
WPI-CS-TR-09-04 April 2009

Multiple Query Optimization for Density-Based Clustering Queries
over Streaming Windows

by

Di Yang
Elke A. Rundensteiner

Matthew O. Ward

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Multiple Query Optimization for Density-Based Clustering
Queries over Streaming Windows ∗

Di Yang,Elke A. Rundensteiner,Matthew O. Ward
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA, USA

diyang, rundenst, matt@cs.wpi.edu

ABSTRACT
In diverse applications ranging from stock trading to traffic mon-
itoring, popular data streams are typically monitored by multiple
analysts for patterns of interest. These analysts thus may submit
similar pattern mining requests, such as mining for clusters or out-
liers, yet customized with different parameter settings. In this work,
we present an efficient shared execution strategy for a large num-
ber of density-based cluster detection queries with arbitrary param-
eter settings. Given the high algorithmic complexity of the cluster-
ing process and the real-time responsiveness required by streaming
applications, serving multiple such queries in a single system is
extremely resource intensive. The naive method of detecting and
maintaining clusters for different queries independently is often in-
feasible in practice, as its demands on system resources increase
dramatically with the cardinality of the query workload. To over-
come this, we analyze the interrelations between the cluster sets
identified by queries with different parameters settings, considering
both pattern-specific and window-specific parameters. We charac-
terize the conditions under which a proposedgrowth propertyholds
among these cluster sets. By exploiting thisgrowth propertywe
propose a uniform solution, calledChandi, which represents these
identified cluster sets as one single compact structure and performs
integrated maintenance on them – resulting in significant sharing
of computational and memory resources. Our comprehensive ex-
perimental study, using real data streams from domains of stock
trades and moving object monitoring, demonstrates thatChandiis
on average four times faster than the best alternative methods, while
using85% less memory space in our test cases. It also shows that
Chandiscales in handling large numbers of queries, on the order of
hundreds or even thousands, under high input data rates.

1. INTRODUCTION
Motivation. The discovery of complex patterns such as clusters,

outliers, and associations from huge volumes of streaming data has

9∗This work is supported under NSF grant IIS-0414380. We
thank our collaborators at MITRE Corporation, in particular, Jen-
nifer Casper and Peter Leveille, for providing us the GMTI data
stream generator

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

been recognized as critical for many domains, ranging from stock
market analysis to traffic monitoring. Although previous research
efforts have developed efficient algorithms for streaming pattern
detection [1, 2, 3], they focused on processing one single specific
data mining task. Little effort has been made towards simultaneous
execution of multiple pattern mining queries against the same input
stream. In this work, we provide a framework to efficiently execute
a large number (on the order of hundreds or even thousands) of
pattern mining queries with different parameter settings, while still
achieving real-time responsiveness required by stream applications.

Complex pattern detection queries are usually parameterized, be-
cause pattern detection processes are driven by the domain knowl-
edge of the analysts and the specific analysis tasks. For example, a
query asking for the stocks that drop or rise significantly in most
recent transactions can be considered as a parameterized query.
It needs analysts to specify parameters that define their notion of
“significance” in price fluctuation and the meaning of “most recent
transactions” based on their application semantics. Other examples
of parameterized queries include density-based clustering [4] that
require a range and count threshold as input, and K-means style
clustering [5] that requires K as input.

Given the prevalence of parameterized queries, a stream process-
ing system often needs to handle multiple such queries. Multiple
analysts monitoring the same input stream may submit the same
pattern search but using different parameter settings. Using the
earlier example, multiple analysts may have different interpreta-
tions of the “significance” in price fluctuation (say from10− 80%
of the original price). Even a single analyst may submit multiple
queries with different parameter settings, because determining the
best input parameters is difficult when faced with an unknown in-
put stream. In static environments, this problem can be tackled by
conducting pre-analysis of the static datasets or repeatedly trying
different parameter settings until satisfactory results have been ob-
tained. However, in streaming environments, the nonrepeatability
of streaming data requires analysts to supply the most appropriate
input parameters early on. Otherwise, they may permanently lose
the opportunity to accurately discover the patterns in at least a por-
tion of the stream. Thus, an ideal stream processing system should
be able to accommodate multiple queries covering many, if not all,
major parameter settings of a parameterized query, and thus capture
all potentially valuable patterns in the stream.

Challenges. In this work, we tackle multiple query optimization
for handling multiple density-based clustering queries over sliding
windows. Each query of this type has four input parameters: two
pattern parameters, a range thresholdθrange and a count threshold
θcnt, and two window parameters: window sizewin and slide size
slide. Any such query can be expressed by the template given in
Figure 1.

Qi: DETECT Density-Based Clusters FROM stream
USING θrange = r and θcnt = c
IN Windows WITH win = w and slide = s

Figure 1: Templated density-based cluster detection query for
sliding windows over data steam

Realizing parameterization for this query type is important not
only because its input parameters, such asθrange and θcnt, are
difficult to determine without pre-analysis of the stream data, but
also because even a slight difference in any of these parameters
may cause totally different cluster structures to be identified. Figure
8 shows different clusters identified in a subpart of the GMTI data
stream [6] by density-based clustering queries with different pattern
parameter settings.

Given the high algorithmic complexity of density-based cluster-
ing, serving a large number of such clustering queries in a single
system is highly resource intensive. The naive method of maintain-
ing progressive clusters (clusters identified in the previous window)
for multiple queries independently has prohibitively high demands
on both computational and memory resources.

Thus, the key problem we need to solve is to design a cluster
maintenance mechanism that achieves effective sharing of system
resources for multiple queries. This is a challenging problem, be-
cause the meta-information required to be maintained by this query
type is more complex than those for SQL query operators, such as
selection, join or aggregation. More specifically, we need to main-
tain the identified cluster structures, which are defined by the tuples
and the global topological relationships among tuples. While SQL
operators usually maintain pair-wise relations between two tuples
(independent from the rest of the tuples) or simply numbers (ag-
gregation results). The techniques [7, 8] regarding sharing among
SQL queries thus cannot be used to solve our problem.

Proposed Solution. Our proposed solution allows arbitrary pa-
rameter settings for queries on all four input parameters, includ-
ing both the pattern-specific and the window-specific ones. We
first discover that given the same window parameters, if a query
Qi’s pattern parameters are “more restricted” than those of another
queryQj , agrowth property(Section 4) holds between the cluster
sets identified byQi andQj . Thisgrowth propertyallows us to in-
crementally organize the clusters identified by multiple queries into
one single integrated structure, calledIntView. As a highly compact
structure,IntView saves the memory space needed for storing the
clusters identified by multiple queries. More importantly,IntView
also enables integrated maintenance for the progressive clusters of
multiple workload queries, and thus effectively saves the compu-
tational resources otherwise needed when maintaining them inde-
pendently.

We also propose a “meta querystrategy”, which uses a single
meta query to represent all workload queries for which their pat-
tern parameters are the same, while their window parameters may
differ. The proposed meta query strategy adopts a flexible window
management mechanism to efficiently organize the query windows
that need to be maintained by multiple queries. By leveraging the
overlap among query windows, it minimizes the number of win-
dow snapshots that need to be maintained in the system. We show
in Section 6 that our meta query technique successfully transforms
the problem of maintaining multiple queries into the execution of a
single query.

Finally, we combine theIntViewtechnique and meta query strat-

egy to form one integrated solution. We call itChandi 1, which
stands for Clustering high speed streaming data for multiple queries
using integrated maintenance.Chandi integrates the progressive
clusters detected by all workload queries into a single structure, and
thus realizes incremental storage and maintenance for this meta in-
formation across the queries. Computation-wise, for each window,
Chandi only requires a single pass through the new data points,
each running only one range query search and communicating with
its neighbors once for a group of shared queries. Memory-wise,
given the maximum window size allowed, the upper bound of the
memory consumption ofChandifor a group of shared queries is in-
dependent of the number of queries in the group (see Section 7). In
short,Chandiis a full sharing algorithm for arbitrary density-based
clustering queries over windowed streams.

Our experimental study (in Section 8) shows that the system us-
ing our proposed algorithmChandi comfortably handles 100 ar-
bitrary workload queries under a 1K tuple per second stream data
rate. If the number of workload queries increases to 1K, the system
still works stably with a 300 tuples per second input rate. On the
same experimental platform, given the 300 tuples per second in-
put rate, the independent execution strategies,IncDBSCAN[9] and
Extra-N [2], can only handle less than 1.7 and 12 percent of the
same 1K query workload, respectively.

Contributions. The contributions of this work include: 1) We
characterize thegrowth propertythat holds among density-based
cluster sets as a general concept enabling multiple clustering query
sharing in both dynamic and static environments. 2) We develop a
technique calledIntView that realizes integrated representation for
density-based cluster sets identified by multiple queries in the same
dataset. 3) We develop ameta querystrategy as general technique
to efficiently execute multiple sliding window queries with varying
window parameters. 4) We develop the first algorithm that real-
izes full sharing for multiple density-based clustering queries over
streaming windows. 5) Our comprehensive experiments on several
real streaming datasets confirm the effectiveness of our proposed
algorithms and also its superiority over all state-of-art alternatives
in both CPU time and memory utilization.

2. PROBLEM DEFINITION
Density-Based Clustering in Sliding Windows. We first de-

fine the concept of density-based clusters [4]. We use the term
data pointto refer to a multi-dimensional tuple in the data stream.
Density-based cluster detection uses a range thresholdθrange ≥ 0
to define the neighbor relationship (neighborship) between any two
data points. For two data pointspi andpj , if the distance between
them is no larger thanθrange, pi andpj are said to be neighbors.
We use the functionNumNei(pi, θ

range) to denote the number
of neighbors a data pointpi has, given theθrange threshold.

Definition 2.1. Density-Based Cluster: Given θrange and a
count thresholdθcnt, a data pointpi with NumNei(pi, θ

range)
≥ θcnt is defined as a core point. Otherwise, ifpi is a neighbor
of any core point,pi is an edge point.pi is a noise point if it is
neither a core point nor an edge point. Two core pointsc0 andcn

are connected if they are neighbors of each other, or there exists
a sequence of core pointsc0, c1, ...cn−1, cn, where for anyi with
0 ≤ i ≤ n − 1, a pair of core pointsci andci+1 are neighbors of
each other. Finally, a density-based cluster is defined as a group of
connected core points and the edge points attached to them. Any
pair of core points in a cluster are connected with each other.

Figure 2 shows an example of a density-based cluster composed of

91name of a powerful god with multiple hands in hindu theology

11core points(black) and 2edge points(grey) inW0.
We focus on periodic sliding window semantics as proposed by

CQL [10] and widely used in the literature [11, 2]. Such semantics
can be either time-based or count-based. For both cases, each query
Q has a of sizeQ.win (either a time interval or a tuple count) and
a slide sizeQ.slide. The patterns will be generated only based on
the data points falling into the window. The template of this query
type has been shown in Section 1.

