser join results for σ = 0.1 and a
maximum benefit of 122% for σ = 0.0001. For anti-correlated
data sets, as in Figure 12.b, the average benefit is to produce 50%

lesser intermediate join results with a minimum of 10% fewer in-
termediate join results for σ = 0.1 and a maximum of 105% fewer
intermediate join results for σ = 0.0001.

No. of skyline comparisons. In Figure 12, we compare the num-
ber of skyline (dominance) comparisons on the secondary y-axis
needed by the compared algorithms. For anti-correlated data, SKIN
achieves 1 and 2 orders of magnitude fewer skyline comparisons
than SSML and JFSL+ respectively, to generate the final skyline. In
contrast, for independent data sets SKIN requires 1 order of magni-
tude fewer skyline comparisons than both SSMJ and JFSL+.

9.4 Summary of Experimental Conclusions
1. The SKIN approach is robust across all distributions, cardi-

nality and join factors.

2. The principle of skyline partial push-thorough is compli-
mentary to our work.

3. For all three data distributions, cardinalities and join selectiv-
ities, SKIN outperforms both JS-FL and SSMJ. More specifi-
cally, for skyline non-friendly anti-correlated data SKIN out-
performs by 1-2 orders of magnitude in execution times. In
addition, for skyline-friendly correlated data sets SKIN has
competitive performance with respect to both SSMJ and JFSL.

4. For d=5 existing techniques are unable to produce results
when the data set is anti-correlated and selectivity σ > 0.001.
In contrast, SKIN is shown to perform well for such data sets.

5. SKIN produces fewer numbers of intermediate join results
than the state-of-the-art techniques. More precisely, on aver-
age 50% fewer intermediate join results.

6. SKIN is more effective in performing fewer number of domi-
nance comparisons to generate the final skyline than JS-FL+

or SSMJ. More specifically, requires 1-2 orders of magnitude
fewer skyline comparisons to generate the final results.

10. RELATED WORK
10.1 Skyline Algorithms over Single Relation
Majority of research on skylines has focused on the efficient com-
putation of a skyline over a single set [1, 2, 6, 11, 15] and can be
broadly categorized as non-index and index-based solutions. Block
nested loop (BNL) [2] is the straightforward non-index based ap-
proach that compares each new object against the skyline of objects
considered so far. The Sort Filter Skyline (SFS) [6] improves on
BNL by first sorting the input data by a monotonic function. Near-
est Neighbor (NN) [11] and Branch & Bound Search (BBS) [15]
are indexed based algorithms. Sort Filter Skyline (SFS) [6] im-
proves on BNL by first sorting the input data.

10.2 Skyline over Disparate Sources
In the context of returning meaningful results by relaxing user queries,
[12] presented various strategies that follow the join-first, skyline-
later (JF-SL) paradigm (see Section 1). This approach does not
consider mapping functions, and is attractive only for correlated
data where the combined-object generation can be stopped early
[2]. In our detailed technical report [18], we show for all data dis-
tributions even the naïve JF-SL approach achieves several orders
of magnitude improvement against SAJ. This result confirms the
findings presented in [12]. [9, 19] proposed techniques to handle
skylines over join by primarily exploiting the principle of skyline

partial push-through. This approach suffers from the following
three drawbacks. First, SSMJ is only benefitial when the local level
pruning decisions can successfully prune a large number of objects,
like skyline friendly data sets such as correlated and independent
data sets or very high selectivity [19]. In our experimental study
we show that even in data sets where SSMJ has good performance
our proposed SKIN+ performs equally well. Second, since they
do not have any knowledge of the mapped output space, similar to
JF-SL+, SSMJ is unable to exploit this knowledge to reduce the
number of dominance comparisons. Third, the guarantee that ob-
jects in the set-level skyline of an individual table are guaranteed to
be in the output no longer holds since they do not consider mapping
functions which can affect dominance characteristics.

10.3 Other Related Techniques
Top-K or Ranked Queries retrieve the best K objects that mini-
mize a user-defined scoring function to name a few [7,13,14]. That
is, from a totally ordered set of objects such queries fetch the top
K objects, where the ordering criterion is a single scoring function.
In contrast, the skyline operator returns a set of non-dominated ob-
jects based on multiple criteria in a multi-dimensional space and
from a strict partially ordered set of objects. Therefore, the objects
returned by Top-K queries may not be part of the skyline [15].

Convex-Hull also known as convex envelope, for a given set X
of multi-dimensional points is the minimal convex set containing
X [17]. The convex hull is a different problem than skyline since
in the geometric space some skyline points can be hidden behind
a convex segment. In theory, the computation of convex hull has a
higher time complexity than skyline evaluation [2].

11. CONCLUSION
The efficient evaluation of skyline over joins requires avoiding two
primary costs, namely the cost of generating the intermediate join
results and the cost of dominance comparisons to compute the final
skyline of join results. State-of-the-art techniques handle this by
primarily relying on making local pruning decisions at each source,
and are therefore shown to be not robust for a wide variety of data.
To address this shortcoming, we propose our SKIN approach that
supports the robust and efficient evaluation of SkyMapJoin queries.
We achieve this by taking advantage of optimization opportuni-
ties that are available by looking ahead into the mapped output
space and exploiting this knowledge at the level of both individual
sources and the complete query. We demonstrate the superiority of
our approach over state-of-the-art methods by consistently outper-
forming them in many cases by several orders of magnitude, for a
wide range of data sets, confirming the robustness of our method-
ology.

Acknowledgment
This work is supported by the National Science Foundation under
Grant No. IIS-0633930 and CRI-0551584. We thank Dr. Donald
Kossmann for the synthetic data generator, which is the de-facto
benchmark data sets for skyline evaluation.

12. REFERENCES
[1] I. Bartolini, P. Ciaccia, and M. Patella. Salsa: computing the

skyline without scanning the whole sky. In CIKM, pages
405–414, 2006.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[3] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. On high dimensional skylines. In EDBT, pages
478–495, 2006.

[4] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust
cardinality and cost estimation for skyline operator. In ICDE,
page 64, 2006.

[5] R. Chen, L. Li, and Z. Weng. Zdock: An initial-stage protein
docking algorithm. Proteins, 52(1), 2003.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In ICDE, pages 717–816, 2003.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[8] B. Hafenrichter and W. Kießling. Optimization of relational
preference queries. In ADC, pages 175–184, 2005.

[9] W. Jin, M. Ester, Z. Hu, and J. Han. The multi-relational
skyline operator. In ICDE, pages 1276–1280, 2007.

[10] W. Kießling. Foundations of preferences in database
systems. In VLDB, pages 311–322, 2002.

[11] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the
sky: An online algorithm for skyline queries. In VLDB,
pages 275–286, 2002.

[12] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, pages 199–210, 2006.

[13] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql:
Query algebra and optimization for relational top-k queries.
In SIGMOD, pages 131–142, 2005.

[14] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting incremental join queries on ranked inputs. In
VLDB, pages 281–290, 2001.

[15] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In SIGMOD,
pages 467–478, 2003.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[17] F. P. Preparata and M. I. Shamos. Computational Geometry:
An Introduction. 1985.

[18] V. Raghavan, S. Srivastava, and E. Rundensteiner. Skyline
and mapping aware evaluation over disparate sources.
Technical report, Dept. of Computer Science, Worcester
Polytechnic Institute, 2009.

[19] D. Sun, S. Wu, J. Li, and A. K. H. Tung. Skyline-join in
distributed databases. In ICDE Workshops, pages 176–181,
2008.

