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ABSTRACT been recognized as critical for many domains, ranging from stock
market analysis to traffic monitoring. Although previous research
efforts have developed efficient algorithms for streaming pattern

analysts for patterns of interest. These analysts thus may submitgetem'pn [1, 2’k3]’ Fhley ff(f)cushed (t))n procezsmg ong smglel specific
similar pattern mining requests, such as mining for clusters or out- ata mining task. Little effort has been made towards simultaneous

liers, yet customized with different parameter settings. In this work, €Xécution of multiple pattern mining queries against the same input
we present an efficient shared execution strategy for a large num-Stream. In this work, we provide a framework to efficiently execute
ber of density-based cluster detection queries with arbitrary param-a large nl_Jr_nber (on_ the _orde_r of hundreds or even thousa_nds)' of
eter settings. Given the high algorithmic complexity of the cluster- Pattern mining queries with different parameter settings, while still
ing process and the real-time responsiveness required by streaminj‘Ch'eV'ng real-time responsiveness required by stream appl_lcatlons.
applications, serving multiple such queries in a single system is COMPlex pattern detection queries are usually parameterized, be-
extremely resource intensive. The naive method of detecting and cause pattern detection processes are drlve_n by the domain know-
maintaining clusters for different queries independently is often in- €d9€ Of the analysts and the specific analysis tasks. For example, a
feasible in practice, as its demands on system resources increasdU€ry asking for the stocks that drop or rise significantly in most

dramatically with the cardinality of the query workload. To over- recent transactions can be considered as a parameterized query.

come this, we analyze the interrelations between the cluster sets't "€€ds analysts to specify parameters that define their notion of

identified by queries with different parameters settings, considering "5|gn|f|cgnce’:’ In price fluctgatlon _and_ the meaning of ‘most recent
both pattern-specific and window-specific parameters. We charac-transactions _based on_the_lr appllcatlon_semantlcs. Othe_r examples
terize the conditions under which a proposgowth propertyholds of pgrameterlzed queries include densﬁy_—based clustering [4] that
among these cluster sets. By exploiting thiswth propertywe require a range and count thre_shold as input, and K-means style
propose a uniform solution, callezhandj which represents these ~ ¢lUStering [5] that requires K as input. .
identified cluster sets as one single compact structure and performs Given the prevalence of parameterlze_d queries, a st_ream Process-
integrated maintenance on them — resulting in significant sharing Ing system of_ten_needs to han(_jle multiple such queries. Multiple
of computational and memory resources. Our comprehensive ex-21alysts monitoring the same input stream may submit the same
perimental study, using real data streams from domains of stock pa“_em search but using different parameter s_ettlngs.. Using the
trades and moving object monitoring, demonstrates@endiis earlier example, multiple analysts may have different interpreta-
on average four times faster than the best alternative methods, whilglions of the “significance” in price fluctuation (say frart — 80%
using85% less memory space in our test cases. It also shows thatOf th? orlglnallprlce). Even a single .analyst may submit ”.‘”.'“p'e
Chandiscales in handling large numbers of queries, on the order of queries with different p_ara_m_eter settings, beca_use determlmng_ the
hundreds or even thousands, under high input data rates. best input parame@ers |s_d|f'f|cult Wher_w faced with an unknown in-
put stream. In static environments, this problem can be tackled by
conducting pre-analysis of the static datasets or repeatedly trying
1. INTRODUCTION different parameter settings until satisfactory results have been ob-
Motivation. The discovery of complex patterns such as clusters, tained. However, in streaming environments, the nonrepeatability
outliers, and associations from huge volumes of streaming data hasof streaming data requires analysts to supply the most appropriate

- . input parameters early on. Otherwise, they may permanently lose
9*This work is supported under NSF grant 11S-0414380. We : : :
thank our collaborators at MITRE Corporation, in particular, Jen- the opportunity to accurately discover the patterns in at least a por-

nifer Casper and Peter Leveille, for providing us the GMTI data tion of the stream. Thus, an ideal stream processing system should

stream generator be able to accommodate multiple queries covering many, if not all,
major parameter settings of a parameterized query, and thus capture
all potentially valuable patterns in the stream.
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In diverse applications ranging from stock trading to traffic mon-
itoring, popular data streams are typically monitored by multiple




Qi: DETECT Density-Based Clusters FROM stream egy to form one integrated solution. We callGhandi?, which

USING #7*"9¢ = r and ™ = ¢ stands for @istering ligh speed streaing data for multiple queries

IN Windows WITH win = w and slide = s using ntegrated maintenanceChandiintegrates the progressive
clusters detected by all workload queries into a single structure, and
thus realizes incremental storage and maintenance for this meta in-
Figure 1. Templated density-based cluster detection query for  formation across the queries. Computation-wise, for each window,
sliding windows over data steam Chandionly requires a single pass through the new data points,
each running only one range query search and communicating with
its neighbors once for a group of shared queries. Memory-wise,
given the maximum window size allowed, the upper bound of the
Realizing parameterization for this query type is important not gnemo;y cct)n?l:t:nptlon k()ﬁha?dlfor_ag_ro?ﬁ of shared qugrle? N 'g' |
only because its input parameters, suchd®§9¢ and 6**, are ﬁpen ﬁn g.. efnltljmh ero qluerlgzlnf ech_Jup(sge ec It?n )d n
difficult to determine without pre-analysis of the stream data, but short,Chandiis a full sharing algorithm for arbitrary density-base

clustering queries over windowed streams.

also because even a slight difference in any of these parameters Our experimental study (in Section 8) shows that the system us-
may cause totally different cluster structures to be identified. Figure ing our proposed algorithrEhandi comfortably handles 100 ar-

8 shows different clusters identified in a subpart of the GMTI data , . )
; . . L bitrary workload queries under a 1K tuple per second stream data
stream [6] by density-based clustering queries with different pattern Lo
rate. If the number of workload queries increases to 1K, the system

parameter settings. ) . )
Given the high algorithmic complexity of density-based cluster- still works st_ably with a 300 tuples per second input rate. On the
same experimental platform, given the 300 tuples per second in-

ing, serving a large number of such clustering queries in a single . . .
e : . . -~ putrate, the independent execution stratedie)BSCAN9] and
system is highly resource intensive. The naive method of maintain Extra-N [2], can only handle less than 1.7 and 12 percent of the

ing progressive clusters (clusters identified in the previous window) same 1K query workload, respectively
for multiple queries independently has prohibitively high demands Contributions. The contributions of this work include: 1) We

on both computational and memory resources. characterize thgrowth propertythat holds among density-based

Thus, the key problem we need to solve is to design a cluster cluster sets as a general concept enabling multiple clustering quer
maintenance mechanism that achieves effective sharing of system 9 P Y P g query

: : g : sharing in both dynamic and static environments. 2) We develop a
resources for multiple queries. This is a challenging problem, be- technique calledintViewthat realizes integrated representation for
cause the meta-information required to be maintained by this query d 9 P

type is more complex than those for SQL query operators, such asggpssg—bg)s Sseccljlgt:lros?;segenljglredtrlzénul’gzle gﬁ:rrﬁst;z:‘zie Zaéme
selection, join or aggregation. More specifically, we need to main- : P querns gyasg d

tain the identified cluster structures, which are defined by the tuples \t/f/)ir?(fjf(l)cvlvengi/aer;](gtceurtse rrqu)It\llsiee Sg\(jlerllg thrr:gof\il\rls?lﬁnsﬁtﬁvrlltwh t\r/gty:ggl-
and the global topological relationships among tuples. While SQL . P : P 9

operators usually maintain pair-wise relations between two tuples 1z€s fuI_I shar_mg for multiple densny-basgd cluster_mg quenes over
. . streaming windows. 5) Our comprehensive experiments on several
(independent from the rest of the tuples) or simply nhumbers (ag-

gregation results). The techniques [7, 8] regarding sharing among real s_treammg datas_ets conﬁ_rm_ the effectiveness of our prop_osed
SQL queries thus cannot be used to solve our problem algorithms and also its superiority over all state-of-art alternatives

Proposed Solution. Our proposed solution allows arbitrary pa- in both CPU time and memory utilization.
rameter settings for queries on all four input parameters, includ-
ing both the pattern-specific and the window-specific ones. We 2. PROBLEM DEFINITION
first discover that given the same window parameters, if a query  Density-Based Clustering in Sliding Windows. We first de-
Q’s pattern parameters are “more restricted” than those of anotherfine the concept of density-based clusters [4]. We use the term
query@;, agrowth property(Section 4) holds between the cluster data pointto refer to a multi-dimensional tuple in the data stream.
sets identified by); and@;. Thisgrowth propertyallows us to in- Density-based cluster detection uses a range threghotd® > 0
crementally organize the clusters identified by multiple queries into to define the neighbor relationshipgighborship between any two
one single integrated structure, callatView. As a highly compact data points. For two data poings andp;, if the distance between
structure,IntView saves the memory space needed for storing the them is no larger tha"*"?¢, p; andp, are said to be neighbors.
clusters identified by multiple queries. More importanthtView We use the functiolNumNei(p;, 07*"9¢) to denote the number
also enables integrated maintenance for the progressive clusters 06f neighbors a data poipt has, given thé”“"9¢ threshold.
multiple workload queries, and thus effectively saves the compu- o ] .
tational resources otherwise needed when maintaining them inde- Deéfinition 2.1. Density-Based Cluster: Given ¢"*"?¢ and a
pendently. count threshold“™*, a data pointp; with NumNei(p;, 7*™9¢)

We also propose ameta querystrategy”, which uses a single > 0" is defined as a core point. Otherwisepifis a neighbor
meta query to represent all workload queries for which their pat- Of any core pointp; is an edge point,; is a noise point if it is
tern parameters are the same, while their window parameters mayneither a core point nor an edge point. Two core poiafandc,
differ. The proposed meta query strategy adopts a flexible window are connected if they are neighbors of each other, or there exists
management mechanism to efficiently organize the query windows & Sequence of core points, c1, ...cn—1, ¢x, where for anyi with
that need to be maintained by multiple queries. By leveraging the 0 < ¢ < n — 1, & pair of core points:; and¢; are neighbors of
overlap among query windows, it minimizes the number of win- €ach other. Finally, a density-based cluster is defined as a group of
dow snapshots that need to be maintained in the system. We showfonnected core points and the edge points attached to them. Any
in Section 6 that our meta query technique successfully transforms Pair of core points in a cluster are connected with each other.
the problem of maintaining multiple queries into the execution of a
single query.