Optimization for Multiple Queries We support multiple density-
based clustering queries that are specified to a common input stream
but with arbitrary pattern and window parameters. We call all the
queries submitted to the system together a Query GroupQG, and
each of them a Member Query ofQG. We use a common assump-
tion that all the member queries are registered to and pre-analyzed
by our system before the arrival of the input stream, indicating that
all the member queries will be started simultaneously. we focus
on the generation of complete pattern detection results. In partic-
ular, we output the members of each cluster, each associated with
a cluster id of the clusters they belong to. Other output formats,
such as incremental output, indicating the evolution of the clusters
over successive windows, can also be supported by our techniques
as discussed in [12].

Our goal is to minimize the overall CPU- and memory- resource
consumption for executing all the member queries registered to our
system. In particular, given a certainQG and the precondition that
all the member queries inQG are accurately answered, we want to
minimize both the CPU time for processing each data point and the
memory space needed for maintaining the meta information. The
techniques regarding dynamic member query adding or removing
are not in the scope of this paper, but will be an important part of
our future work.

3. EXISTING SINGLE QUERY EXECUTION
AND BASIC SHARING STRATEGY

3.1 Extra-N Algorithm
We first briefly describe the best existing approach for single

density-based clustering query, calledExtra-N [2]. Extra-N real-
izes efficient evaluation for single query by incrementally main-
taining the cluster structures identified in the query window. Tech-
nically, Extra-N is based on two main ideas, namely the hybrid
neighborship abstraction and the notion of predicted views.

Hybrid (Exact+Abstracted) Neighborship Abstraction. Since
density-based cluster structures are defined based on the data points
and the neighborships among them, efficiently maintaining the neigh-
borships identified in the windows is naturally the core task for
cluster structure maintenance. For each non-core point in the win-
dow, Extra-N maintains the exact neighborships (a neighbor list
containing links to each of its neighbors). For each core point,
Extra-Nmaintains the abstracted neighborships for it, including its
neighbor count and cluster membership. Such hybrid neighborship
abstraction achieves linear memory consumption to the number of
data points in the window.

General Notion of Predicted Views. Another problem that
needs to be solved for incremental maintenance of density-based
clusters is to efficiently discount the effect of expired data points
from the previously formed patterns. The expiration of existing
data points may cause complex pattern structure changes, ranging
from shrinkage, splitting to the termination of the clusters. Detect-
ing and handling these changes caused by expirations, especially
splitting, may require large amount of computation, which could
be as expensive as recomputing the clusters from scratch.

To address this problem,Extra-N exploits the general notion of
predicted views. It is well known that, since sliding windows tend
to partially overlap (slide < win), some of the data points falling
into a windowWi will also participate in some of the windows
right afterWi. Based on the data points in the current window, say
a datasetDcur, and the slide size, we can exactly “predict” the spe-
cific subset ofDcur that will participate in each of the future win-
dows. We can thus pre-determine some properties of these future
windows (referred as “predicted windows”) based on these known-
to-participate data points and thus form the “predicted views” for
them. This general concept is widely used in the literature [13,
2] to process sliding window queries, and is calledPredicted View
technique. Figure 2 shows an example of the predicted views for
three future windows. The black, grey and white spots represent
the core, edge and noise points identified in each predicted view.
The lines among any two data points represent the neighborship
between them. By using the predicted view technique, we can

Figure 2: Predicted views of four consecutive windows atW0

avoid the computational effort needed for discounting the effect
of such expired data points from the detected clusters. The idea
is to pre-generate the partial clusters for the future windows based
on the data points that are in the current window and known to
participate in those future windows (without considering the to-be-
expired ones). Then when the window slides, we can simply use
the new data points to update the pre-generated clusters in the pre-
dicted views and form the updated clusters in each window. Figures
2 and 3 respectively demonstrate examples of the “pre-generated”
clusters in future windows and the updated clusters after the win-
dow slides.

Figure 3: Updated predicted views of four windows atW1

DiscussionGenerally, at each window slide,Extra-N runs one
range query search for each new data point to update the progres-
sive clusters, which are represented by the predicted views. As the
best existing algorithm for single query execution,Extra-Nachieves
minimum number of range query searches needed at each window,
while keeping the memory consumption linear in the number of
data points in the current window. However, executingExtra-N
algorithm for each member query independently is not a scalable
solution for handling aQG with large |QG|. This is because the
consumption of both computational and memory resources will in-
crease linearly with the increase of|QG|. We thus need to design
optimized processing mechanism for multiple queries to handle a
large query group against high speed data streams.

3.2 Sharing Range Query Searches
The basic strategy to share the computations among multiple

density-based clustering queries is to share the range query searches.
Generally, to execute a query groupQG with |QG| = N , we
can execute NExtra-N algorithms, each for a member query, inde-
pendently (each query maintains its own progressive clusters inde-
pendently), but share the computations needed by the range query
searches. Specifically, at each new query window,Extra-N requires
every new data pointpnew to run a range query search to identify its
neighbors, and communicate with them to update progressive clus-
ters in the window (as discussed earlier this in section). However,
we can always run one instead of|QG| range query searches for
eachpnew, even if the queries inQG have different range thresh-
oldsθrange.

In particular, we run the range query search for eachpnew us-
ing Qi.θ

range, with Qi.θ
range larger or equal to anyQj .θ

range in
QG. Using the result set of this “broadest” range query search, we
then gradually filter out the results for other queries with smaller
and smallerθrange. This is easy to understand, because for a given
data point, the result set of a range query search using smaller
θrange is always a subset of that using a larger one. Also, since
the range query search with largestθrange is in any case needed
for the particular query, no extra computation is introduced by this
process. As an initial step, sharing range query searches can be
beneficial, considering the expensiveness of range query searches,
especially when the window size is large.

3.3 Discussion
However, sharing range query searches alone is not sufficient for

handling a heavy workload containing hundreds or even thousands
of queries. Two critical problems still remain: 1) Since every mem-
ber query still needs to store its progressive clusters independently,
the memory space needed by executing a query groupQG grows
linearly with |QG|. 2) Because of the independent cluster storage,
the cluster maintenance effort of different queries cannot be shared.
To solve these two problem, we need to further analyze and ex-
ploit the commonalities of the member queries. Our goal is thus to
design an integrated cluster maintenance mechanism, which effec-
tively shares both the storage and computational resources needed
by cluster maintenance for multiple queries.

4. “GROWTH PROPERTY" AND HIERAR-
CHICAL CLUSTER STRUCTURES

Growth Property. Now we first introduce an important property
of density-based cluster structures which will later be exploited to
form the basis for efficient multiple query sharing. In particular, we
call this the “Growth Property” of density-based clusters.

Here we first define the concept of “containment” between two
density-based clusters.

Definition 4.1. Given two density-based clustersCi and Cj

(each cluster is a set of data points, which are called cluster mem-
bers of this cluster), if for any data pointp ∈ Ci, p ∈ Cj , we say
thatCi is contained byCj , denoted byCi ⊂ Cj .

We now give the definition for the “growth property” between
two density-based cluster sets:

Definition 4.2. Given two cluster setsClu Set1 andClu Set2
each includes a finite number of non-overlapping density-based
clusters (fori = 1, 2, Clu Seti =

S

1≤x≤n

Cx, and for anyy 6= z,

Cy ∩ Cz = ∅), if for any Ci in Clu Set1, there exists exactly
oneCj in Clu Set2 that Ci ⊂ Cj , Clu Set2 is defined to be a
“ growth” of Clu Set1. We say the “growth property” holds be-
tweenClu Set1 andClu Set2.

Beyond this definition, we now characterize all the possible in-
terrelationships between the clusters belonging toClu Set1 and
Clu Set2.

Observation 4.3. GivenClu Set1 andClu Set2 thatClu Set2
is a “growth” of Clu Set1, any clusterCj in Clu Set2 must be
either aNew cluster (for anyp ∈ Cj , p 6∈ anyCi in Clu Set1), an
Expansion of a single cluster inClu Set1 (there exists exactly one
Ci in Clu Set1 that Ci ⊂ Cj), or a Union of multiple clusters in
Clu Set1 (there existCi, Ci+1,...Ci+n(n > 0) in Clu Set1 with
Cj , Cj+1,...Cj+n ⊂ Cj .

Figure 4 and 5 give an example of two cluster sets between which
“growth property” holds.

Figure 4: Cluster Set 1 con-
taining 3 clusters

Figure 5: Cluster Set 2 con-
taining 3 clusters, which is a
growth of Cluster Set1

The black spots in the figures represent the data points belonging
to both cluster sets, while the gray ones represent those belonging
to Clu Set2 only. As depicted in the figures, the clusterC4 in
Clu Set2 is a “merge” of clusterC1 andC2 in Clu Set1, while
the clusterC5 and clusterC6 in Clu Set2 are an “expansion” of
clusterC2 in Clu Set1 and a “new” cluster respectively.

Generally, ifClu Set2 is a “growth” ofClu Set1, any two data
points belonging to a same cluster inClu Set1 will also belong to
a same cluster inClu Set2.

Hierarchical Cluster Structure. If the “growth property” tran-
sitively holds among a sequence of cluster sets, a hierarchical clus-
ter structure can be built across the clusters in these cluster sets.
The key idea is that, instead of storing cluster memberships for dif-
ferent cluster sets independently, we incrementally store the cluster
“growth information” from one cluster set to another. Figures 6 and
7 respectively give examples of independent and hierarchial clus-
ter membership structures built for the two cluster sets shown in
Figures 4 and 5.

Figure 6: Independent Clus-
ter Membership Storage for
Cluster Sets 1 and 2

Figure 7: Hierarchial Clus-
ter Membership Storage for
Cluster Sets 1 and 2

As shown in Figure 6, if we store the cluster memberships for
cluster members in these two cluster sets independently, each clus-
ter member (black squares) belonging to both clusters has to store
two cluster memberships, one for each cluster set. However, if we
store them in the hierarchical cluster membership structure as de-
picted in Figure 7, we no longer need to repeatedly store the clus-
ter memberships for these “shared” cluster members. Instead, we
simply store cluster memberships for each cluster member belong-
ing to Clu Set1, and then store the cluster “growth” information
from theClu Set1 to Clu Set2. In particular, we just need to
correlate each clusterCi in Clu Set1 with a cluster inClu Set2
that contains it, and thereafter each cluster member can easily find
its cluster membership in a specific cluster set by tracing to the
corresponding level of the hierarchical cluster membership struc-
ture. Such “growth” information is now based on thegranular-
ity of complete clustersrather than thegranularity of individ-
ual cluster members. Generally, for a sequence of cluster sets
with “growth property” transitively holding, the hierarchical clus-
ter structure can largely save the memory space needed for storing
them. In particular:

Lemma 4.1. Given a query groupQG having the growth prop-
erty transitively holds among the cluster sets identified by all its
member queries, the upper bound of the memory space needed for
storing the cluster memberships using hierarchical cluster struc-
ture is2 ∗ Ncore (independent from|QG|), with Ncore the number
of distinct data points that are at least once identified as core point
in any member query ofQG.

The proof of this lemma is straightforward. This is equal to the
relationship between the total size of a binary heap and the number
of leaf nodes of this heap.

Besides the benefit of huge memory savings, such hierarchical
cluster structure can also help us to realize integrated maintenance
for multiple cluster sets identified by different queries, and thus
save the computational resources from maintaining them indepen-
dently. In the later parts of this work, we will carefully discuss how
this general principle can be used to benefit our multiple query op-
timization.

5. SHARING FOR QUERIES WITH ARBI-
TRARY PATTERN PARAMETERS

In this section, we discuss the shared processing of multiple
queries with arbitrary pattern parameters, namely arbitraryθranges
andθcnts. We first assume that all these queries have the same win-
dow parameters, namely same window sizewin and same slide
sizeslide. This assumption will later be relaxed in Section 7 to
allow completely arbitrary parameters. In our design for multiple
query optimization, we will reeuse the predicted views and hybrid

neighborship abstraction techniques (discussed in Section 3) for
maintenance of cluster structures. While the key for such design
is to exploit the growth property (introduced in Section 4) and thus
integrate the clusters identified by multiple queries.

5.1 Sameθrange, Arbitrary θcnt Case.
We first look at the case that all the queries have the sameθrange

but arbitraryθcnt. Here, we make a straightforward observation.

Observation 5.1. Given all the queries in a query group hav-
ing the sameθrange, the neighbors of each data point identified by
these queries are same.

This observation indicates that for all our member queries, the neigh-
borships identified in same the window are exactly the same. How-
ever, this does not mean that the cluster structures identified by all
queries are same and we can store them in the same way. This
is because the differentθcnts of the member queries may assign
different “roles” to a data point. For example, a data point with
4 neighbors is a “core point” for queryQ1 havingQ1.θ

cnt = 3,
while it is a “none-core point” forQ2 having queryQ2.θ

cnt = 10.
As the hybrid neighborship abstraction (discussed earlier in Section
3) requires each none-core point stores the links to its exact neigh-
bors, while the core points store the cluster memberships only, a
data point may need to store different types of neighborship ab-
stractions depending on its roles identified by different queries.

To solve this problem, we turn to the “growth property” of density-
based cluster structure discussed in Section 4.

Lemma 5.1. Given two queriesQi andQj specified to a same
dataset, withQi.θ

range = Qj .θ
range andQi.θ

cnt ≤ Qj .θ
cnt and

querying on the same dataset, the cluster set identified byQi is a
“growth” of the cluster set identified byQj .

Proof: First, sinceQi.θ
cnt ≤ Qj .θ

cnt, the “core point” set
identifiedQj is a subset of that identified byQi. Second, since
all the neighborships identified byQi and Qj are exactly same,
all the “connections” in any cluster structure identified byQj will
also hold forQj . This indicates that the cluster structure identi-
fied byQj will also be identified byQi (although may be further
expanded or merged). Finally, the “additional” core points identi-
fied byQi may only cause the birth of new clusters or expansion
or merge of the clusters identified byQj , because they either ex-
tends these cluster structures when they are “connected” to one or
more of them (causing expansion or union) or form new clusters by
themselves when they are not “connected” to any (causing birth).
This indicates that the cluster set identified byQi is a “growth” of
that identified byQj (By Observation 4.3). This proves Lemma .

Figure 8 demonstrate san example of the cluster sets identified
by three queries having a sameθrange but differentθcnts.

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary θcnt. Since the window parameters
of all member queries are same in this case, the predicted windows
that need to be maintained by all member queries are the same.
In particular, all member queries need to maintain a same number
of predicted windows, say fromW0 to Wn. Also, for all mem-
ber queries, any predicted windowWi (i¡n) has exactly same data
points fallen into it. This indicates that, in any predicted window
Wi, the cluster sets identified by the member queries will have the
growth hold among them (by Lemma 5.1).

As we discussed earlier in Section 4, once the “growth” property
holds among the cluster sets, we can build the hierarchical clus-
ter structure for them. Now we build an integrated hierarchical

Figure 8: Cluster sets identified by three different queries

structure to represent multiple predicted views identified by dif-
ferent queries for a same corresponding predicted window. We
denote such Integrated Representation of Predicted Views across
Queries with Arbitraryθcnt by (IntV iew θcnt). For each pre-
dicted window,IntV iew θcnt starts from the predicted view with
the most “restricted clusters”. In this context, this corresponds to
the ‘predicted view” maintained byQi with the largestθcnt among
QG. Then, it incrementally stores the cluster “growth informa-
tion”, namely the “merge” of existing cluster memberships and the
new cluster memberships, from one query to the next in the de-
creasing order ofθcnt. Figure 9 gives an example of aIntV iew θcnt,
which represents the predicted views (shown in Figure 8) identified
by three different queries .

Figure 9: IntV iew θcnt: Integrated Representation for Pre-
dicted Views identified by three different queries

IntV iew θcnt successfully integrates the representations of mul-
tiple “predicted views” into a single structure, thus saving the mem-
ory space from storing them independently. In particular,

Lemma 5.2. Given the maximum window size allowed, the up-
per bound of the memory space needed byIntV iew θcnt is inde-
pendent from|QG|, the cardinality of the query group represented

by it.

Proof: First of all, there are two types of meta-information
that need to be stored byIntV iew θrange, namely the cluster
memberships and the exact neighbors of the data points. Since
IntV iew θrange uses the hierarchical structure described in Sec-
tion 4 to store the cluster memberships for the data points, the
upper bound of the memory space used for storing cluster mem-
berships is independent from|QG| (proved in Lemma 4.1. Since
IntV iew θcnt only stores the exact neighbors for “non-core” data
points, and the maximum number of exact neighbors a “non-core”
point can have is a constant (max(Qi.θ

cnt) − 1), the upper bound
of the memory space used for storing exact neighbors is again in-
dependent from|QG|. This proves Lemma 5.2.
Obviously, without usingIntV iew θcnt, the memory space needed
for independently storing the cluster memberships identified by
all member queries inQG will increase linearly with|QG|. Our
method, however, now makes it independent from|QG| (as proved
in Lemma 4.1).

Maintenance of IntV iew θcnt. Besides the memory saving,
we can also update multiple predicted views represented by aIntV iew θcnt

incrementally and thus save computational resource. In particu-
lar, for each new data pointpnew, we start the updating process
from the bottom level ofIntV iew θcnt, namely the predicted view
identified by the query with largestθcnt. Then we incrementally
propagate the effect of this new data point to the next higher level
predicted views. Using the example that we utilized earlier in Fig-
ure 9, a new data point identified to have 3 neighhors in the win-
dow, is a “none-core” in the bottum (most restricted) level predicted
view, whereθcnt = 4. So, at the bottom level, we simply add all
its neighbors to its neighbor list. However, it’s effect to upper level
predicted views may differ, as this data point may be identified as a
“core point” by a more “relaxed” query, say whenθcnt = 3. Then,
we need to generate a cluster membership for it at that predicted
view and merge it with those cluster memberships (if any) belong-
ing to its neighbors.

We omit the exact maintenance algorithm ofIntV iew θcnt here
to save space, but emphasize that maintenance process is efficient
for the following two reasons: 1) No extra range query search is
needed when a data point is found to be a “core point” in an up-
per level predicted view and thus needs to communicate with its
neighbors, because as a “none core point” in the lower level pre-
dicted views, it would already have stored the links to all its exact
neighborships and thus would have direct access to them. 2) As the
“growth” of cluster sets identified in predicted views is incremen-
tal, less and less maintenance effort will be needed as we handle
the higher level predicted views.

5.2 Sameθcnt, Arbitrary θrange Case.
Now we discuss the case that all member queries have the same

θcnt but arbitraryθrange. This case is more complicated than the
previous one, because differentθranges will affect the neighbor-
ships identified by different queries. For example, a pair of data
pointspi andpj with distance equal to 0.2 will be considered to
be neighbors inQ1 with θrange = 0.1, while not in Q2 with
θrange = 0.4. As the neighborships identified by different queries
are different, the clusters identified by them are likely to be differ-
ent as well.

Based on our experience of designingIntV iew θcnt, we ex-
plore whether the “growth property” holds between two queries
with sameθcnt but differentθranges. Fortunately, the answer is
positive as demonstrated below.

Lemma 5.3. Given two queriesQi andQj specified to a same

data set, withQi.θ
cnt = Qj .θ

cnt and Qi.θ
range ≥ Qj .θ

range

and querying against the same dataset, the cluster set identified by
Qi is a “growth” of that identified byQj .

Proof: First, sinceQi.θ
range ≥ Qj .θ

range, for each data
point pi, its neighbors identified byQj is a subset of those identi-
fied byQi. Then, sinceQi.θ

cnt = Qj .θ
cnt, the “core point” set

identified byQj is a subset of that identified byQi. Second, also
because ofQi.θ

range ≥ Qj .θ
range, the neighborships identified

by Qj in this data set is a subset of those identified byQi. which
means that all the “connections” in any cluster structure identified
by Qj will also hold for Qi. For these two reasons, the cluster
structure identified byQj will also be identified byQi (although
may be further expanded or merged). Finally, the “additional” core
points identified byQi may only cause the birth of new clusters or
expansion or merge of the clusters identified byQj . Similarly, the
“additional connections (neighborships)” among data points can
only cause the expansion or merge of clusters identified byQj as
well. Thus the cluster set identified byQi is a “growth” of that
identified byQj .

Figure 10 demonstrates an example of the cluster sets identified
by three queries having the sameθcnt but differentθrange param-
eters.

Figure 10: cluster sets identified by three different queries

Integrated Representation of Predicted Views across Multi-
ple Queries with Arbitrary θrange. Similarly as before, we now
can build an integrated structure to represent multiple “predicted
views” identified by different queries with arbitraryθcnt. We call
it IntV iew θrange.

Similar with IntV iew θcnt, IntV iew θrange starts from the
“predicted view” with the most “restricted clusters”, namely the
predicted view representingQi with the the smallestθrange among
QG in this case. Then, it incrementally stores the cluster “growth
information” from one query to the next in the increasing order of
θrange. However, as now each data point may be identified to have
more “neighbors” in the higher level predicted views, which repre-
sent queries with larger and largerθrange, a new type of increment,
namely the “additional exact neighbors” of each data point, need to
be stored by these predicted views.