Finally, we combine théntViewtechnique and meta query strat- 9'name of a powerful god with multiple hands in hindu theology

Figure 2 shows an example of a density-based cluster composed of




11 core pointg(black) and 2dge pointggrey) in . To address this problengxtra-N exploits the general notion of

We focus on periodic sliding window semantics as proposed by predicted views. It is well known that, since sliding windows tend
CQL [10] and widely used in the literature [11, 2]. Such semantics to partially overlap §lide < win), some of the data points falling
can be either time-based or count-based. For both cases, each querynto a window W; will also participate in some of the windows
Q has a of siz&).win (either a time interval or a tuple count) and  right afteri¥;. Based on the data points in the current window, say
a slide size)).slide. The patterns will be generated only based on a dataseD....-, and the slide size, we can exactly “predict” the spe-
the data points falling into the window. The template of this query cific subset ofD..,,- that will participate in each of the future win-
type has been shown in Section 1. dows. We can thus pre-determine some properties of these future

Optimization for Multiple Queries We support multiple density-  windows (referred as “predicted windows”) based on these known-
based clustering queries that are specified to a common input streanto-participate data points and thus form the “predicted views” for
but with arbitrary pattern and window parameters. We call all the them. This general concept is widely used in the literature [13,
queries submitted to the system together a Query GéUp and 2] to process sliding window queries, and is calRrédicted View
each of them a Member Query @fG. We use a common assump- technique. Figure 2 shows an example of the predicted views for
tion that all the member queries are registered to and pre-analyzecdthree future windows. The black, grey and white spots represent
by our system before the arrival of the input stream, indicating that the core, edge and noise points identified in each predicted view.
all the member queries will be started simultaneously. we focus The lines among any two data points represent the neighborship
on the generation of complete pattern detection results. In partic- between them. By using the predicted view technique, we can
ular, we output the members of each cluster, each associated with
a cluster id of the clusters they belong to. Other output formats,
such as incremental output, indicating the evolution of the clusters
over successive windows, can also be supported by our techniques
as discussed in [12].

Our goal is to minimize the overall CPU- and memory- resource
consumption for executing all the member queries registered to our
system. In particular, given a certaiiz and the precondition that
all the member queries IQG are accurately answered, we want to
minimize both the CPU time for processing each data point and the
memory space needed for maintaining the meta information. The
techniques regarding dynamic member query adding or removing
are not in the scope of this paper, but will be an important part of
our future work.
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3. EXISTING SINGLE QUERY EXECUTION
AND BASIC SHARING STRATEGY

Figure 2: Predicted views of four consecutive windows alV,

avoid the computational effort needed for discounting the effect

3.1 Extra-N Algorithm of such expired data points from the detected clusters. The idea
We first briefly describe the best existing approach for single is to pre-generate the partial clusters for the future windows based
density-based clustering query, callEgtra-N [2]. Extra-N real- on the data points that are in the current window and known to

izes efficient evaluation for single query by incrementally main- participate in those future windows (without considering the to-be-
taining the cluster structures identified in the query window. Tech- expired ones). Then when the window slides, we can simply use
nically, Extra-N is based on two main ideas, namely the hybrid the new data points to update the pre-generated clusters in the pre-
neighborship abstraction and the notion of predicted views. dicted views and form the updated clusters in each window. Figures
Hybrid (Exact+Abstracted) Neighborship Abstraction. Since 2 and 3 respectively demonstrate examples of the “pre-generated”
density-based cluster structures are defined based on the data poinglusters in future windows and the updated clusters after the win-
and the neighborships among them, efficiently maintaining the neighdow slides.
borships identified in the windows is naturally the core task for
cluster structure maintenance. For each non-core point in the win-
dow, Extra-N maintains the exact neighborships (a neighbor list
containing links to each of its neighbors). For each core point,
Extra-N maintains the abstracted neighborships for it, including its

neighbor count and cluster membership. Such hybrid neighborship Growth

abstraction achieves linear memory consumption to the number of - - ———= -
. . . predicted view of W1 o predicted view of W2

data points in the window. &

General Notion of Predicted Views. Another problem that a® a9 | & a8 a9
needs to be solved for incremental maintenance of density-based
clusters is to efficiently discount the effect of expired data points
from the previously formed patterns. The expiration of existing &
data points may cause complex pattern structure changes, ranging
from shrinkage, splitting to the termination of the clusters. Detect-  , egicted view of w3 predicted view of W4
ing and handling these changes caused by expirations, especially
splitting, may require large amount of computation, which could
be as expensive as recomputing the clusters from scratch. Figure 3: Updated predicted views of four windows ativ

a»




DiscussionGenerally, at each window slid&xtra-N runs one Definition 4.1. Given two density-based cluste§ and C;
range query search for each new data point to update the progres{each cluster is a set of data points, which are called cluster mem-
sive clusters, which are represented by the predicted views. As thebers of this cluster), if for any data poipte C;, p € C;, we say
best existing algorithm for single query executi&mfra-Nachieves that C; is contained by C;, denoted by”; C C;.
minimum number of range query searches needed at each window, ) o
while keeping the memory consumption linear in the number of ~ We now give the definition for the “growth property” between
data points in the current window. However, executiBigra-N two density-based cluster sets:
algorithm for each member query independently is not a scalable
solution for handling &G with large |QG|. This is because the
consumption of both computational and memory resources will in-

Definition 4.2. Given two cluster setSlu_Setl andClu_Set2
each includes a finite number of non-overlapping density-based

crease linearly with the increase |6JG|. We thus need to design clusters (fori = 1,2, Clu_Set; = 1<LacJ<n C., and for anyy # 2,

optimized processing mechanism for multiple queries to handle a C, N C. = ), if for any C; in Clu_Set1, there exists exactly
large query group against high speed data streams. oneC; in Clu_Set2 that C; C C;, Clu_Set2 is defined to be a
3.2 Sharing Range Query Searches growth” of Clu_Setl. We say the “growth property” holds be-

. ) . tweenClu_Setl andClu_Set2.
The basic strategy to share the computations among multiple

density-based clustering queries is to share the range query searches Beyond this definition, we now characterize all the possible in-
Generally, to execute a query grodpG with |QG| = N, we terrelationships between the clusters belonging’'ta_Set1 and
can execute NExtra-N algorithms, each for a member query, inde- Clu_Set2.
pendently (each query maintains its own progressive clusters inde-
pendently), but share the computations needed by the range query Observation 4.3. GivenClu_Setl andClu_Set2 thatClu_Set2
searches. Specifically, at each new query windextra-Nrequires IS @ “growth” of Clu_Set1, any clusterC; in Clu_Set2 must be
every new data point,.., to run a range query search to identify its  €ither aNew cluster (for anyp € C;, p ¢ anyC; in Clu_Setl), an
neighbors, and communicate with them to update progressive clus-Expansion of a single cluster ifC'lu_Set1 (there exists exactly one
ters in the window (as discussed earlier this in section). However, C: in Clu_Set1 thatC; C Cj), or aUnion of multiple clusters in
we can always run one instead [6#G| range query searches for ~ Clu_Setl (there exisC;, Ci1,..Ciyn(n > 0) in Clu_Set1 with
eachpn..,, even if the queries iQG have different range thresh-  Cj, Cj41,..C54n C Cj.
oldsgmem9e,

In particular, we run the range query search for epgh, us-
ing Q;.07"9¢, with Q;.07%™9¢ larger or equal to ang);.60"*"?¢ in
QG. Using the result set of this “broadest” range query search, we
then gradually filter out the results for other queries with smaller @ ©@g  ciu_sett

and smallep”™*™9¢, This is easy to understand, because for a given 335%:’
data point, the result set of a range query search using smaller ‘:%p 3%3
SRIa0
083298

Figure 4 and 5 give an example of two cluster sets between which
“growth property” holds.

0"*"9¢ is always a subset of that using a larger one. Also, since @%%%?{92?
the range query search with larg@st”?¢ is in any case needed @@@fg%%
for the particular query, no extra computation is introduced by this ° 3%% a6
process. As an initial step, sharing range query searches can be % %@

beneficial, considering the expensiveness of range query searche
especially when the window size is large. eg&)
%

3.3 Discussion

However, sharing range query searches alone is not sufficient for Figure 4: Cluster Set 1 con-
handling a heavy workload containing hundreds or even thousandstaining 3 clusters
of queries. Two critical problems still remain: 1) Since every mem-
ber query still needs to store its progressive clusters independently,
the memory space needed by executing a query géptipyrows
linearly with |QG|. 2) Because of the independent cluster storage,
the cluster maintenance effort of different queries cannot beghare e ; , _
To solve these two problem, we need to further analyze and ex- Clu-Set2 is a “merge” of clusteCy andCz in Clu-Setl, while
ploit the commonalities of the member queries. Our goal is thus to the clusterCs and clusteis in Clu_Set2 are an “expansion” of
design an integrated cluster maintenance mechanism, which effec-ClUSterCz in Clu_Setl and a “new” cluster respectively.

ifClu_Set2 is a “growth” of Clu_Set1, any two data

tively shares both the storage and computational resources needed Cenerally, if _
by cluster maintenance for multiple queries. points belonging to a same clusterdfiu_Set1 will also belong to

a same cluster if'lu_Set2.

Figure 5: Cluster Set 2 con-
taining 3 clusters, which is a
growth of Cluster Setl

The black spots in the figures represent the data points belonging
to both cluster sets, while the gray ones represent those belonging
to Clu_Set2 only. As depicted in the figures, the clusi@t in

4. "GROWTH PROPERTY"AND HIERAR- s e ence of lustor selo. a hierarchical clus-
CHICAL CLUSTER STRUCTURES ter structure can be built across the clusters in these cluster sets.

Growth Property. Now we firstintroduce an important property  The key idea is that, instead of storing cluster memberships for dif-
of density-based cluster structures which will later be exploited to ferent cluster sets independently, we incrementally store the cluster
form the basis for efficient multiple query sharing. In particular, we “growth information” from one cluster set to another. Figures 6 and
call this the “Growth Property” of density-based clusters. 7 respectively give examples of independent and hierarchial clus-

Here we first define the concept of “containment” between two ter membership structures built for the two cluster sets shown in
density-based clusters. Figures 4 and 5.
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Figure 6: Independent Clus-
ter Membership Storage for
Cluster Sets 1 and 2

Cluster Membership Storage of Cluster Set 2 E
c1 c2 €
A \ |

I Cluster Membership Storagg.. |
i1 of Cluster Set 1 \
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Figure 7: Hierarchial Clus-
ter Membership Storage for
Cluster Sets 1 and 2

neighborship abstraction techniques (discussed in Section 3) for
maintenance of cluster structures. While the key for such design
is to exploit the growth property (introduced in Section 4) and thus
integrate the clusters identified by multiple queries.

5.1 Samerese, Arbitrary ¢t Case.

We first look at the case that all the queries have the g8ffg®
but arbitraryd“™*. Here, we make a straightforward observation.