Figure 11 gives an example ofIntV iew θrange that integrates
the predicted views (shown in Figure 10) identified by different
queries. Again, we can prove that the upper bound of the memory
space needed by aIntV iew θrange is independent from|QG|. In
particular,

Figure 11: IntV iew θcnt: Integrated Representation for Pre-
dicted Views identified by three different queries

Lemma 5.4. Given the maximum window size allowed, the up-
per bound of the memory space needed byIntV iew θrange is
independent from|QG|, the cardinality of the query group repre-
sented by it.

Proof: Similar with IntV iew θcnt, IntV iew θrange needs
to store two types of meta-information, namely the cluster member-
ships and the exact neighbors of the data points. SinceIntV iew θrange

uses the hierarchical structure described in Section?? to store the
cluster memberships for the data points, the upper bound of the
memory space used for storing cluster memberships is independent
from |QG| (proved in Lemma 4.1. AlthoughIntV iew θrange

needs to incrementally store “additional exact neighbors” for the
data point in higher level predicted views, the maximum number
of exact neighbors a “non-core” point can have is still a constant
(θcnt − 1). The upper bound of the memory space used for stor-
ing exact neighbors is thus independent from|QG|. This proves
Lemma 5.4.

SinceIntV iew θrange is very similar in concept withIntV iew θcnt,
we omit the details ofIntV iew θrange maintenance.

5.3 Arbitrary θrange, Arbitrary θcnt Case.
Now we discuss the shared processing for a query groupQG

with queries having totally arbitrary pattern parameters, namely ar-
bitrary θrange and arbitraryθcnt values. Although the “growth
property” holds between the cluster sets identified by two queries
Qi andQj , if Qi andQj share at least one query parameter, it does
not necessarily hold if both query parameters ofQi andQj are dif-
ferent. So, to again take the advantage of the compact structure of
Integrated Representation of Predicted Views, we need to explore
that when does “growth property” hold between two queries in the
most general cases.

Lemma 5.5. Given two queriesQi andQj specified to a same
dataset, withQi.θ

cnt ≤ Qj .θ
cnt andQi.θ

range ≥ Qj .θ
range and

querying against the same dataset, the cluster set identified byQi

is a “growth” of that identified byQj .

Proof: Lemma 5.5 can be proved by the transitivity of the
“growth property”. Given a queryQk with Qi.θ

cnt ≤ Qk.θcnt ≤
Qj .θ

cnt andQk.θrange = Qj .θ
range, the cluster set identified by

Qk is a “growth” of that identified byQj (by Lemma 5.1). This

means that for any clusterCa identified byQj there exist a cluster
Cb identified byQj thatCa ∈ Cb. Also, the cluster set identified
by Qi is a “growth” of that identified byQk (by Lemma 5.3). This
means that for any clusterCb identified byQj there exist a cluster
Cc identified byQi thatCb ∈ Cc. So for any clusterCa identified
by Qj there exist a clusterCc identified byQi thatCa ∈ Cc. Thus,
the cluster set identifiedQi is a “growth” of that identified byQj

(by definition 4.2).
To more intuitively describe the relationship between any two

queries in a query group, we give the follow definition.

Definition 5.2. Given two queriesQi and Qj specified to a
same dataset, ifQi.θ

cnt ≤ Qj .θ
cnt andQi.θ

range ≥ Qj .θ
range.

we sayQj is a “more restricted” query thanQi, andQi is a “more
relaxed” query thanQj .

Integrated Representation of Predicted Views across Multiple
Queries with Arbitrary Pattern Parameters. We again aim to
build a single structure which represents the “predicted views” iden-
tified by all member queries ofQG in a same window. However,
given the “growth property” only holds between two queries if one
is more restricted than the other, we can no longer expect to put all
member queries into a single hierarchy.

Our solution is to build a “Predicted View Tree”, which inte-
grates multiple predicted view hierarchies into a single tree struc-
ture. In this tree structure, each predicted view (except the root)
only needs to store and maintain the incremental information (clus-
ter “growth”) from its parent much like the predicted views in
IntV iew θrange andIntV iew θcnt. In particular, such a “Pre-
dicted View Tree” starts from the predicted view that represents
“the most restricted query” amongQG. “The most restricted query”
here indicates the member query that has both the smallestθcnt and
the largestθrange amongQG. If such a “most restricted query”
does not naturally exist inQG, we build a “virtual” one by gener-
ating a query with the smallestθcnt and the largestθrange among
QG. The predicted view representing this “most restricted query”
will be the “root” of our “Predicted View Tree”. If the most re-
stricted query is a virtual query, its predicted view will be used for
“Predicted View Tree” maintenance but it will never generate any
output. Then the predicted views representing more relaxed queries
will be iteratively put on the higher level (farther from the root) of
the tree. More specifically, after picking “the most restricted query”
as the root of the tree, we iteratively pick (and remove) “the most
restricted queries” remaining inQG and put their predicted views
as the next level of the tree. Here, a member queryQj is one of
“the most restricted queries” remained inQG, if there does not ex-
ist any other member queryQi in QG, which is “more restricted”
thanQj . For example, givenQG = {Q1(θ

range = 0.5, θcnt =
5), Q2(θ

range = 0.4, θcnt = 7), Q3(θ
range = 0.2, θcnt = 10),

Q4(θ
range = 0.3, θcnt = 7), Q5(θ

range = 0.4, θcnt = 8)}. The
root of the “Predicted View Tree” is the predicted view represent-
ing “the most restricted query”, namelyQ3 in this case. Then, the
second level “most restricted queries” areQ4 andQ5, which are
more relaxed thanQ3 but more restricted thanQ1 andQ2 (neither
of them is more restricted than the other). Finally, the third level
“most restricted queries” areQ1 andQ2. This process of figuring
out “the most restricted queries” at each level is equal to the prob-
lem of calculating the “skyline” in the two dimensional space of
θrange andθcnt. Since this process of building ”Predicted View
Tree” can be conducted offline during query compilation (before
the real-time execution), any existing skyline algorithm [] can be
plugged into our system to solve this problem.

The predicted views on the lower level of the tree always rep-
resent the more restricted queries than those on the higher levels.

Then, the “growth information”, namely the evolution of cluster
memberships and the “additional exact neighbors”, will be stored
from one predicted view to each of its “children” on the higher
level. Such building process guarantees an important property of
“Predicted View Tree” as demonstrated below.

Lemma 5.6. Given a cluster setClu Setm identified by a query
Qm on the ith level of the “Predicted View Tree”, and a clus-
ter setClu Setn identified by a queryQn on the(i − 1)th level,
the “growth information” betweenClu Setm andClu Setn is no
more than that betweenClu Setm and any cluster setClu Seto

identified by a queryQn on the(i − j)th(i > j > 1) level.

Proof: Since the queries on the(i−j)th level are always more
restricted than those on the(i)th level, we know thatClu Setn is
a growth ofClu Seto, Clu Setm is a growth ofClu Setn and
Clu Setm is also a growth ofClu Seto. This means the “growth
information” fromClu Seto to Clu Setm can actually be divided
by two parts, namely the “growth information” fromClu Seto to
Clu Setn and that fromClu Setn to Clu Setm. This proves that
the “growth information” fromClu Setn to Clu Setm is no more
than that fromClu Seto to Clu Setm.
This property assures that each predicted view in the the “Predicted
View Tree” maintains the smallest increments and represent multi-
ple predicted views as compact as possible.

To finalize the tree structure, for each queryQn on theith level
of the tree, we need to determine its “parent” on the(i − 1)th

level. We aim to find such a “parent” queryQm that is most sim-
ilar to Qn, indicating that there exists least “growth information”
from the cluster set identified by itself to that identified byQn.
Based on our analysis, for two member queries, their difference
on “neighborships” identified is more likely to cause the difference
on the cluster sets identified by them, compared to their difference
on the requirement for “core points”. Since the queries with sim-
ilar θranges tend to identify similar neighborships in the window,
this indicates that the difference onθranges has larger influence
to cluster changes compared withθcnts. So, when we determine
the parent predicted view, although we consider the similarity be-
tween both pattern parameters, more “weights” are given to that
betweenθranges. The specific algorithm is omitted here. To unify
the names of the hierarchical structures representing multiple pre-
dicted views, we henceforth call the “Predicted View Tree”Int θ.

Although IntV iew θ is a tree structure, instead of a linear se-
quence likeIntV iew θcnt andIntV iew θrange, they share the
core essence that each predicted view is incrementally built based
on the most similar predicted view with it, and the “growth prop-
erty” holds between them. We call the member queries on each
path ofIntV iew θ a group ofshared queries.

Lemma 5.7. The upper bound of the memory space needed by
IntV iew θ for any group of shared queries is independent from
the number of queries in this group.

Since all these queries are on the same path ofIntV iew θ struc-
ture, indicating that the growth property transitively holds among
the cluster set identified by them, the independency between the
upper bound of the memory space and the number of queries can
be proved using the same method as we used for proving Lemmas
5.2 and 5.4.

The maintenance process ofIntV iew θ is also similar with that
for IntV iew θcnt andIntV iew θrange. For each new data point,
we always start the maintenance from the root of theIntV iew θ,
namely the predicted view representing the most restricted query.
Then we incrementally maintain the predicted views on the higher
level of IntV iew θ.

Now we conclude the contribution ofIntV iew θ as demon-
strated below.

Theorem 5.3. For a given density-based clustering query group
QG with member queries having arbitrary pattern parameters,IntV iew θ
achieves full sharing of both memory space and query computation.

Proof: First, the storage mechanism ofIntV iew θ is com-
pletely incremental. In particular, since each predicted view on
Int θ only store the increments from its “parent”, no duplicate
information is ever stored among any two predicted views. This
proves thatIntV iew θ achieves full sharing on memory space.
Second, since the maintenance process ofIntV iew θ is incremen-
tal as well, indicating that each new data point only communicates
with each of its neighbors once on each path of tree structure, no
matter how many different predicted views their neighborship ap-
pears in. This proves thatIntV iew θ achieves full sharing on com-
putation of multiple queries.

5.4 IntV iew θ In Multiple Predicted Windows
Given the assumption that all the member queries inQG share

the window parameters, namely the samewin andslide, we have
discussed earlier in this section that the predicted windows that
need to be maintained by all member queries are the same. So,
a most straightforward way to serve a query group that need to
maintain N predicted windows, is to use NIntV iew θs to repre-
sent N predicted windows independently. Using this method, the
N IntV iew θs presenting different predicted windows will have
the same tree structure, as they are representing the same queries in
each predicted window. Figure 12 gives an example of using four N
IntV iew θs to represent four predicted windows for a query group
with 5 member queries.