Observation 5.1. Given all the queries in a query group hav-
ing the samé@"*"9¢, the neighbors of each data point identified by
these queries are same.

This observation indicates that for all our member queries, the neigh-

As shown in Figure 6, if we store the cluster memberships for borships identified in same the window are exactly the same. How-
cluster members in these two cluster sets independently, each clusever, this does not mean that the cluster structures identified by all
ter member (black squares) belonging to both clusters has to storequeries are same and we can store them in the same way. This
two cluster memberships, one for each cluster set. However, if we is because the differeft™*s of the member queries may assign
store them in the hierarchical cluster membership structure as de-different “roles” to a data point. For example, a data point with
picted in Figure 7, we no longer need to repeatedly store the clus- 4 neighbors is a “core point” for quer@; having@,.0°"* = 3,
ter memberships for these “shared” cluster members. Instead, wewhile it is a “none-core point” for). having queryQ.0°"* = 10.
simply store cluster memberships for each cluster member belong-As the hybrid neighborship abstraction (discussed earlier in Section

ing to Clu_Setl, and then store the cluster “growth” information
from the Clu_Setl to Clu_Set2. In particular, we just need to

correlate each cluster; in Clu_Set1 with a cluster inClu_Set2 [ : : _ It _ _
that contains it, and thereafter each cluster member can easily findstractions depending on its roles identified by different queries.

its cluster membership in a specific cluster set by tracing to the

3) requires each none-core point stores the links to its exact neigh-
bors, while the core points store the cluster memberships only, a
data point may need to store different types of neighborship ab-

To solve this problem, we turn to the “growth property” of density-

corresponding level of the hierarchical cluster membership struc- based cluster structure discussed in Section 4.
ture. Such “growth” information is how based on theanular-
ity of complete clustersrather than theyranularity of individ- )
ual cluster members Generally, for a sequence of cluster sets dataset, withQ;.0™"?¢ = ;.07 andQ;.0°"" < Q;.0°"" and

with “growth property” transitively holding, the hierarchical clus-

Lemma 5.1. Given two queries); and@; specified to a same

querying on the same dataset, the cluster set identifie@big a

ter structure can largely save the memory space needed for storing 9rowth” of the cluster set identified bg);.

them. In particular:

Lemma 4.1. Given a query grou)G having the growth prop-

Proof: First, since@;.0°" < Q;.6°™, the “core point” set
identified @, is a subset of that identified b§;. Second, since

erty transitively holds among the cluster sets identified by all its all the neighborships identified b; and @; are exactly same,
member queries, the upper bound of the memory space needed foﬁ.” the “C0nneCt|0n3”.|n.an.y cluster structure IdentlfledCDyWIII .
storing the cluster memberships using hierarchical cluster struc- also hold forQ;. This indicates that the cluster structure identi-

ture is2 x Nore (independent fromQG|), with Neor. the number

fied by @; will also be identified byQ; (although may be further

of distinct data points that are at least once identified as core point €xpanded or merged). Finally, the “additional” core points identi-

in any member query @G.

fied by Q; may only cause the birth of new clusters or expansion
or merge of the clusters identified I6y;, because they either ex-

The proof of this lemma is straightforward. This is equal to the tends these cluster structures when they are “connected” to one or
relationship between the total size of a binary heap and the numbermore of them (causing expansion or union) or form new clusters by

of leaf nodes of this heap.

themselves when they are not “connected” to any (causing birth).

Besides the benefit of huge memory savings, such hierarchical This indicates that the cluster set identified®yis a “growth” of
cluster structure can also help us to realize integrated maintenancehat identified byQ; (By Observation 4.3). This proves Lemma .

for multiple cluster sets identified by different queries, and thus
save the computational resources from maintaining them indepen-

[
Figure 8 demonstrate san example of the cluster sets identified

dently. In the later parts of this work, we will carefully discuss how by three queries having a safi&"9¢ but differentg™*s.

this general principle can be used to benefit our multiple query op-

timization.

5. SHARING FOR QUERIES WITH ARBI-
TRARY PATTERN PARAMETERS

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary 6<"*. Since the window parameters
of all member queries are same in this case, the predicted windows
that need to be maintained by all member queries are the same.
In particular, all member queries need to maintain a same number
of predicted windows, say froril, to W,,. Also, for all mem-

In this section, we discuss the shared processing of multiple ber queries, any predicted windd; (ijn) has exactly same data
queries with arbitrary pattern parameters, namely arbittéy¢ s points fallen into it. This indicates that, in any predicted window
andg°"ts. We first assume that all these queries have the same win-W;, the cluster sets identified by the member queries will have the
dow parameters, namely same window siz&: and same slide growth hold among them (by Lemma 5.1).
size slide. This assumption will later be relaxed in Section 7 to As we discussed earlier in Section 4, once the “growth” property
allow completely arbitrary parameters. In our design for multiple holds among the cluster sets, we can build the hierarchical clus-
guery optimization, we will reeuse the predicted views and hybrid ter structure for them. Now we build an integrated hierarchical
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Figure 8: Cluster sets identified by three different queries

structure to represent multiple predicted views identified by dif-
ferent queries for a same corresponding predicted window. We
denote such Integrated Representation of Predicted Views acros
Queries with Arbitraryd“™ by (IntView_6°"*). For each pre-
dicted window,IntView_0°"* starts from the predicted view with
the most “restricted clusters”. In this context, this corresponds to
the ‘predicted view” maintained b§; with the larges°™* among
QG. Then, it incrementally stores the cluster “growth informa-
tion”, namely the “merge” of existing cluster memberships and the
new cluster memberships, from one query to the next in the de-
creasing order df“™*. Figure 9 gives an example of &tV iew_ 6",
which represents the predicted views (shown in Figure 8) identified
by three different queries .
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Figure 9: IntView_0°™: Integrated Representation for Pre-
dicted Views identified by three different queries

IntView_ 0" successfully integrates the representations of mul-
tiple “predicted views” into a single structure, thus saving the mem-
ory space from storing them independently. In particular,

Lemma 5.2. Given the maximum window size allowed, the up-
per bound of the memory space neededtgl iew_6°" is inde-
pendent fromQG]|, the cardinality of the query group represented

by it.

Proof: First of all, there are two types of meta-information
that need to be stored bintView_67"9¢, namely the cluster
memberships and the exact neighbors of the data points. Since
IntView_07°"9¢ uses the hierarchical structure described in Sec-
tion 4 to store the cluster memberships for the data points, the
upper bound of the memory space used for storing cluster mem-
berships is independent frof@G| (proved in Lemma 4.1. Since
IntView_0°"* only stores the exact neighbors for “non-core” data
points, and the maximum number of exact neighbors a “non-core”
point can have is a constant.gz(Q;.0°™") — 1), the upper bound
of the memory space used for storing exact neighbors is again in-
dependent fromiQG|. This proves Lemma 5.2. [ |
Obviously, without usingntView_6°"*, the memory space needed
for independently storing the cluster memberships identified by
all member queries iIQ)G will increase linearly with QG|. Our
method, however, now makes it independent fiah| (as proved
in Lemma 4.1).

Maintenance of IntView_6°"t. Besides the memory saving,
we can also update multiple predicted views represented byldiew_0°™*
incrementally and thus save computational resource. In particu-
lar, for each new data point...,, we start the updating process

5from the bottom level of ntView_6°"*, namely the predicted view

identified by the query with large$t™. Then we incrementally
propagate the effect of this new data point to the next higher level
predicted views. Using the example that we utilized earlier in Fig-
ure 9, a new data point identified to have 3 neighhors in the win-
dow, is a “none-core” in the bottum (most restricted) level predicted
view, whereg°"* = 4. So, at the bottom level, we simply add all
its neighbors to its neighbor list. However, it's effect to upper level
predicted views may differ, as this data point may be identified as a
“core point” by a more “relaxed” query, say whéfi** = 3. Then,
we need to generate a cluster membership for it at that predicted
view and merge it with those cluster memberships (if any) belong-
ing to its neighbors.

We omit the exact maintenance algorithmiefView_6°"" here
to save space, but emphasize that maintenance process is efficient
for the following two reasons: 1) No extra range query search is
needed when a data point is found to be a “core point” in an up-
per level predicted view and thus needs to communicate with its
neighbors, because as a “none core point” in the lower level pre-
dicted views, it would already have stored the links to all its exact
neighborships and thus would have direct access to them. 2) As the
“growth” of cluster sets identified in predicted views is incremen-
tal, less and less maintenance effort will be needed as we handle
the higher level predicted views.

5.2 Same-t, Arbitrary ¢7+"s¢ Case.

Now we discuss the case that all member queries have the same
6°™* but arbitraryd™*™9¢. This case is more complicated than the
previous one, because differefit’"?¢s will affect the neighbor-
ships identified by different queries. For example, a pair of data
pointsp; andp; with distance equal to 0.2 will be considered to
be neighbors inQ; with "¢ = 0.1, while not in Q2 with
0m*"9¢ = 0.4. As the neighborships identified by different queries
are different, the clusters identified by them are likely to be differ-
ent as well.

Based on our experience of designihgtView 0", we ex-
plore whether the “growth property” holds between two queries
with sameg“™* but differentd”*"9¢s. Fortunately, the answer is
positive as demonstrated below.

Lemma 5.3. Given two queries); and(@; specified to a same



data set, WithQ,.0°™ = ;.65 and Q;.07%"9¢ > Q.67
and querying against the same dataset, the cluster set identified by | Q3 cr
Qi is a "growth” of that identified byQ;.

Proof: First, since@;.0"*"¢ > @Q;.07*"9¢, for each data 3114
point p;, its neighbors identified bg); is a subset of those identi- ;
fied by @;. Then, sinceQ;.0°™ = Q;.0°™, the “core point” set Q2 o1 13
identified byQ; is a subset of that identified by;. Second, also Kol
because 0f);.07*"9¢ > @Q;.607*"?¢, the neighborships identified —
by @; in this data set is a subset of those identifiedZhy which
means that all the “connections” in any cluster structure identified
by @, will also hold for Q;. For these two reasons, the cluster Q1
structure identified byy; will also be identified byQ; (although
may be further expanded or merged). Finally, the “additional” core
points identified byQ; may only cause the birth of new clusters or 172 | 3
expansion or merge of the clusters identified@®y. Similarly, the
“additional connections (neighborships)” among data points can é
only cause the expansion or merge of clusters identified byas
well. Thus the cluster set identified &y, is a “growth” of that
identified byQ;. [ | Figure 11: IntView_0°"": Integrated Representation for Pre-

Figure 10 demonstrates an example of the cluster sets identifieddicted Views identified by three different queries
by three queries having the sa®f&* but differentd™*"9¢ param-
eters.
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Lemma 5.4. Given the maximum window size allowed, the up-
per bound of the memory space neededlbyView 6"*"9¢ is
independent fromQG|, the cardinality of the query group repre-
sented by it.