Figure 12: IntV iew θ: Integrated Representation for Pre-
dicted Views identified by five different queries with arbitrary
pattern parameters

As conclusion, for the general case of handling a query group
with arbitrary pattern parameters but the same window parame-
ters, we employ N (N > 0) IntV iew θs to represent the pre-
dicted views identified by multiple queries in multiple windows,
and maintain them independently at arrival of each new data point.
We note that such straightforward application ofIntV iew θ real-
izes the full sharing in each predicted window (Lemma 5.3), but no
sharing is yet achieved across the different predicted windows, as

they still need to be maintained independently. A more sophisti-
cated hierarchical structure integrating multipleIntV iew θs will
later be introduced next to further realize full sharing across multi-
ple predicted windows.

6. SHARING FOR QUERIES WITH DIFFER-
ENT WINDOW PARAMETERS

In this section, we discuss memory and CPU sharing among mul-
tiple queries with different window parameters, namely variations
in the window sizewin and the slide sizeslide. During the dis-
cussion, we assume that all these queries have the same pattern
parameters.

6.1 Samewin, Arbitrary slide Case.
In this case, all member queries have the same window size

win, while their slide sizes may vary. First, we assume that all
queries start simultaneously. So that the equality of window sizes
implies that all queries always query on the same portion of the
data stream. More specifically, at any given time the data points
falling into the windows of different queries are same. Then, the
only difference among different queries is that they need to gener-
ate output at different moments, as they have different slide sizes.
For example, given three queriesQ1, Q2 andQ3, with Q1.win =
Q2.win = Q3.win = 10(s), Q1.slide = 2(s), Q2.slide = 3(s)
andQ3.slide = 6(s), the query windows of them cover exactly
same portion of the data stream at any given time, while they are
required to output the clusters at every 2, 3 and 6 seconds respec-
tively. So, to serve the different output time points, they need to
build predicted windows starting at different time, each serving
a future a output time point. In this example, assuming all three
queries start at wall clock time 00:00:00, they all need to build a
predicted window starting at 00:00:00 for generating the output at
00:00:10, which is their first and shared output time point. ThenQ1

needs to build predicted windows starting at 00:00:02, 00:00:04, etc
to serve the output time points at 00:00:12, 00:00:14, whileQ2 and
Q3 need to build predicted windows starting at 00:00:03, 00:00:06,
etc and 00:00:06, 00:00:012, etc respectively.

To solve this problem, for a given groupQG, we build a single
meta queryQmeta which integrates all the member queries ofQG.
In particular, this meta queryQmeta has the same window size with
all member queries inQG, while its slide size is no longer fixed but
adaptive during the execution. More specifically, the slide size of
Qmeta at a particular moment is decided by the nearest moment
which at least one member query ofQG needs to be answered.
The specific formula to determine the next output moment is:

Tnextoutput = Min(⌈
T − win

Qi.slide
⌉ + 1) ∗ Qi.slide + win)

With T the current wall-clock time andwin the common window
size of all queries. Using the earlier example, for the query group
having three member queries, we build a meta queryQmeta for
it with win = 10s. So, at wall-clock time 00:00:10, the slide
size ofQmeta should be 2s, as 00:00:12 will be the nearest time
which a member query (Q1) needs to be answered. Then its slide
size is adapted to 1s, 1s and 2s at 00:00:02, 00:00:03 and 00:00:04
respectively for the same reason.

Such adaptive slide size strategy does not require any substantial
change to “view prediction” technique. This is because, although
the slide size ofQmeta may keep changing, these changes are still
predictable and periodic. In particular, given the slide size of all
the member queries, we always know that at which moments the
member queries need to be answered. Also, the “distance” between

any two successive output moment is changing periodically. So,
we can always make an output schedule (with a finite output time
points) forQmeta, which predetermines the slide size ofQmeta at
any given moment.

Knowing the slide sizes ofQmeta, we can just build predicted
windows forQmeta based on the output time points. Still using the
earlier example, at wall-clock time 00:00:10, we would have built
eight “predicted windows” forQmeta , which start from 00:00:00,
00:00:02, 00:00:03, 00:00:04, 00:00:06, 00:00:08, 00:00:09 and
00:00:10 respectively, as each of them correspond to an output time
point for at least one member query. Among these eight “predicted
windows”, many of them are actually serving multiple queries.
For example, the “predicted windows” starting at 00:00:00 and
00:00:06 will be used to answerQ1, Q2 andQ3 as they correspond
to the output time points that are shared by all three queries. This
also means that if we maintain the predicted windows for these
queries independently, four more predicted windows would need
to be maintained at this given moment. In particular,Q2 andQ3

need to maintain their own predicted windows starting at 00:00:00
and 00:00:06 separately, although they are exactly same with those
maintained byQ1. In this example, 33 percent of “predicted win-
dows” are saved from the independent maintenance mechanism,
which means 33 percent of storage space and computational re-
sources are saved. Such “predicted windows” for a meta query are
no different from those needed for any single query. So, a straight-
forward way to maintain them is to use the maintenance method
introduced inExtra-N [] to update them independently at the ar-
rival of each new data point.

In conclusion, by building a meta query representing all member
queries in a query group, we can save both the memory space and
CPU time for answering the query group for the following reasons:
1) No overhead, in particular, no extra predicted views will be in-
troduced, as a predicted window is built only if at least one member
query needs output at that moment (all the predicted windows built
in our integrated solution need to be maintained by individual mem-
ber queries any ways). 2) Many predicted views can be shared as
several member queries may require output at the same time. The
specific amount of sharing depends on the percentage of overlaps
of member queries’ output time points.

6.2 Sameslide, Arbitrary win Case
In this case, although the window size may vary among the mem-

ber queries, we hold the slide size steady, indicating that their out-
put schedules are identical. Here we first use a common assump-
tion that all the window sizes of the member queries are multiples
of their common slide size. We observed that, given a query group
with member queries having the same slide size but different win-
dow sizes, all the member queries require output at exactly the same
moments. Based on this observation an important characteristics
can be discovered for such query groups.

Lemma 6.1. Given a query groupQG with member queries
having the same slide sizeslide but arbitrary window sizes (mul-
tiples ofslide), the “predicted windows” maintained forQi, with
Qi.win larger or equal to any otherQj .win in QG, will be suffi-
cient to answer all member queries inQG.

Proof: This is because the “predicted windows” maintained
for Qi will cover all the “predicted windows” that need to be main-
tained for all the other queries. More specifically, at any given mo-
ment, say wall-clock timeT , the “predicted windows” that need
to be maintained for a member queryQn include all those starting
at T − n ∗ slide (1 ≤ n ≤ Qn.win

slide
). As Qi.win is larger or

equal than anyQj .win, the “predicted windows” maintained for

Qi cover all those needed by other queries. At timeT , any mem-
ber queryQj can be answered by the “predicted window” starting
from T − Qj .win.

For example, given three queriesQ1, Q2 andQ3, with Q1.slide =
Q2.slide = Q3.slide = 5s, Q1.win = 10, Q2.slide = 15s
andQ3.slide = 20s, at wall clock time 00:00:20, the “predicted
windows” built byQ3 start from 00:00:00, 00:00:05, 00:00:10 and
00:00:15 respectively, while those need to be maintained byQ1 and
Q2 start from 00:00:10, 00:00:15 and 00:00:05, 00:00:10, 00:00:15
respectively, which all overlap with those built byQ3. At this mo-
ment, the “predicted window” starting from 00:00:00 can used to
answerQ3, while the predicted windows starting from 00:00:10
and 00:00:05 can be used to answerQ1 andQ2 respectively.

In summary, we only need to maintain the predicted windows for
a single member query, namely the query with the largest window
size, and then can answer all the member queries in the query group
with different predicted windows it maintains. Clearly, full sharing
is achieved. Here, we also note that although we made the common
assumption in Lemma 6.1 that the window sizes are multiples of
slide, to make the problem easier to understand, it is not crucial for
our solution. Our solution can easily be relaxed to handle the cases
where window sizes of member queries are completely arbitrary.

6.3 Arbitrary slide, Arbitrary win Case
We now give the solution for the cases that both window param-

eters, namelywin andslide, are arbitrary. Generally, the solution
for this case is a straightforward combination of the two techniques
introduced in the last two subsections. In particular, we simply
build one single meta query that has the largest window size among
all the member queries and uses an adaptive slide size. These two
techniques are fully compatible, because they were both designed
to make sure correct predicted windows (start and end properly as
the queries required) are created to answer the member queries.

Here we use an example to demonstrate our solution. Given
three queriesQ1, Q2 andQ3, with Q1.win = 10, Q1.slide = 4,
Q2.win = 9, Q2.slide = 5, Q3.win = 6 andQ3.slide = 2,
and all starting at wall clock time 00:00:00, we build a meta query
Qmeta with Qmeta.win = max(Qi.win)(1≤i≤3) = 10. Then
we adaptively change its slide size based on the next nearest output
time point required by (at least) one of these three queries. For in-
stance, at wall clock time 00:00:10, six predicted windows would
have been built, which start from 00:00:00 (servingQ3 for output at
00:00:10), 00:00:01 (servingQ2 for output at 00:00:10), 00:00:04
(servingQ1 for output at 00:00:12 andQ3 for output at 00:00:10),
00:00:06 (servingQ2 for output at 00:00:13 andQ3 for output at
00:00:12), 00:00:08 (servingQ1 for output at 00:00:18 andQ3 for
output at 00:00:14) respectively. Figure 13 shows the predicted
views that need to be maintained by each of these three queries
independently, versus those by the meta query at wall clock time
00:00:10.

Figure here:
Integrated Representation of Predicted Views across Multi-

ple Windows. Although Extra-N [2] algorithm can be applied
to maintain the predicted views of the meta query and thus answer
the whole query group, this algorithm achieves no sharing across
the multiple predicted windows, because it requires the predicted
view of each predicted window to be stored and maintained inde-
pendently (we mentioned this at the end of Section 5 as well). Now
we introduce a further optimization for the maintenance for the pre-
dicted views of multiple predicted windows based on the “growth
property”. We first make the following observation.

Lemma 6.2. For a single queryQi, at any given time T with
Wn being the current window, the cluster set identified in the “pre-

Figure 13: Predicted views maintained by three queries inde-
pendently versus those maintained by a single meta query

dicted view” of predicted windowWn+i is always agrowth of that
identified in the “predicted view” ofWn+i+1.

Proof: At any given time T withWn being the current win-
dow, it is known that more and more data points inWn will expire
as the window number increases. So the data points falling intoWn

that appear in the “predicted view” ofWn+i+1 are a subset of those
appear in “predicted view” ofWn+i. This is equal to saying that
the “predicted view” ofWn+i is composed by adding data points
to the “predicted view” ofWn+i+1. As we mentioned earlier in
Section 3 and demonstrated in [2], birth, expansion and union are
the only possible pattern changes caused by addition of data points
to a window. So, based on observation 4.3, the cluster set identi-
fied inWn+i is a “growth” of cluster set identified inWn+i+1 This
proves Lemma 6.3.
Note that Lemma abstracts the change of clusters from one win-
dow to another in a reversed direction with the real sequence of the
windows. Cluster sets shown in Figure 2 can be taken as an exam-
ple where such “growth property” holds. In particular, the “growth
property” transitively holds from the cluster sets identified in pre-
dicted windowW3 to W0. Again, the “growth property” allows us
to build an integrated structure to incrementally store and maintain
the predicted views across multiple windows. We call such inte-
grated representation of predicted views across multiple windows
IntV iewW .

Figure 14 gives an example of theIntV iewW built for the pre-
dicted views showing Figure 2

In particular, since the data points covered by different predicted
windows incrementally increase as the window number decrease,
another new type of incremental information, namely the “addi-
tion data points”, need to be maintained at each higher level pre-
dicted views. As a hierarchical structure that are very similar with
IntV iewcnt

θ andIntV iewrange

θ , the predicted views inIntV iewW

can also be incrementally maintained at the arrival of each new data
point, by a very similar maintenance method with them. We omit
the details of the maintenance method here.

As conclusion, now we have an even more efficient way to han-
dle a query groupQG with same pattern parameters but arbitrary
window parameters. For such query groupQG, we can always
build a meta query for it which carries all the predicted windows
needed by its member queries, and then we can useIntV iewW to
integrate them into a singleIntV iew W structure.

Figure 14: IntV iew W : Integrated Representation for Pre-
dicted Views Identified by a Single Query in 4 Predicted Win-
dows

Figure 15 shows the improved predicted view storage mecha-
nism for the meta query by usingIntV iew W .

Figure 15: IntV iew W : Integrated Representation for Pre-
dicted Views Identified by a Meta Query in 5 Predicted Win-
dows

7. PUTTING ALL TOGETHER: THE GEN-
ERAL CASE.

Finally, we now discuss the case that the pattern and window
parameters are both arbitrary for the queries in a query group. Al-
though sharing among a group of totally arbitrary queries is a hard
problem if we have to solve it from scratch, we now can easily
handle it by combine the two techniques introduced in last two sec-
tions, namely the theIntV iew θ technique and the meta query
technique. These two techniques are orthogonal to each other, and
can thus be easily combined. In particular, theIntV iewθcnt tech-
nique (introduced in Section 5) is design to share among a group
of queries that are specified to a same dataset, which in our case
is each predicted windows. So, we can consider this here as an

“ inner-predicted-windows” sharing technique. On the other hand,
the meta query technique (introduced in Section 6) is designed to
make sure the predicted windows, which need to be maintained by
different queries, start and end properly and share across the dif-
ferent predicted windows. So, it is an “inter-predicted-windows”
sharing technique. Thus, such two orthogonal techniques can be
easily applied together to realize the full sharing of the member
queries on both inner- and inter-predicted window level.

Here we use an example to demonstrate such a combination.
Given three queriesQ1, Q2 andQ3 starting at 00:00:00, withQ1(win =
10, slide = 4, θrange = 0.2, θcnt = 5); Q2(win = 9, slide =
5, θrange = 0.3, θcnt = 4) andQ3(win = 6, slide = 2, θrange =
0.2, θcnt = 3), we first use the meta query technique to build
the predicted windows they need to maintain. At wall clock time
00:00:10, the required predicted windows are same with those shown
in Figure 15. Then, for each predicted window built, we apply
IntV iew θ technique to build an “Predicted View Tree” to inte-
grate the predicted views (of different queries) in this window. For
the predicted window starting from 00:00:04, which are servingQ1

andQ3, we build a “Predicted View Tree” for it representing both
Q1 andQ3. Now the “Predicted View Tree” structures built for
different windows may no longer be all the same as those in the ex-
ample we demonstrated in Figure 16. This is because the predicted
view of a particular query will appear on a “Predicted View Trees”
only if this predicted window needs to be maintained by this query,
indicating this predicted window is corresponding to an output time
point for it. Using the same example,Q2 has predicted views in
W4, asW4 is not a predicted window that need to be maintained
by it.

To apply theIntV iew W technique (introduced in Section 6),
which allows us to share across multiple predicted windows, we
use “the most restricted query” of the whole query group to act as
the root of all the “Predicted View Trees” built in different win-
dows. Using the same example in the last paragraph, the roots of
all “Predicted View Trees” will be the predicted view forQ1 having
θcnt = 0.2 andθcnt = 5. By doing so, the “Predicted View Trees”
in different predicted now start from the predicted view represent-
ing a same query. Thus, we can further integrate these roots in dif-
ferent predicted windows into aIntV iew W structure. This final
move “connects” all the “Predicted View Trees”, forming a single
hierarchical structure that realizes completely incremental storage
and maintenance for all member queries across multiple predicted
windows. We call such ultimate hierarchical structureIntV iew.
Figure 16 demonstrates theIntV iew built for the three queries
mentioned in the earlier example.

In particular,IntV iew is a tree structure that starts from the
predicted view acting as the root (rnewest) of the “Predicted View
Tree” in the newest predicted window (with largest window num-
ber). As the “backbone” ofIntV iew, an IntV iewW structure
connects the roots of all “Predicted View Trees” (IntV iew θ) in
different predicted windows. Thus, each root predicted view in an
older predicted window is now incrementally built based on that
in the next window. This indicates that, as subtrees forIntV iew,
each “Predicted View Trees” in an older window is now built based
on the incremental information from the next (the newer) window
(as its root itself now is incremental). We call this final solution
Integrated maintenance for density-based clustering “Chandi”. We
give the psuedo-code ofChandibelow.

As shown our psuedo-code (in Figure 17), when a new data point
arrives at the system, it first runs a range query search using the
largestθrange among the query group to collect all its potential
neighbors, and then it distributes each of them to the first predicted
view on each path ofIntV iew, in which their “neighborship” tru-

Figure 16: IntV iew: Integrated Representation for Predicted
Views Identified by 3 Queries in 5 Predicted Windows

ely exist. Then, it starts theIntV iew maintenance process from
the root ofIntV iew, namely the root predicted view of the newest
predicted window onIntV iew, and then incrementally maintain
those at higher level ofIntV iew. During the maintenance for of
each predicted view, it only needed communicates with the neigh-
bors distributed to that particular view. Thus, computation-wise,
Chandi only requires a single pass through the new data points,
each running one range query search and communicating with its
neighbors once for all shared queries (on each path). Memory-
wise, as the growth property holds among the cluster sets identified
by the queries on each path ofIntV iew, the upper bound of the
memory consumption ofChandi for a group of shared queries on
the same path is independent from the “length” of this path, namely
the number of shared queries in this group (this can be proved using
the same methods as we used for proving Lemma 5.7). In conclu-
sion,Chandiachieves full sharing for multiple density-based clus-
ter queries over the same input stream in terms of both CPU and
memory resources.

8. EXPERIMENTAL STUDY
All our experiments are conducted on a HP Pavilion dv4000

laptop with Intel Centrino 1.6GHz processor and 1GB memory,
which runsWindows XP operating system. We implemented all
algorithms with VC++ 7.0.

We used two real streaming data sets. The first data set, GMTI
(Ground Moving Target Indicator) data [6], records the real-time
information of moving objects gathered by 24 different data ground
stations or aircrafts in 6 hours from JointSTARS. It has around
100,000 records regarding the information of vehicles and heli-
copters (speed ranging from 0-200 mph) moving in a certain ge-
ographic region. In our experiment, we used all 14 dimensions of
GMTI while detecting clusters based on the targets latitude and lon-
gitude. The second dataset is the Stock Trading Traces data (STT)
from [14], which has one millions transaction records throughout
the trading hours of a day.

Competitor Algorithms and Experimental Methodologies. To
evaluate our proposed algorithmChandi, for any inputQG with
|QG| = N , we compareChandi’s performance of executingQG
with four alternative methods. First,Extra-N algorithm with no
range query sharing (henthforth referred asExtra-N), indicating
that we run NExtra-N algorithms, each for a member query in

pi: a data point. pnew: a new data point.
clu mem : cluster membership.
Wi : a predicted window.
IntV iew: the overall IntView structure.
Woldest/newest: oldest/newestW on IntV iew.
Woldest : the newest predicted window onIntV iew.
Wi.root : the root predicted view of inWi.
PV : a predicted view. Qi : a member query.
Qi.PV : a predicted view built forQi.

Chandi (QG)
1 For each new data pointpnew

// purge
2 if pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window
// load

4 loadpnew into index
// IntView Maintenance

5 neighbors:=RangeQuerySearch(pnew, max(Qi.θ
range))

6 UpdateIntView(pnew, neighbors)
// output

7 if pnew.T = Toutput

8 Output();
9 add new windowWnewest to IntV iew

Purge(Wi)
1 purge anypi from index if
Wi.Tstart ≤ pi.T < Wi+1.Tstart

2 removeWi from IntV iew

UpdateIntView (p, neighbors)
1 For i:=1 to neighbors.size()
2 DistributeNeighbor(p, neighbors[i], Wnewest.root);
3 UpdatePredictedView(p, Wnewest.root);

To put a neighbor of the new data point to the predicted
views where it needs to be processed. It guarantees that each
neighbor only appears once on each path ofIntV iew.

DistributeNeighbor(pnew, pi, PV)
1 If dist(pnew, pj) ≤ Qi.θrange

2 addpi to PV.neighbors (neighbors distributed to PV)
3 Else ForeachQj .PV at higher level
4 DistributeNeighbor(p,neighbor, Qj .PV);

UpdatePredictView (p, PV)
1 p.neighborcount = PV.neighborsinthisview.size();
2 For i:=1 to PV.neighbor.size()
3 PV.neighbors[i].neighborcount + +;
4 if PV.neighbors[i] becomes a new core
5 HandleNewCore(PV.neighbors[i]);
6 if p.neighborcount ≥ Qi.θ

cnt

7 HandleNewCore(p, PV);
8 For eachQj .PV at higher level
9 UpdatePredictView(p, Qj .PV);

HandleNewCore(p, PV)
1 p.type = core;
2 p.clu mem=new clu mem (cluster membership);
3 For i:=1 to PV.neighbors.size()
4 if PV.neighbors.type == core
5 MergePV.neighbors[i].clu mem andp.clu mem;
6 if PV.neighbors[i].type == noise
7 PV.neighbors[i].type = edge;
8 PV.neighbors[i].clu mem = p.clu mem;
9 For eachQj .PV at higher level
10 PropagateNewCore(p, Qj .PV);

Figure 17: Chandi Algorithm

|QG|, independently. Second,Extra-Nalgorithm with range query
sharing (referred asExtra-N with rqs), indicating that we run N
Extra-N algorithms independently but share the computation con-
sumed by range query searches among them. Third, Incremental
DBSCAN (referred asIncDBSCAN), indicating that we run N In-
cremental DBSCAN algorithms independently. Fourth, Incremen-
tal DBSCAN with range query sharing (referred asIncDBSCAN
with rqs), indicating that we run NExtra-N algorithms indepen-
dently but share the range query searches among. We note that,
for different queries, during the purging process, the data points
that are required to run range query searches by Inc DBSCAN are
different. Sharing range query searches for Inc DBSCAN during
purging is not a trivial problem and not discussed in literature. Thus
here we share the range query searches for the new data point in
each window only.