Proof: Similar with IntView 0™, IntView_6"*"9¢ needs
to store two types of meta-information, namely the cluster member-
ships and the exact neighbors of the data points. Sin¢€iew_0"*"9¢
Original Data Set o %L:rg}geri gj;ntlged by Q1 uses the hierarchical structure described in Se@to store the
S cluster memberships for the data points, the upper bound of the
i memory space used for storing cluster memberships is independent
from |QG]| (proved in Lemma 4.1. AlthougtintView_67"9¢
needs to incrementally store “additional exact neighbors” for the
data point in higher level predicted views, the maximum number
of exact neighbors a “non-core” point can have is still a constant
; ; 5 (6°™* — 1). The upper bound of the memory space used for stor-
clusters Identified by Q2 clusters Identified by Q3 ing exact neighbors is thus independent frapG|. This proves
0 ?%€=025 g =4 gr%%=03 =4 Lemma 5.4. [
SincelntView_07*"9¢ is very similar in concept witlintView 0™,
we omit the details of ntView_0"*"¢ maintenance.

Figure 10: cluster sets identified by three different queries
5.3 Arbitrary ¢7ens¢, Arbitrary ¢t Case.

Now we discuss the shared processing for a query groap
with queries having totally arbitrary pattern parameters, namely ar-
bitrary §7°™9¢ and arbitraryg°™* values. Although the “growth
property” holds between the cluster sets identified by two queries
Q: andQ);, if Q; andQ@; share at least one query parameter, it does
not necessarily hold if both query parameterg)fand@); are dif-
ferent. So, to again take the advantage of the compact structure of
Integrated Representation of Predicted Views, we need to explore
that when does “growth property” hold between two queries in the
most general cases.

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary 67*"7¢. Similarly as before, we now
can build an integrated structure to represent multiple “predicted
views” identified by different queries with arbitragf™*. We call
it IntView ™",

Similar with IntView 0™, IntView_0"*"%¢ starts from the
“predicted view” with the most “restricted clusters”, namely the
predicted view representin@; with the the smallest™*"9¢ among
QG in this case. Then, it incrementally stores the cluster “growth
information” from one query to the next in the increasing order of
0"*"9¢. However, as now each data point may be identified to have
more “neighbors” in the higher level predicted views, which repre- | emma 5.5. Given two queries); andQ; specified to a same
sent queries with larger and larg€¥*"?¢, a new type of increment,  gataset, withQ,.60°™ < Q,.60°™ andQ;.67*"9° > Q,.67*"9° and

namely the “additional exact neighbors” of each data point, need to querying against the same dataset, the cluster set identified; by

be stored by these predicted views. is a “growth” of that identified byQ; .

Figure 11 gives an example &hitView_0"*"9¢ that integrates
the predicted views (shown in Figure 10) identified by different Proof: Lemma 5.5 can be proved by the transitivity of the
queries. Again, we can prove that the upper bound of the memory “growth property”. Given a quer®; with Q;.0™ < Q.6 <
space needed bylatView 07" is independent fronQG]|. In Q;.0°™ and Q.07 "¢ = Q;.07°"9¢, the cluster set identified by

particular, Q1 is a “growth” of that identified byQ,; (by Lemma 5.1). This



means that for any clustér, identified by@; there exist a cluster
Cy identified by@; thatC, € Cs,. Also, the cluster set identified
by Q; is a “growth” of that identified by (by Lemma 5.3). This
means that for any clusté¥, identified byQ; there exist a cluster
C. identified byQ; thatCy, € C.. So for any cluste€,, identified

by Q; there exist a clustef’. identified byQ; thatC,, € C.. Thus,

the cluster set identifie@; is a “growth” of that identified byQ;

(by definition 4.2). [ |

To more intuitively describe the relationship between any two

queries in a query group, we give the follow definition.

Definition 5.2. Given two queries); and @; specified to a
same dataset, i);.0°"" < Q;.0°™" andQ;.07*"9¢ > Q;.07*"9°,
we say(; is a “more restricted” query thar@);, andQ; is a “more
relaxed” query than?);.

Integrated Representation of Predicted Views across Multiple
Queries with Arbitrary Pattern Parameters. We again aim to

Then, the “growth information”, namely the evolution of cluster
memberships and the “additional exact neighbors”, will be stored
from one predicted view to each of its “children” on the higher
level. Such building process guarantees an important property of
“Predicted View Tree” as demonstrated below.

Lemma 5.6. Given acluster sef'lu_Set,, identified by a query
Q. on thei® level of the “Predicted View Tree”, and a clus-
ter setClu_Set,, identified by a query,, on the(i — 1)*" level,
the “growth information” betweer'lu_Set,, andClu_Set,, is no
more than that betwee@'u_Set,, and any cluster set’iu_Set,
identified by a quer®,, on the(i — 7)*"(i > 7 > 1) level.

Proof: Since the queries on tiie—5)*" level are always more
restricted than those on ti{e)®" level, we know thaCiu_Set,, is
a growth ofClu_Set,, Clu_Set,, is a growth ofClu_Set,, and
Clu_Set,, is also a growth oflu_Set,. This means the “growth
information” fromClu_Set, to Clu_Set,, can actually be divided

build a single structure which represents the “predicted views” iden- PY two parts, namely the “growth information” frofilu_Set, to

tified by all member queries &G in a same window. However,
given the “growth property” only holds between two queries if one

is more restricted than the other, we can no longer expect to put all than that fromClu_Set, to Clu_Set,.

member queries into a single hierarchy.
Our solution is to build a Predicted View Tre€’, which inte-

Clu_Set,, and that fromClu_Set, to Clu_Set.,. This proves that

the “growth information” fromClu_Set,, to Clu_Set,, is no more

[

This property assures that each predicted view in the the “Predicted
View Tree” maintains the smallest increments and represent multi-

grates multiple predicted view hierarchies into a single tree struc- Ple predicted views as compact as possible.

ture. In this tree structure, each predicted view (except the root)

To finalize the tree structure, for each quély on thei'” level

. . R . . H B “ ” - h
only needs to store and maintain the incremental information (clus- ©f the tree, we need to determine its “parent” on fae- 1)"

ter “growth”) from its parent much like the predicted views in
IntView_07*"9¢ and IntView_#°"*. In particular, such a “Pre-
dicted View Tree” starts from the predicted view that represents
“the most restricted query” amor@G. “The most restricted query”
here indicates the member query that has both the sméflésand

the larges®™ "¢ amongQG. If such a “most restricted query”
does not naturally exist iG, we build a “virtual” one by gener-
ating a query with the smallegf™ and the largesi™*"9¢ among
QG. The predicted view representing this “most restricted query”
will be the “root” of our “Predicted View Tree”. If the most re-
stricted query is a virtual query, its predicted view will be used for

level. We aim to find such a “parent” que€y,,, that is most sim-

ilar to @, indicating that there exists least “growth information”
from the cluster set identified by itself to that identified ®y,.
Based on our analysis, for two member queries, their difference
on “neighborships” identified is more likely to cause the difference
on the cluster sets identified by them, compared to their difference
on the requirement for “core points”. Since the queries with sim-
ilar 07*"9¢s tend to identify similar neighborships in the window,
this indicates that the difference @Ki“"?¢s has larger influence

to cluster changes compared wifi*’s. So, when we determine
the parent predicted view, although we consider the similarity be-

“Predicted View Tree” maintenance but it will never generate any tween both pattern parameters, more “weights” are given to that
output. Then the predicted views representing more relaxed queriestetweerd™"9s. The specific algorithm is omitted here. To unify

will be iteratively put on the higher level (farther from the root) of
the tree. More specifically, after picking “the most restricted query”
as the root of the tree, we iteratively pick (and remove) “the most
restricted queries” remaining IQG and put their predicted views
as the next level of the tree. Here, a member qugyyis one of
“the most restricted queries” remained@t, if there does not ex-
ist any other member query; in QG, which is “more restricted”
than@,. For example, givelQG = {Q1(67°"*9¢ = 0.5,0™ =

5)7 QQ(erange — 04’ ecnt — 7)7 Qs(erange — 027 ecnt — 10),
Q4(07*9¢ = 0.3,0°™ = 7),Q5(67"9¢ = 0.4,0°™ = 8)}. The
root of the “Predicted View Tree” is the predicted view represent-
ing “the most restricted query”, nametys in this case. Then, the
second level “most restricted queries” &g and Qs, which are
more relaxed tha)s but more restricted thaf); andQ@- (neither

of them is more restricted than the other). Finally, the third level
“most restricted queries” ar@, andQ2. This process of figuring

out “the most restricted queries” at each level is equal to the prob-

lem of calculating the “skyline” in the two dimensional space of
679 and°"t. Since this process of building "Predicted View
Tree” can be conducted offline during query compilation (before
the real-time execution), any existing skyline algorithm [] can be
plugged into our system to solve this problem.

The predicted views on the lower level of the tree always rep-

the names of the hierarchical structures representing multiple pre-
dicted views, we henceforth call the “Predicted View Trée?_6.

Although IntView_0 is a tree structure, instead of a linear se-
quence likeIntView 6" and IntView_07*"9°, they share the
core essence that each predicted view is incrementally built based
on the most similar predicted view with it, and the “growth prop-
erty” holds between them. We call the member queries on each
path of IntView_0 a group ofshared queries.

Lemma 5.7. The upper bound of the memory space needed by
IntView_6 for any group of shared queries is independent from
the number of queries in this group.

Since all these queries are on the same pathw? iew_6 struc-
ture, indicating that the growth property transitively holds among
the cluster set identified by them, the independency between the
upper bound of the memory space and the number of queries can
be proved using the same method as we used for proving Lemmas
5.2and 5.4.

The maintenance processioitV iew_0 is also similar with that
for IntView_0°"t andIntView_0"°"9¢. For each new data point,
we always start the maintenance from the root of thel iew_0,
namely the predicted view representing the most restricted query.
Then we incrementally maintain the predicted views on the higher

resent the more restricted queries than those on the higher levelslevel of IntView_6.



Now we conclude the contribution dintView_-6 as demon- they still need to be maintained independently. A more sophisti-
strated below. cated hierarchical structure integrating multigbetView_6s will

later be introduced next to further realize full sharing across multi-
Theorem 5.3. Foragiven density-based clustering query group ple predicted windows.

QG with member queries having arbitrary pattern parametérs;V iew_6

achieves full sharing of both memory space and query computation.
6. SHARING FORQUERIES WITHDIFFER-
Proof: First, the storage mechanism bitView_6 is com- ENT WINDOW PARAMETERS

pletely incremental. In particular, since each predicted view on ) . ] )

Int.0 only store the increments from its “parent”, no duplicate !N this section, we discuss memory and CPU sharing among mul-

information is ever stored among any two predicted views. This tiPIe queries with different window parameters, namely variations
in the window sizewin and the slide sizelide. During the dis-

proves thatintView_6 achieves full sharing on memory space. - !
Second, since the maintenance proces¥ iew 6 is incremen- cussion, we assume that all these queries have the same pattern

tal as well, indicating that each new data point only communicates Parameters.

with each of its neighbors once on each path of tree structure, no ) . .
matter how many different predicted views their neighborship ap- 6.1 Samewin, Arbitrary stide Case.

pears in. This proves thétView_6 achieves full sharing on com- In this case, all member queries have the same window size
putation of multiple queries. n win, while their slide sizes may vary. First, we assume that all
queries start simultaneously. So that the equality of window sizes

5.4 Intviews In Multiple Predicted Windows implies that all queries always query on the same portion of the
Given the assumption that all the member querie§(# share data stream. More specifically, at any given time the data points

the window parameters, namely the samve: andslide, we have falling into the windows of different queries are same. Then, the
discussed earlier in this section that the predicted windows that Only difference among different queries is that they need to gener-
need to be maintained by all member queries are the same. Soate output at different moments, as they have different slide sizes.
a most straightforward way to serve a query group that need to FOF egample, given three quen@i,' Q2 andQs, with prin =
maintain N predicted windows, is to use ItV iew_6s to repre- Q2win = Qz.win = 10(s), Qu.slide = 2(s), Q2.slide = 3(s)

sent N predicted windows independently. Using this method, the andQs.slide = 6(s), the query windows of them cover exactly

N IntView_0s presenting different predicted windows will have Same portion of the data stream at any given time, while they are
the same tree structure, as they are representing the same queries figguired to output the clusters at every 2, 3 and 6 seconds respec-
each predicted window. Figure 12 gives an example of using four N tively. So, to serve the different output time points, they need to

IntView_6s to represent four predicted windows for a query group build predicted windows starting at different time, each serving
with 5 member queries. a future a output time point. In this example, assuming all three

queries start at wall clock time 00:00:00, they all need to build a

predicted window starting at 00:00:00 for generating the output at

W3 00:00:10, which is their first and shared output time point. TQen

J I I 1 needs to build predicted windows starting at 00:00:02, 00:00:04, etc

P to serve the output time points at 00:00:12, 00:00:14, wBileand

\ Q1/ '\ Qs need to build predicted windows starting at 00:00:03, 00:00:06,
Q2

etc and 00:00:06, 00:00:012, etc respectively.
To solve this problem, for a given grodpG, we build a single

meta quen®.to Which integrates all the member queriesaf.

‘ In particular, this meta quer®..... has the same window size with
Q4 \/ Q5| Q4 \/ Qs|| Q4 \/ Q5 all member queries i G, while its slide size is no longer fixed but
adaptive during the execution. More specifically, the slide size of
re | ] ] Qmetq at a particular moment is decided by the nearest moment
LiEE | BE= L B which at least one member query @fG needs to be answered.
Qs Q3 Q3 The specific formula to determine the next output moment is:
Qg™ =05, g =5  Q2(9"™""=04, 9 =4) L —win
Q4@@™9e=03, gt =7) Q59 2"°=04, gort=8) Trextoutput = Mzn( fm

QS(& range_ g o , 0 cnt — 10) X . . .
With T the current wall-clock time andrin the common window
size of all queries. Using the earlier example, for the query group

|
iiE]

1+ 1) % Q;.slide + win)

Figure 12: IntView_6: Integrated Representation for Pre- having three member queries, we build a meta qu@y.:, for
dicted Views identified by five different queries with arbitrary it with win = 10s. So, at wall-clock time 00:00:10, the slide
pattern parameters size of Qmeta Should be 2s, as 00:00:12 will be the nearest time

which a member query:) needs to be answered. Then its slide

As conclusion, for the general case of handling a query group size is adapted to 1s, 1s and 2s at 00:00:02, 00:00:03 and 00:00:04
with arbitrary pattern parameters but the same window parame- respectively for the same reason.
ters, we employ N > 0) IntView_0s to represent the pre- Such adaptive slide size strategy does not require any substantial
dicted views identified by multiple queries in multiple windows, change to “view prediction” technique. This is because, although
and maintain them independently at arrival of each new data point. the slide size of)...... may keep changing, these changes are still
We note that such straightforward application/aftView_6 real- predictable and periodic. In particular, given the slide size of all
izes the full sharing in each predicted window (Lemma 5.3), but no the member queries, we always know that at which moments the
sharing is yet achieved across the different predicted windows, asmember queries need to be answered. Also, the “distance” between



any two successive output moment is changing periodically. So, Q; cover all those needed by other queries. At tileany mem-
we can always make an output schedule (with a finite output time ber query@; can be answered by the “predicted window” starting
points) forQmetq, Which predetermines the slide size®@f,.+. at fromT — Q;.win. [ |
any given moment. For example, given three queri@s, Q2 andQs, with Q1 .slide =
Knowing the slide sizes o)., we can just build predicted Q2.slide = Qs.slide = 5s, Q1.win = 10, Q2.slide = 15s
windows forQ ..t based on the output time points. Still using the and@s.slide = 20s, at wall clock time 00:00:20, the “predicted
earlier example, at wall-clock time 00:00:10, we would have built windows” built by Qs start from 00:00:00, 00:00:05, 00:00:10 and
eight “predicted windows” foQmet. , Which start from 00:00:00, 00:00:15 respectively, while those need to be maintained-bsnd
00:00:02, 00:00:03, 00:00:04, 00:00:06, 00:00:08, 00:00:09 and Q- start from 00:00:10, 00:00:15 and 00:00:05, 00:00:10, 00:00:15
00:00:10 respectively, as each of them correspond to an output timerespectively, which all overlap with those built §35. At this mo-
point for at least one member query. Among these eight “predicted ment, the “predicted window” starting from 00:00:00 can used to
windows”, many of them are actually serving multiple queries. answerQ@s, while the predicted windows starting from 00:00:10
For example, the “predicted windows” starting at 00:00:00 and and 00:00:05 can be used to ans\wgrand@- respectively.
00:00:06 will be used to answé):, Q2 andQs as they correspond In summary, we only need to maintain the predicted windows for
to the output time points that are shared by all three queries. This a single member query, namely the query with the largest window
also means that if we maintain the predicted windows for these size, and then can answer all the member queries in the query group
queries independently, four more predicted windows would need with different predicted windows it maintains. Clearly, full sharing
to be maintained at this given moment. In particul@s, and Qs is achieved. Here, we also note that although we made the common
need to maintain their own predicted windows starting at 00:00:00 assumption in Lemma 6.1 that the window sizes are multiples of
and 00:00:06 separately, although they are exactly same with thoseslide, to make the problem easier to understand, it is not crucial for
maintained byQ;. In this example, 33 percent of “predicted win-  our solution. Our solution can easily be relaxed to handle the cases
dows” are saved from the independent maintenance mechanismwhere window sizes of member queries are completely arbitrary.
which means 33 percent of storage space and computational re- . .
sources are saved. Such “predicted windows” for a meta query are9-3 Arbitrary stide, Arbitrary win Case
no different from those needed for any single query. So, a straight- We now give the solution for the cases that both window param-
forward way to maintain them is to use the maintenance method eters, namelyvin andslide, are arbitrary. Generally, the solution
introduced inExtra-N [] to update them independently at the ar- for this case is a straightforward combination of the two techniques
rival of each new data point. introduced in the last two subsections. In particular, we simply
In conclusion, by building a meta query representing all member build one single meta query that has the largest window size among
gueries in a query group, we can save both the memory space andill the member queries and uses an adaptive slide size. These two
CPU time for answering the query group for the following reasons: techniques are fully compatible, because they were both designed
1) No overhead, in particular, no extra predicted views will be in- to make sure correct predicted windows (start and end properly as
troduced, as a predicted window is built only if at least one member the queries required) are created to answer the member queries.
guery needs output at that moment (all the predicted windows built Here we use an example to demonstrate our solution. Given
in our integrated solution need to be maintained by individual mem- three querie®)., Q2 andQs, with Q.win = 10, Q1.slide = 4,
ber queries any ways). 2) Many predicted views can be shared asQ2.win = 9, Q2.slide = 5, Q3.win = 6 andQs.slide = 2,
several member gqueries may require output at the same time. Theand all starting at wall clock time 00:00:00, we build a meta query
specific amount of sharing depends on the percentage of overlapsQmeta With Qumeta.win = max(Q;.win)1<;<3y = 10. Then

of member queries’ output time points. we adaptively change its slide size based on the next nearest output
) time point required by (at least) one of these three queries. For in-
6.2 Samesiide, Arbitrary win Case stance, at wall clock time 00:00:10, six predicted windows would

In this case, although the window size may vary among the mem- have been built, which start from 00:00:00 (servipgfor output at
ber queries, we hold the slide size steady, indicating that their out- 00:00:10), 00:00:01 (servin@- for output at 00:00:10), 00:00:04
put schedules are identical. Here we first use a common assump+{servingQ: for output at 00:00:12 an@s for output at 00:00:10),
tion that all the window sizes of the member queries are multiples 00:00:06 (serving)- for output at 00:00:13 an@3 for output at
of their common slide size. We observed that, given a query group 00:00:12), 00:00:08 (servin@, for output at 00:00:18 an@s for
with member queries having the same slide size but different win- output at 00:00:14) respectively. Figure 13 shows the predicted
dow sizes, all the member queries require output at exactly the sameviews that need to be maintained by each of these three queries
moments. Based on this observation an important characteristicsindependently, versus those by the meta query at wall clock time

can be discovered for such query groups. 00:00:10.
Figure here:

Lemma 6.1. Given a query groulG with member queries Integrated Representation of Predicted Views across Multi-
having the same slide sizéide but arbitrary window sizes (mul-  ple Windows. Although Extra-N [2] algorithm can be applied
tiples ofslide), the “predicted windows” maintained fo@;, with to maintain the predicted views of the meta query and thus answer
Qi.win larger or equal to any othe@;.win in QG, will be suffi- the whole query group, this algorithm achieves no sharing across
cient to answer all member queries@. the multiple predicted windows, because it requires the predicted

view of each predicted window to be stored and maintained inde-
pendently (we mentioned this at the end of Section 5 as well). Now
we introduce a further optimization for the maintenance for the pre-
dicted views of multiple predicted windows based on the “growth

property”. We first make the following observation.