Our goal is to evaluate the performance of these five algorithms
when executing a query group specified to a same input stream. We
measure two common metrics for stream processing algorithms,
namely average processing time (for each tuple) and memory foot-
print. We run all the experiments using real data to the end of the
datasets. The average processing time is averaged over all the tu-
ples in each experiment. The memory footprint, which indicates
the maximum memory space required by an algorithm, is recorded
over all the windows.

As we know, each density-based clustering query using sliding
window semantics has four input parameters, namely two pattern
parameters:θcnt, θrange, and two window parameters:win and
slide. In many cases, the domain knowledge or specific require-
ments of the analysis tasks may restrict some of them to particular
values. For example, a moving object monitoring task may require
theθrange to be the maximum distance that two objects can keep
wireless communication, and the window size to be the time in-
terval between two successive reports of a single object. Thus the
queries submitted by different analysts may only differ on a subsets
of these parameters. In our experiments, we first evaluate the four
test cases, each has only one of the four parameters different among
the member queries.

Evaluation for One-Arbitrary-Parameter Cases For each test
case, we prepare a query groupQG with |QG| = 20 by randomly
generating one input parameter (in a certain range) for each mem-
ber query, while using common parameter settings on other three
parameters for all of them. The parameter settings in our experi-
ment are learned from the pre-analysis to the datasets. In particular,
we pick parameter ranges that allow member queries to identify all
the different major cluster structures that could be identified in the
datasets. In all our test cases, the largest number of clusters identi-
fied by a member query is at least five times to the smallest number
of clusters identified by the other, indicating that the cluster struc-
tures identified by different queries vary significantly. In each test
case, we use different subsets ofQG (sized from 5 to 20) to execute
against GMTI data.

Arbitrary θcnt case. We useθrange = 0.01, win = 5000
and slide = 1000, while vary θcnt from 2 to 20. In this test
case, at most 16 clusters are identified by the most restricted query
with θcnt = 20, while at least 3 clusters are identified by the
most relaxed one with withθcnt = 3. As shown in the Fig-
ures 18 and 19, both the average processing time and the mem-
ory space used by all four alternatives increases as the number of
member queries increases. This is because more meta-information
needs to be computed and stored by all of them. However, the ul-
tilization of CPU resources byChandi is significantly lower than
those consumed by other alternatives, especially when the num-
ber of the member queries increases, and its memory consump-

tion is almost equal toIncDBSCANand much lower thanExtra-
N. This matches with our analysis in Section 5, because in this
test case, the predicted windows need to be maintained byChandi
for different queries are completely overlapped. Also, since there
is no “extra neighborships” exsiting in any window, the cluster
growth information need to be maintained byChandiamong the
queries are relatively simple. Thus, the system resource consump-
tion of Chandiincreases very modestly when the number of mem-
ber queries increases. While since other alternative methods main-
tain the progressive clusters independently for different queries,
their consumption to system resources increases dramatically when
the number of member queries increases.

Figure 18: CPU time used by
five competitors in arbitrary
θcnt cases

Figure 19: Memory space
used by five competitors in
arbitrary θcnt cases

Arbitrary θrange case. In this case, we useθcnt = 10, win =
5000 andslide = 1000, while varyθrange from 0.01 to 0.1. In this
test case, at most 10 clusters are identified by the most restricted
query withθrange = 0.1, while at least 2 clusters are identified
by the most relaxed one withθrange = 0.1. As shown in the Fig-
ures 20 and 21, similar situations can be observed thatChandiuses
significantly less CPU and memory resources than other alterna-
tives. In this test case, the system resource consumption ofChandi
increases more as the number of queries increases compared with
the previous test cases. This is because of two main reasons. 1)
Since theθrange parameters vary among the queries, the range
query search cost increases along with increase of the number of
queries, even with the range query sharing (each data point needs
to figure out its neighbors defined by different queries). 2) As the
neighborships identified by different queries differ, such “extra-
neighborships” are more likely to cause cluster structure changes
and thus requiresChandi to maintain more meta-information in
IntV iew. The performance of other competitors, especially for
IncDBSCAN, are affected by the increasing cost of range query
searches as well. This is because the performance ofIncDBSCAN
(with rqs or not), which consumes large numbers of range query
searches during the purging process, largely rely on the cost of
range query searches.

Arbitrary win case. In this case, we useθcnt = 10, θrange =
0.01, slide = 500, while vary win from 1000 to 5000 (we use
500 as granularity for any window parameter). As shown in Fig-
ures 28 and 29, we can observe that the performance ofChandi
is even better compared with the previous test cases. In particu-
lar, its resource utilizations for both CPU and memory are almost
unchanged as the number of queries increases. This is expected,
because in this caseChandionly maintains the meta-information
for a single query, which is sufficient to answer all the member
queries. Thus, the cost ofChandiin this case only depends on the
query with the largestwin, which is independent from the number
of queries in the query group.

Arbitrary slide case. In this case, we useθcnt = 10, θrange =

Figure 20: CPU time used by
five competitors in arbitrary
θrange cases

Figure 21: Memory space
used by five competitors in
arbitrary θrange cases

Figure 22: CPU time used by
five competitors in arbitrary
win cases

Figure 23: Memory space
used by five competitors in
arbitrary win cases

0.01, window = 5000, while varyslide from 500 to 5000. As
shown in Figures 24 and 25, the performance ofChandi is simi-
lar with that in the arbitrarywin case. This is because the cost
of Chandi in this case depends on the number of predicted win-
dows that needs to be maintained, which is decided by the query
with smallest slide size but does not necessarily increase with the
number of queries in the query group.

Figure 24: CPU time used by
five competitors in arbitrary
slide cases

Figure 25: Memory space
used by five competitors in
arbitrary slide cases

Evaluation for Two-Arbitrary-Parameter Cases We evaluate
the two test cases, each has two of the four parameters different
among the member queries. In the first test case, member queries
have arbitrary pattern parameters but common window parameters,
indicating that they may have different definition to the clusters but
always have a same query window. In the second test case, mem-
ber queries have arbitrary window parameters but common pattern
parameters, indicating they may have different query windows but
have the same definition to the clusters.Arbitrary Pattern Param-
eters. In this case, we usewin = 5000, slide = 1000, while vary
θcnt from 2 to 20 andθrange from 0.01 to 0.1. As shown in Fig-

ures 26 and 27,Chandistill consumes significantly less CPU time
compared with other alternatives, although the increase of CPU
consumption corresponding to the increase of member queries in
more obvious. This is because totally arbitrary pattern parameters
leads to even larger difference on the cluster identified by different
queries, and thus increase the maintenance cost ofChandi. In par-
ticular, in this test case, the largest number of clusters identified by
the number query (withθrange = 0.01 andθcnt = 14) reaches 35,
while the smallest number of clusters identified the number query
(with θrange = 0.1 andθcnt = 3) is only 2. The memory space
used byChandiin this case is much less thanExtra-Nwhile slightly
higher thanIncDBSCAN. Again, this is the caused by more incre-
mental information existing among the predicted views maintained
by Chandi. However, as the CPU performance ofIncDBSCANis
much worse thanChandi, the overall performance ofChandiis still
much better.

Figure 26: CPU time used by
five competitors in arbitrary
pattern parameter cases

Figure 27: Memory space
used by five competitors in
arbitrary pattern parameter
cases

Arbitrary Window Parameters. In this case, we useθcnt =
10 and θrange = 0.01, while varyingwin from 1000 to 5000
slide from 500 to 5000 (for any particular queryQi, Qi.slide <
Qi.win). As shown in Figures 28 and 29, the performance of
Chandi is similar with that is observed from the arbitrarywin or
slide case. This is because, although the member queries now have
arbitrary settings on both parameters, such fact does not affect the
principle of how the “meta query” strategy works. In particular, the
cost of answering an query group still only depends on the largest
win in the query group and the number of predicted views that need
to be maintained, which both do not necessarily increase along with
the number of queries.

Figure 28: CPU time used by
five competitors in arbitrary
window parameter cases

Figure 29: Memory space
used by five competitors ar-
bitrary window parameter
cases

General Case: Four Arbitrary Parameters. Finally, we eval-
uate the general case, with all four parameters arbitrary. We divide
this experiment into three cases, each measuring the performance

of the algorithms when executing different number of queries. In
particular, for each test case, we generate 30 query groups each
with N member queries (N equals to 20, 40 and 60 for three cases
respectively). Each query group is independently generated, and
the member queries in each group are randomly generated with pa-
rameter settings:θcnt = 2 to 20,θrange = 0.01 to 0.1,win =
1000 to 5000slide = 500 to 5000. For each test case, we mea-
sure the average cost of each algorithm for executing all 30 query
groups. Beyond that, we zoom into the overall average cost of each
algorithm, and measure the cost caused by each specific subtask.
In particular, for the CPU measurement is divided it into two parts,
namely the CPU time used by range query searches and that used
by cluster maintenance. For the memory space consumed, we dis-
tinguish the memory used by raw data (for storing actual tuples)
and the memory used for meta-data.

Figure 30: Detailed comparison on CPU time consumption of
five algorithms

As shown in C1, C2 and C3 of Figure 30, we observe that the
average CPU time used byChandiis 70, 76, and 85 percent lower
then the best alternative method,Extra-N with rqs, in the three cases
respectively. In particular, the CPU time used byChandito conduct
range query searches is always less than10% compared with that
needed byIncDBSCANwith rqs. This is becauseChandionly re-
quires each new data point to run one range query search when it
arrives at the system, whileIncDBSCANrelies on repeated range
query searches to determine the cluster changes. The CPU time
used byChandito maintain meta-information is at least62% less
than that used byExtra-N with rqs. This is becauseChandiupdates
the meta-information for different queries integrally, whileExtra-N
maintains them independently.