Proof: This is because the “predicted windows” maintained
for @; will cover all the “predicted windows” that need to be main-
tained for all the other queries. More specifically, at any given mo-
ment, say wall-clock timd’, the “predicted windows” that need
to be maintained for a member quedy, include all those starting
atT — n « slide (1 < n < Qwiny Ag Q, win is larger or Lemma 6.2. For a single query®;, at any given time T with

slide
equal than anyy;.win, the “predicted windows” maintained for ~ W,, being the current window, the cluster set identified in the “pre-



Figure 13: Predicted views maintained by three queries inde- Figure 14: IntView_W: Integrated Representation for Pre-
pendently versus those maintained by a single meta query dicted Views Identified by a Single Query in 4 Predicted Win-
dows

dicted view” of predicted windowV,, .; is always agrowth of that
identified in the “predicted view” otV,,+;+1. Figure 15 shows the improved predicted view storage mecha-

Proof: At any given time T withiV, being the current win- s for the meta query by usingitView. 1.

dow, it is known that more and more data point§ify will expire
as the window number increases. So the data points fallingifito
that appear in the “predicted view” &¥,, ;41 are a subset of those Q7
appear in “predicted view” ofV,,4;. This is equal to saying that
the “predicted view” ofiW,,+; is composed by adding data points
to the “predicted view” ofiV,,+;+1. As we mentioned earlier in Q2
Section 3 and demonstrated in [2], birth, expansion and union are
the only possible pattern changes caused by addition of data points
to a window. So, based on observation 4.3, the cluster set identi-
fied inW,,4; is a “growth” of cluster set identified ii/;,+;+1 This Q3
proves Lemma 6.3. [ ]
Note that Lemma abstracts th_e change_ of clusters from one win- Q1.Q3 | Q2Q3 | QLQ3 | Q2 Q1
dow to another in a reversed direction with the real sequence of the
windows. Cluster sets shown in Figure 2 can be taken as an exam- Qmeta Wa4 — Ws __ M— Wi ] Wo
ple where such “growth property” holds. In particular, the “growth l:;_ 8 M ! ——
property” transitively holds from the cluster sets identified in pre- ;
dicted windowWW; to Wy. Again, the “growth property” allows us ' ' ' ' '
to build an integrated structure to incrementally store and maintain 10 8 6 4 2 0
the predicted views across multiple windows. We call such inte-
grated representation of predicted views across multiple windows Figure 15: IntView_W: Integrated Representation for Pre-
IntVieww. dicted Views Identified by a Meta Query in 5 Predicted Win-
Figure 14 gives an example of tHetVieww built for the pre- dows
dicted views showing Figure 2
In particular, since the data points covered by different predicted
windows incrementally increase as the window number decrease,7_ PUTTING ALL TOGETHER: THE GEN-
another new type of incremental information, namely the “addi-
tion data points”, need to be maintained at each higher level pre- ERAL CASE.
dicted views. As a hierarchical structure that are very similar with ~ Finally, we now discuss the case that the pattern and window
IntViewg™ andIntViewy,*"?¢, the predicted views ifintVieww parameters are both arbitrary for the queries in a query group. Al-
can also be incrementally maintained at the arrival of each new datathough sharing among a group of totally arbitrary queries is a hard
point, by a very similar maintenance method with them. We omit problem if we have to solve it from scratch, we now can easily
the details of the maintenance method here. handle it by combine the two techniques introduced in last two sec-
As conclusion, now we have an even more efficient way to han- tions, namely the théntView_0 technique and the meta query
dle a query grouf)G with same pattern parameters but arbitrary technique. These two techniques are orthogonal to each other, and
window parameters. For such query gro@)g-, we can always can thus be easily combined. In particular, fheViewycnt tech-
build a meta query for it which carries all the predicted windows nique (introduced in Section 5) is design to share among a group
needed by its member queries, and then we cadnsEieww to of queries that are specified to a same dataset, which in our case
integrate them into a singlentView_W structure. is each predicted windows. So, we can consider this here as an

W2




“inner-predicted-windows’ sharing technique. On the other hand,

the meta query technique (introduced in Section 6) is designed to
make sure the predicted windows, which need to be maintained by
different queries, start and end properly and share across the dif-

1 Q2
W1

1 Q1.Q3
\\/2

| Q2.Q3
W3

ferent predicted windows. So, it is amter-predicted-windows”

sharing technique. Thus, such two orthogonal techniques can be

easily applied together to realize the full sharing of the member
gueries on both inner- and inter-predicted window level.

Here we use an example to demonstrate such a combination.

Given three querie®, Q2 andQ@s starting at 00:00:00, witt): (win =
10, slide = 4,07*"9¢ = 0.2,0°™ = 5); Q2(win = 9, slide =
5,079¢ = 0.3, 0" = 4) andQs(win = 6, slide = 2,07*"9° =
0.2,6°* = 3), we first use the meta query technigue to build
the predicted windows they need to maintain. At wall clock time

00:00:10, the required predicted windows are same with those show

in Figure 15. Then, for each predicted window built, we apply
IntView_6 technique to build an “Predicted View Tree” to inte-
grate the predicted views (of different queries) in this window. For
the predicted window starting from 00:00:04, which are ser@hng
andQ@s, we build a “Predicted View Tree” for it representing both
Q1 andQs. Now the “Predicted View Tree” structures built for

different windows may no longer be all the same as those in the ex-

IntView 0

[tn. E—

IntView W

] | | ! | |
T T

6 4

Figure 16: IntView: Integrated Representation for Predicted
Views Identified by 3 Queries in 5 Predicted Windows

ample we demonstrated in Figure 16. This is because the predictedely exist. Then, it starts théntView maintenance process from

view of a particular query will appear on a “Predicted View Trees”
only if this predicted window needs to be maintained by this query,
indicating this predicted window is corresponding to an output time
point for it. Using the same exampl€). has predicted views in
Wy, asWy is not a predicted window that need to be maintained
by it.

To apply theIntView W technique (introduced in Section 6),
which allows us to share across multiple predicted windows, we

the root ofIntView, namely the root predicted view of the newest
predicted window on/ntView, and then incrementally maintain
those at higher level ofntView. During the maintenance for of
each predicted view, it only needed communicates with the neigh-
bors distributed to that particular view. Thus, computation-wise,
Chandionly requires a single pass through the new data points,
each running one range query search and communicating with its
neighbors once for all shared queries (on each path). Memory-

use “the most restricted query” of the whole query group to act as wise, as the growth property holds among the cluster sets identified

the root of all the “Predicted View Trees” built in different win-

by the queries on each path btV iew, the upper bound of the

dows. Using the same example in the last paragraph, the roots ofmemory consumption o€handifor a group of shared queries on

all “Predicted View Trees” will be the predicted view f@r having
6" = 0.2 andg°"* = 5. By doing so, the “Predicted View Trees”
in different predicted now start from the predicted view represent-

ing a same query. Thus, we can further integrate these roots in dif-

ferent predicted windows into BntView_W structure. This final
move “connects” all the “Predicted View Trees”, forming a single

hierarchical structure that realizes completely incremental storage

the same path is independent from the “length” of this path, namely
the number of shared queries in this group (this can be proved using
the same methods as we used for proving Lemma 5.7). In conclu-
sion,Chandiachieves full sharing for multiple density-based clus-
ter queries over the same input stream in terms of both CPU and
memory resources.

and maintenance for all member queries across multiple predicted. EXPERIMENTAL STUDY

windows. We call such ultimate hierarchical structdreView.
Figure 16 demonstrates the:wtView built for the three queries
mentioned in the earlier example.

In particular, IntView is a tree structure that starts from the
predicted view acting as the root,(..s:) Of the “Predicted View
Tree” in the newest predicted window (with largest window num-
ber). As the “backbone” of ntView, an IntVieww structure
connects the roots of all “Predicted View Tree$h{View_6) in
different predicted windows. Thus, each root predicted view in an
older predicted window is now incrementally built based on that
in the next window. This indicates that, as subtreedlfarl iew,
each “Predicted View Trees” in an older window is now built based
on the incremental information from the next (the newer) window
(as its root itself now is incremental). We call this final solution
Integrated maintenance for density-based clustei@tggthdf. We
give the psuedo-code @handibelow.

As shown our psuedo-code (in Figure 17), when a new data point
arrives at the system, it first runs a range query search using the

largestd™*"9¢ among the query group to collect all its potential

neighbors, and then it distributes each of them to the first predicted

view on each path afntView, in which their “neighborship” tru-

All our experiments are conducted on a HP Pavilion dv4000
laptop with Intel Centrino 1.6GHz processor and 1GB memory,
which runsWindows XP operating system. We implemented all
algorithms with VC++ 7.0.

We used two real streaming data sets. The first data set, GMTI
(Ground Moving Target Indicator) data [6], records the real-time
information of moving objects gathered by 24 different data ground
stations or aircrafts in 6 hours from JointSTARS. It has around
100,000 records regarding the information of vehicles and heli-
copters (speed ranging from 0-200 mph) moving in a certain ge-
ographic region. In our experiment, we used all 14 dimensions of
GMTI while detecting clusters based on the targets latitude and lon-
gitude. The second dataset is the Stock Trading Traces data (STT)
from [14], which has one millions transaction records throughout
the trading hours of a day.

Competitor Algorithms and Experimental Methodologies. To
evaluate our proposed algorith@handj for any inputQG with
|QG| = N, we compareChandis performance of executinQG
with four alternative methods. FirsExtra-N algorithm with no
range query sharing (henthforth referred adra-N), indicating
that we run NExtra-N algorithms, each for a member query in



pi: a data point.

clu_mem : cluster membership.
W; : a predicted window.
IntView: the overall IntView structure.

Woldest/newest: oldesynewestV on IntView.

Wodest - the newest predicted window dmtView.

Wi;.root : the root predicted view of ifiV;.

PV : apredicted view. Q; : amember query.
Q:.PV : apredicted view built foQ);.