Besides the comparison of average system resource consump-
tion, we also measure the savings ofChandi for each individual
query group in all three test cases. In particular, for each query
group, we measure the difference in resource utilization between
Extra-N with rsqandChandi, which corresponds to the difference
between executing them using the best existing technique and our
proposed strategy. More specifically, for each group, we first cal-
culate the difference on CPU (or memory) utilizations between two
Chandi and Extra-N. Then, we use the difference to divide that
used byExtra-N with rqsto get the saving percentage achieved by
Chandi. As shown in C4 of Figures 30,Chandi never performs
worse thanExtra-N with rqsfor any query group. For the first
test case (each query group has 20 queries), the average savings

achieved byChandion CPU time are62%. Although the minimum
savings in this case among the 30 groups is23%, the maximum sav-
ings reaches84% , and the standard deviation is only19% . As the
number of queries in each group increases, the savings achieved by
Chandiare even higher in the other two test cases. In particular, the
average saving achieved byChandion CPU time increases to80%
when the number of queries in each group increases to 60. The
minimum and maximum savings on CPU time increases to45%
and92% respectively in this case, and the standard deviation of
the savings decreases to12%. This shows the promise ofChandi
that, for a query group with 60 queries, it can achieve savings be-
tween73% to 92% of CPU time in most of the cases. Among the
30 query group in this test case, 23 of them fall into this range.
The average savings achieved byChandion memory space in this
60-query cases is89%.

Evaluation for Scalability. Now we evaluate the scalability of
the algorithms in terms of the number of queries they can handle
under a certain data rate. In this experiment, we useExtra-N, Extra-
N with rqsandChandi to execute query groups sized from 10 to
1000 against GMTI data. Similar with the earlier experiment, the
member queries in the query group are randomly generated with
the arbitrary parameter settings in certain ranges. In particular, the
parameters settings in this experiment areθcnt = 2 to 30,θrange =
0.001 to 0.01,win = 1000 to 5000slide = 500 to 5000.

Figure 31: CPU time used by
five competitors in logarith-
mic scale

Figure 32: Memory space
used by five competitors in
logarithmic scale

As shown in Figures 31 and 32, both the CPU time and the mem-
ory space used byChandi increases modestly as the number of
member queries increases. In particular, the CPU time consumed
by Chandi increases around 6 times when the number of queries
grows from 10 to 100 (increased 9 times), and then it increases
less than 4 times when number of queries grows from 100 to 1000.
Thus totally the CPU time consumed byChandiincreases 33 times
when the number of queries increased from 10 to 1000, which is
100 times. Such increase forExtra-NandExtra-N with rqsare 105
times and 89 times respectively. More specifically, in our test cases,
the average processing time (CPU) for each tuple used byChandi
to execute the 100-query and 1000-query query groups are 0.76
and 3.3ms respectively, which indicates that our system can com-
fortably handle 100 queries under a 1000 tuple per second data rate,
and handle 1000 queries under a 300 tuple per second data rate. For
the memory space used,Chandihas even better performance as its
utilization of memory space only increases 5 times when the num-
ber of queries increases from 10 to 1000, while such increase for
Extra-N andExtra-N with rqsare both 98 times.Conclusion for
Experimental Study. Generally,Chandiare more efficient than
other alternative methods in terms of both CPU and memory uti-
lization when executing multiple queries specified to a same input
stream.Chandiachieves most sharing when only one of the four
parameters are different among the member queries. Among the

four one-arbitrary-parameter cases,Chandiachieves most sharing
in the arbitrarywin case, while least is achieved in the arbitrary
θrange case. For the two-arbitrary-parameter cases,Chandiper-
forms better when the member queries have arbitrary window pa-
rameters rather than arbitrary pattern parameters. For the general
cases, where the member queries have arbitrary parameter settings
on all four parameters,Chandistill clearly outperforms other al-
ternative methods by achieving on average 60 percent saving for
CPU time and 84 percent saving for memory space. Lastly,Chandi
shows a good scalability in terms of handling a large number (hun-
dreds or even thousands) of queries under high data rate.

9. RELATED WORK
Traditionally, pattern detection techniques, such as cluster [15, 4,

16] and outlier detection [17, 18], are designed for static environ-
ments with large volumes of stored data. More recently, as stream
applications are becoming prevalent, the problem of efficient pat-
tern detection in the streaming context is being tackled. Previous
work for streaming data clustering include [19, 2, 20], and for de-
tecting outliers include [21, 22].

In this work, our target pattern type is a well known pattern type,
namely density-based clusters first proposed in [4] as DBSCAN
algorithm for static data. Later an Incremental DBSCAN [9] algo-
rithm was introduced to incrementally updates density-based clus-
ters in data warehouse environments. However, as both analytically
and experimentally shown in [2], since all optimizations in [9] were
designed for single updates (a single deletion or insertion) to the
data warehouse, it may fit well for the relatively stable data ware-
house environment, but it is not scalable to highly dynamic stream-
ing environments. Our experimental study conducted in Section
8, also demonstrates that executing multiple queries using [9] in
streaming environment is prohibitively expensive in terms of CPU
resource consumption.

Algorithms on density-based clustering queries over streaming
data include [2, 1, 3]. Among these works, [1] and [3] have goals
different from ours, because they are neither designed to identify
the individual members in the clusters nor enforce the sliding win-
dow semantics for the clustering process. Thus these two algo-
rithms cannot be applied to solve the problem we tackle in this
work. [2] is the only algorithm we are aware of that detects density-
based clusters in sliding windows.

As a general query optimization problem, multiple query opti-
mization has been widely studied for not only static but also stream-
ing environments. Such techniques can be roughly divided into two
different groups, namely “plan level” and “operator level” sharing.
“Plan level” sharing techniques [23, 24, 25] aim to allow the differ-
ent input queries to share the common operators across their query
plans, and thus lower the overall costs for multiple query execu-
tion. Operator level sharing studies the sharing problem on a finer
granularity, namely within the individual operators. In particular,
they aim to share the stated information as well as the query pro-
cessing computation with a single operator, when multiple queries
have similar yet not identical operator specifications For example,
two queries may calculate aggregations for a same input stream but
using different window sizes. The problem we solve this paper fall
into the operator level sharing category.

Previous research effort discussing such operator level sharing
techniques focus on operators, such as selection and join opera-
tors [26, 7, 8, 27], and aggregation operators [28, 11]. To our best
knowledge, none of them discuss the sharing for clustering opera-
tors. Some general principles used in these works, such as query
containment [7] can also be applied in our context (used in sharing
range query searches for our solution). However, the key problem

we address in this work, namely the integrated maintenance of the
density-based cluster structures identified by multiple queries, is
different from the optimization effort required by selection, join or
aggregation sharing. In particular, the meta-information we need to
maintain, namely the cluster structures defined by individual clus-
ter member objects as well as the interrelationships among them, is
much more complex than those for selection, join or aggregation
operators, which are usually pair-wise relations or simply num-
bers (aggregation results). Efficient maintenance of such meta-
information requires thorough analysis of the properties of density-
based cluster structures, which is a key contribution of our work
while has not been studied in any of these works.

10. CONCLUSION
In this work, we are the first to present a framework, called

Chandi, for efficient shared processing of a large number of density-
based clustering queries over streaming windows. For answer-
ing multiple such queries with arbitrary parameter settings,Chandi
achieves full sharing on both CPU and memory utilizations. Our
experimental study shows that, for the most general cases,Chandi
is on average four times faster than the best alternative while us-
ing 85% less memory space. More savings can be achieved if the
queries share more common parameter settings.Chandialso shows
very good scalability in terms of handling large numbers of queries
under high speed input streams in our experiments.

11. REFERENCES
[1] Y. Chen and L. Tu, “Density-based clustering for real-time

stream data,” inKDD, 2007, pp. 133–142.
[2] D. Yang, E. A.Rundensteiner, and M. O. Ward,

“Neighbor-based pattern detection for windows over
streaming data.”EDBT, 2009, to be appear.

[3] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-based
clustering over an evolving data stream with noise,” inSDM,
2006.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A
density-based algorithm for discovering clusters in large
spatial databases with noise.” inKDD, 1996, pp. 226–231.

[5] J. A. Hartigan and M. A. Wong, “A k-means clustering
algorithm,”Applied Statistics, vol. 28, no. 1.

[6] J. N. Entzminger, C. A. Fowler, and W. J. Kenneally,
“Jointstars and gmti: Past, present and future,”IEEE
Transactions on Aerospace and Electronic Systems, vol. 35,
no. 2, pp. 748–762, april 1999.

[7] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K.
Elmagarmid, “Scheduling for shared window joins over data
streams,” inVLDB, 2003, pp. 297–308.

[8] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein, and
G. Jacobson, “The case for precision sharing,” inVLDB,
2004, pp. 972–986.

[9] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu,
“Incremental clustering for mining in a data warehousing
environment,” inVLDB, 1998, pp. 323–333.

[10] A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: semantic foundations and query execution,”VLDB
J., vol. 15, no. 2, pp. 121–142, 2006.

[11] A. Arasu and J. Widom, “Resource sharing in continuous
sliding-window aggregates,” inVLDB, 2004, pp. 336–347.

[12] D. Yang, “Neighbor-based pattern detection for windows
over streaming data.”WPI Technical Report, 2008,
http : //users.wpi.edu/ diyang/str patt detect.pdf .

[13] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker,
“No pane, no gain: efficient evaluation of sliding-window
aggregates over data streams,”SIGMOD Record, vol. 34,
no. 1, pp. 39–44, 2005.

[14] I. INETATS, “Stock trade traces. http://www.inetats.com/.”
[15] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an

efficient data clustering method for very large databases,”
SIGMOD Record, vol.25(2), p. 103-14, 1996.

[16] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,
“Optics: Ordering points to identify the clustering structure,”
in SIGMOD.

[17] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,”SIGMOD Rec.,
vol. 29, no. 2, pp. 93–104, 2000.

[18] E. M. Knorr and R. T. Ng, “Algorithms for mining
distance-based outliers in large datasets,” inVLDB, 1998, pp.
392–403.

[19] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams.” inVLDB, 2003, pp.
81–92.

[20] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan,
“Maintaining variance and k-medians over data stream
windows,” inPODS, 2003, pp. 234–243.

[21] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos, “Online outlier detection
in sensor data using non-parametric models,” inVLDB, 2006,
pp. 187–198.

[22] F. Angiulli and F. Fassetti, “Detecting distance-based outliers
in streams of data,” inCIKM, 2007, pp. 811–820.

[23] Z. Liu, S. Parthasarathy, A. Ranganathan, and H. Yang,
“Near-optimal algorithms for shared filter evaluation in data
stream systems,” inSIGMOD Conference, 2008, pp.
133–146.

[24] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A
scalable continuous query system for internet databases,” in
SIGMOD Conference, 2000, pp. 379–390.

[25] J. Chen, D. J. DeWitt, and J. F. Naughton, “Design and
evaluation of alternative selection placement strategies in
optimizing continuous queries,” inICDE, 2002, pp. 345–356.

[26] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman,
“Continuously adaptive continuous queries over streams,” in
SIGMOD Conference, 2002, pp. 49–60.

[27] S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatnagar,
“State-slice: New paradigm of multi-query optimization of
window-based stream queries,” inVLDB, 2006, pp. 619–630.

[28] S. Krishnamurthy, C. Wu, and M. J. Franklin, “On-the-fly
sharing for streamed aggregation,” inSIGMOD Conference,
2006, pp. 623–634.