Pnew: @ NEW data point

Chandi (QG)
1 For each new data point,c.,
I/l purge
if pnew~T > Woldest~Tend
PurgeiW,i4e5¢); l/purge the oldest predicted windda
I load

2
3

4 loadprew iNto index
/I IntView Maintenance
5  neighbors:=RangeQuerySeargh(c.,, maz(Q;.60"*"9¢
6 UpdatelntView(pnew, neighbors)
// output
7 if Pnew-T = Toutput
8 Output();
9 add new windowV,,ewest to IntView
Purge(W;)

1 purge anyp; from index if

Wi Tstart < pi T < Wit1.Tstart
2 removeW; from IntView
UpdatelntView (p, neighbors)
1 Fori:=1toneighbors.size()
2 DistributeNeighbor§, neighbors[i], Whewest.root);
3 UpdatePredictedView( W, cwest.root);

To put a neighbor of the new data point to the predig
views where it needs to be processed. It guarantees that
neighbor only appears once on each pathiotView.
DistributeNeighbor(pn.cw, pi, PV)
1 If dist(prew,p;) < Qi.07°79¢
2  addp; to PV.neighbors (neighbors distributed to PV)
3 Else ForeachQ@;.PV at higher level
4 DistributeNeighboip,neighbor Q;.PV);

UpdatePredictView (p, PV')

1 p.neighborcount = PV.neighborsinthisview.size();
2 Fori:=1to PV.neighbor.size()

3 PV.neighbors[i].neighborcount + +;

4 if PV.neighbors[i] becomes a new core

5 HandleNewCorePV.neighbors|i]);

6 if p.neighborcount > @Q;.0°™

7 HandleNewCoref, PV);

8 For eachQ@;.PV at higher level

9  UpdatePredictViewp, Q;.PV);
HandleNewCorgp, PV)

1 p.type = core;

2 p.clu_mem=new clu_mem (cluster membership);
3 Fori:=1to PV.neighbors.size()

4 if PV.neighbors.type == core

5 Merge PV.neighborsli].clu_mem andp.clu_mem;
6  if PV.neighborsl[i].type == noise

7 PV.neighborsli].type = edge;

8 PV.neighborsli].clu-mem = p.clu_mem,;

9 For eachQ@;.PV at higher level

10 PropagateNewCorg(Q;.PV);

W

)

ted
each

Figure 17: Chandi Algorithm

|QG|, independently. SeconBxtra-N algorithm with range query
sharing (referred aExtra-N with rq9, indicating that we run N
Extra-N algorithms independently but share the computation con-
sumed by range query searches among them. Third, Incremental
DBSCAN (referred asncDBSCAN, indicating that we run N In-
cremental DBSCAN algorithms independently. Fourth, Incremen-
tal DBSCAN with range query sharing (referred lasDBSCAN

with rg9), indicating that we run NExtra-N algorithms indepen-
dently but share the range query searches among. We note that,
for different queries, during the purging process, the data points
that are required to run range query searches by Inc DBSCAN are
different. Sharing range query searches for Inc DBSCAN during
purging is not a trivial problem and not discussed in literature. Thus
here we share the range query searches for the new data point in
each window only.

Our goal is to evaluate the performance of these five algorithms
when executing a query group specified to a same input stream. We
measure two common metrics for stream processing algorithms,
namely average processing time (for each tuple) and memory foot-
print. We run all the experiments using real data to the end of the
datasets. The average processing time is averaged over all the tu-
ples in each experiment. The memory footprint, which indicates
the maximum memory space required by an algorithm, is recorded
over all the windows.

As we know, each density-based clustering query using sliding
window semantics has four input parameters, namely two pattern
parametersp°™t, §7"9¢ and two window parametersvin and
slide. In many cases, the domain knowledge or specific require-
ments of the analysis tasks may restrict some of them to particular
values. For example, a moving object monitoring task may require
the #"*"9¢ to be the maximum distance that two objects can keep
wireless communication, and the window size to be the time in-
terval between two successive reports of a single object. Thus the
queries submitted by different analysts may only differ on a subsets
of these parameters. In our experiments, we first evaluate the four
test cases, each has only one of the four parameters differengamon
the member queries.

Evaluation for One-Arbitrary-Parameter Cases For each test
case, we prepare a query gra@g: with |QG| = 20 by randomly
generating one input parameter (in a certain range) for each mem-
ber query, while using common parameter settings on other three
parameters for all of them. The parameter settings in our experi-
ment are learned from the pre-analysis to the datasets. In particular,
we pick parameter ranges that allow member queries to identify all
the different major cluster structures that could be identified in the
datasets. In all our test cases, the largest number of clusters identi-
fied by a member query is at least five times to the smallest number
of clusters identified by the other, indicating that the cluster struc-
tures identified by different queries vary significantly. In each test
case, we use different subsetgaf (sized from 5 to 20) to execute
against GMTI data.

Arbitrary 9°™* case. We usef "¢ = 0.01, win = 5000
and slide = 1000, while vary 9™ from 2 to 20. In this test
case, at most 16 clusters are identified by the most restricted query
with 9"t = 20, while at least 3 clusters are identified by the
most relaxed one with witlh** = 3. As shown in the Fig-
ures 18 and 19, both the average processing time and the mem-
ory space used by all four alternatives increases as the number of
member queries increases. This is because more meta-information
needs to be computed and stored by all of them. However, the ul-
tilization of CPU resources b€handiis significantly lower than
those consumed by other alternatives, especially when the num-
ber of the member queries increases, and its memory consump-
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tain the progressive clusters independently for different queries,
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Figure 22: CPU time used by

Figure 23: Memory space
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five competitors in arbitrary

win Cases arbitrary win cases

Arbitrary 97°™9¢ case. In this case, we usg¢™* = 10, win =
5000 andslide = 1000, while vary8™*™9¢ from 0.01 to 0.1. In this

test case, at most 10 clusters are identified by the most restricted . . .
query with gmenge — 01’ while at least 2 clusters are identified 001, window = 5000, while Varyslzde from 500 to 5000. As

by the most relaxed one wih "¢ — 0.1. As shown in the Fig- shown in Figures 24 and 25, the performanceCbfndiis simi-

ures 20 and 21, similar situations can be observed@handiuses lar with that in the arbitrarywin case. This is because the cost

significantly less CPU and memory resources than other alterna-gf Ch?r?dt”n thc'js iast()e dep_er:d_s OCT thﬁ. n#mb(?r 9(; p(;el?'itﬁd win-
tives. In this test case, the system resource consumptiGhafdi ows that needs 1o be maintained, which 1S decided by the query

increases more as the number of queries increases compared WitH"ith smallest sI.ide.size but does not necessarily increase with the
the previous test cases. This is because of two main reasons. ﬂwumber of queries in the query group.

Since thef™*™9¢ parameters vary among the queries, the range
guery search cost increases along with increase of the number of
queries, even with the range query sharing (each data point needs
to figure out its neighbors defined by different queries). 2) As the
neighborships identified by different queries differ, such “extra-

—4— IncDBSCAN 80000  ——IncDBSCAN
-8 ncDBSCAN with 15q | - IncDBSCAN with 1sq
r Extra-N

_ —& Extra-N 60000 —< Extra-N with rqs
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neighborships” are more likely to cause cluster structure changes g 30 30000 | /

and thus require€handito maintain more meta-information in 20 20000 | .
IntView. The performance of other competitors, especially for 0L 10000 |
IncDBSCAN are affected by the increasing cost of range query 0 L3 - 0 : : :
searches as well. This is because the performantecBBSCAN Q0 10Q 15 20Q 50w 1s¢ 2Q

(with rgs or not), which consumes large numbers of range query

searches during the purging process, largely rely on the cost of Figure 24: CPU time used by

range query searches. five competitors in arbitrary
Arbitrary win case. In this case, we us¢®"* = 10, §7*"9¢ = slide cases

0.01, slide = 500, while vary win from 1000 to 5000 (we use

500 as granularity for any window parameter). As shown in Fig-  Evaluation for Two-Arbitrary-Parameter Cases We evaluate

ures 28 and 29, we can observe that the performancghahdi the two test cases, each has two of the four parameters different

is even better compared with the previous test cases. In particu-among the member queries. In the first test case, member queries

lar, its resource utilizations for both CPU and memory are almost have arbitrary pattern parameters but common window parameters,

unchanged as the number of queries increases. This is expectedndicating that they may have different definition to the clusters but

because in this cagehandionly maintains the meta-information  always have a same query window. In the second test case, mem-

for a single query, which is sufficient to answer all the member ber queries have arbitrary window parameters but common pattern

queries. Thus, the cost @handiin this case only depends on the parameters, indicating they may have different query windows but

query with the largesivin, which is independent from the number have the same definition to the clustefgbhitrary Pattern Param-

of queries in the query group. eters. In this case, we usein = 5000, slide = 1000, while vary
Arbitrary slide case. In this case, we us¢™ = 10, §7*"9¢ = 6°™* from 2 to 20 and¥™*"9¢ from 0.01 to 0.1. As shown in Fig-

Figure 25: Memory space
used by five competitors in
arbitrary slide cases



ures 26 and 27Chandistill consumes significantly less CPU time  of the algorithms when executing different number of queries. In

compared with other alternatives, although the increase of CPU particular, for each test case, we generate 30 query groups each
consumption corresponding to the increase of member queries inwith N member queries (N equals to 20, 40 and 60 for three cases
more obvious. This is because totally arbitrary pattern parametersrespectively). Each query group is independently generated, and
leads to even larger difference on the cluster identified by different the member queries in each group are randomly generated with pa-

queries, and thus increase the maintenance cdShandi In par- rameter settings6°™* = 2 to 20,07°"9¢ = 0.01 to 0.1,win =
ticular, in this test case, the largest number of clusters identified by 1000 to 5000siide = 500 to 5000. For each test case, we mea-
the number query (with™™9¢ = 0.01 and9“™* = 14) reaches 35, sure the average cost of each algorithm for executing all 30 query

while the smallest number of clusters identified the number query groups. Beyond that, we zoom into the overall average cost of each
(with 7°™9¢ = 0.1 and@°™* = 3) is only 2. The memory space  algorithm, and measure the cost caused by each specific subtask.
used byChandiin this case is much less tha&mxtra-Nwhile slightly In particular, for the CPU measurement is divided it into two parts,
higher thanncDBSCAN Again, this is the caused by more incre- namely the CPU time used by range query searches and that used
mental information existing among the predicted views maintained by cluster maintenance. For the memory space consumed, we dis-

30000
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=3

by Chandi However, as the CPU performanceln€EDBSCANis tinguish the memory used by raw data (for storing actual tuples)
much worse thafhandi the overall performance @handiis still and the memory used for meta-data.
much better.
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Arbitrary Window Parameters.  In this case, we usé" = A3: Extra-N  Ad: Extra-N with ras  AS: Chandi
10 and 6™™"9¢ = 0.01, while varyingwin from 1000 to 5000
slide from 500 to 5000 (for any particular quey;, Q;.slide < Figure 30: Detailed comparison on CPU time consumption of

Q;.win). As shown in Figures 28 and 29, the performance of five algorithms

Chandiis similar with that is observed from the arbitramin or

slide case. This is because, although the member queries now have As shown in C1, C2 and C3 of Figure 30, we observe that the
arbitrary settings on both parameters, such fact does not affect theaverage CPU time used Ishandiis 70, 76, and 85 percent lower
principle of how the “meta query” strategy works. In particular, the then the best alternative meth&ktra-N with rgsin the three cases
cost of answering an query group still only depends on the largest respectively. In particular, the CPU time usedtiyandito conduct
win in the query group and the number of predicted views that need range query searches is always less tha# compared with that

to be maintained, which both do not necessarily increase along with needed byncDBSCANwith rgs. This is becaus€handionly re-

the number of queries. quires each new data point to run one range query search when it
arrives at the system, whilacDBSCANrelies on repeated range
80 (~~IncDBSCAN 80000 r~&~IncDBSCAN query searches to determine the cluster changes. The CPU time
_. | IncDBSCAN with 1sq 70000 | - IncDBSCAN with 1sq . . . . . .
O [ Extra-N Z (oo |+ ExteN used byChandito maintain meta-information is at leat2% less
7 60 Extra-N with 1q = — Extra-N with 1qs than that used bExtra-N with rgs This is becaus€handiupdates
= < |~f Chandi 2, 50000 —#— Chandi . . . . .
3% £ o000 | the meta-information for different queries integrally, wHietra-N
g 40 % 20000 | — maintains them independently.
30T z ;0000 | Besides the comparison of average system resource consump-
0r = loooo | ./l—"—’—'/‘ tion, we also measure the savings@fandifor each individual
10 ¢ ‘ ‘ 0 ‘ ‘ ‘ ‘ query group in all three test cases. In particular, for each query
o sQ 100 150 20Q group, we measure the difference in resource utilization between
e e 200 Extra-N with rsgand Chandj which corresponds to the difference
- »8: CPU i db Figure 29: Memory space between executing them using_ t_he best existing technique_ and our
lgure zo: IMEUSed by sed by five competitors ar- proposed strategy. More specifically, for each group, we first cal-

five competitors in arbitrary
window parameter cases

culate the difference on CPU (or memory) utilizations between two

Chandiand Extra-N Then, we use the difference to divide that

used byExtra-N with rgsto get the saving percentage achieved by
General Case: Four Arbitrary Parameters. Finally, we eval- Chandi As shown in C4 of Figures 3@ handinever performs

uate the general case, with all four parameters arbitrary. We divide worse thanExtra-N with rgsfor any query group. For the first

this experiment into three cases, each measuring the performanceest case (each query group has 20 queries), the average savings

bitrary window parameter
cases



achieved byChandion CPU time ar&2%. Although the minimum four one-arbitrary-parameter cas&@handiachieves most sharing
savings in this case among the 30 groups3i%, the maximum sav- in the arbitrarywin case, while least is achieved in the arbitrary
ings reache84% , and the standard deviation is 0rll9% . As the gm"9¢ case. For the two-arbitrary-parameter caséisandiper-
number of queries in each group increases, the savings achieved byorms better when the member queries have arbitrary window pa-
Chandiare even higher in the other two test cases. In particular, the rameters rather than arbitrary pattern parameters. For the general

average saving achieved Bhandion CPU time increases &0% cases, where the member queries have arbitrary parameter settings
when the number of queries in each group increases to 60. Theon all four parametersChandistill clearly outperforms other al-
minimum and maximum savings on CPU time increase$5% ternative methods by achieving on average 60 percent saving for
and 92% respectively in this case, and the standard deviation of CPU time and 84 percent saving for memory space. LaStgndi

the savings decreases1®%. This shows the promise @handi shows a good scalability in terms of handling a large number (hun-

that, for a query group with 60 queries, it can achieve savings be- dreds or even thousands) of queries under high data rate.
tween73% to 92% of CPU time in most of the cases. Among the
30 query group in this test case, 23 of them fall into this range. 9, RELATED WORK
-gg_e 3\6/?1%2:’2&9/5 achieved@yandion memory space in this Traditionally, pattern detection techniques, such as cluster [15, 4,
query ¢ - . 16] and outlier detection [17, 18], are designed for static environ-
Evalua_tlon fo_r Scalability. Now we evaluate_the scalability of ments with large volumes of stored data. More recently, as stream
Lhne dzlrg;(r:g?trg |?1 Ic;]aizrgtseorr;[ktﬁisng?Zfikognciu\?vnﬁes g;eli/l, Ei?rg_andle applications are becoming prevalent, the problem of efficient pat-
N with 1 sandChandito'execute puer royu s sized from 10 to tern detection in the streaming context is being tackled. Previous
as -cute query groups : work for streaming data clustering include [19, 2, 20], and for de-
1000 against GMTI data. Similar with the earlier experiment, the : S
member queries in the query group are randomly generated with tecting outliers include [21, 22].
ra query group are v 9 : In this work, our target pattern type is a well known pattern type,
the arbitrary parameter settings in certain ranges. In particular, thenamely density-based clusters first proposed in [4] as DBSCAN
H H H H _ range __
gagth%t %rsoiett'lng_s inot(gléstg)(s%e()r&?e;tﬁo_o %Otosggoe - algorithm for static data. Later an Incremental DBSCAN [9] algo-
) S = vae = ' rithm was introduced to incrementally updates density-based clus-

LOOBR03 e L00E+07 tersin datg warehouse env_ironme_nts. Howe\_/er_, as both analytically
H IneDESCAN with s B D BSCAN with e and_experlmen.tally shownin [2], since all opt_lmlzatl'ons in [9] were
_Loomso 2 ExtraN withgs g100sr06 ggiﬁgjg“_nhw designed for single updates (a single deletion or insertion) to the
El B B Chandi data warehouse, it may fit well for the relatively stable data ware-
élmwl Eloow house environment, but it is not scalable to highly dynamic stream-
2 ing environments. Our experimental study conducted in Section
“ L ooss0o 2 L ooeros 8, also demonstrates that executing multiple queries using [9] in
streaming environment is prohibitively expensive in terms of CPU
1.00E-01 1.00E+03 resource Consumption.
10Q 100Q  1000Q 10Q 100 1000Q Algorithms on density-based clustering queries over streaming
data include [2, 1, 3]. Among these works, [1] and [3] have goals
Figure 31: CPUtime used by ~ Figure 32: Memory space different from ours, because they are neither designed to identify
five competitors in logarith- USed_ by _f|ve competitors in the individual members in the clusters nor enforce the sliding win-
mic scale logarithmic scale dow semantics for the clustering process. Thus these two algo-

rithms cannot be applied to solve the problem we tackle in this

As shown in Figures 31 and 32, both the CPU time and the mem- work. [2] is the only algorithm we are aware of that detects density-
ory space used bZhandiincreases modestly as the number of based clusters in sliding windows.
member queries increases. In particular, the CPU time consumed As a general query optimization problem, multiple query opti-
by Chandiincreases around 6 times when the number of queries mization has been widely studied for not only static but also stream-
grows from 10 to 100 (increased 9 times), and then it increases ing environments. Such techniques can be roughly divided into two
less than 4 times when number of queries grows from 100 to 1000. different groups, namely “plan level” and “operator level” sharing.
Thus totally the CPU time consumed B§randiincreases 33 times  “Plan level” sharing techniques [23, 24, 25] aim to allow the differ-
when the number of queries increased from 10 to 1000, which is ent input queries to share the common operators across their query

100 times. Such increase faxtra-N andExtra-N with rqsare 105 plans, and thus lower the overall costs for multiple query execu-
times and 89 times respectively. More specifically, in our test cases, tion. Operator level sharing studies the sharing problem on a finer
the average processing time (CPU) for each tuple usedhandi granularity, namely within the individual operators. In particular,

to execute the 100-query and 1000-query query groups are 0.76they aim to share the stated information as well as the query pro-
and 3.3ms respectively, which indicates that our system can com-cessing computation with a single operator, when multiple queries
fortably handle 100 queries under a 1000 tuple per second data ratehave similar yet not identical operator specifications For example,
and handle 1000 queries under a 300 tuple per second data rate. Fawo queries may calculate aggregations for a same input stream but
the memory space usedhandihas even better performance as its  using different window sizes. The problem we solve this paper fall
utilization of memory space only increases 5 times when the num- into the operator level sharing category.

ber of queries increases from 10 to 1000, while such increase for Previous research effort discussing such operator level sharing
Extra-N and Extra-N with rgsare both 98 timesConclusion for technigues focus on operators, such as selection and join opera-
Experimental Study. Generally,Chandiare more efficient than tors [26, 7, 8, 27], and aggregation operators [28, 11]. To our bes
other alternative methods in terms of both CPU and memory uti- knowledge, none of them discuss the sharing for clustering opera-
lization when executing multiple queries specified to a same input tors. Some general principles used in these works, such as query
stream. Chandiachieves most sharing when only one of the four containment [7] can also be applied in our context (used in sharing
parameters are different among the member queries. Among therange query searches for our solution). However, the key problem



we address in this work, namely the integrated maintenance of the[13] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker,

density-based cluster structures identified by multiple queries, is “No pane, no gain: efficient evaluation of sliding-window
different from the optimization effort required by selection, join or aggregates over data strean®GMOD Recordvol. 34,
aggregation sharing. In particular, the meta-information we need to no. 1, pp. 39-44, 2005.

maintain, namely the cluster structures defined by individual clus- [14] I. INETATS, “Stock trade traces. http://www.inetats.com/.”
ter member objects as well as the interrelationships among them, is[15] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an
much more complex than those for selection, join or aggregation efficient data clustering method for very large databases,”
operators, which are usually pair-wise relations or simply num- SIGMOD Record, vol.25(2), p. 103-14996.

bers (aggregation results). Efficient maintenance of such meta- [16] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,

information requires thorough analysis of the properties of density- “Optics: Ordering points to identify the clustering structure,”
based cluster structures, which is a key contribution of our work in SIGMOD

while has not been studied in any of these works. [17] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outlier§SIGMOD Rec.

10. CONCLUSION vol. 29, no. 2, pp. 93-104, 2000.
In this work, we are the first to present a framework, called [18] E. M. Knorr and R. T. Ng, “Algorithms for mining

Chandi for efficient shared processing of a large number of density- distance-based outliers in large datasetsVIiiDB, 1998, pp.

based clustering queries over streaming windows. For answer- 392-403.

ing multiple such queries with arbitrary parameter setti@igndi [19] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework

achieves full sharing on both CPU and memory utilizations. Our for clustering evolving data streams.”VLDB, 2003, pp.

experimental study shows that, for the most general cademdi 81-92.

is on average four times faster than the best alternative while us-[20] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan,

ing 85% less memory space. More savings can be achieved if the “Maintaining variance and k-medians over data stream

gueries share more common parameter setti@gandialso shows windows,” inPODS 2003, pp. 234—-243.

very good scalability in terms of handling large numbers of queries [21] S. Subramaniam, T. Palpanas, D. Papadopoulos,

under high speed input streams in our experiments. V. Kalogeraki, and D. Gunopulos, “Online outlier detection
in sensor data using non-parametric modelsYirDB, 2006,
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