
WPI-CS-TR-09-05 May 2009

Progressive Result Generation for Multi-Criteria Decision Support
Queries

by

Venkatesh Raghavan
Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Progressive Result Generation for Multi-Criteria
Decision Support Queries

Venkatesh Raghavan1, Elke A. Rundensteiner2

Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester MA, USA
{1venky,2rundenst}@cs.wpi.edu

Abstract— Multi-criteria decision support (MCDS) is crucial in
many business and web applications such as web searches, B2B
portals and on-line commerce. Such MCDS applications need
to report results early; as soon as they are being generated so
that they can react and formulate competitive decisions in near
real-time. The ease in expressing user preferences in web-based
applications has made Pareto-optimal (skyline) queries a popular
class of MCDS queries. However, state-of-the-art techniques
either focus on handling skylines on single input sets (i.e., no
joins) or do not tackle the challenge of producing progressive
early output results. In this work, we propose a progressive query
evaluation framework ProgXe that transforms the execution of
queries involving skyline over joins to be non-blocking, i.e., to
be progressively generating results early and often. In ProgXe
the query processing (join, mapping and skyline) is conducted at
multiple levels of abstraction, thereby exploiting the knowledge
gained from both input as well as mapped output spaces. This
knowledge enables us to identify and reason about abstract-
level relationships to guarantee correctness of early output. It
also provides optimization opportunities previously missed by
current techniques. To further optimize ProgXe, we incorporate
an ordering technique that optimizes the rate at which results are
reported by translating the optimization of tuple-level processing
into a job-sequencing problem. Our experimental study over a
wide variety of data sets demonstrates the superiority of our
approach over state-of-the-art techniques.

I. INTRODUCTION

A. Skyline over Disparate Sources

The rapid growth in the number of Internet users has re-
sulted in a variety of on-line services that facilitate commerce,
information retrieval and social networking. This phenomenon
has highlighted the need for real-time support of complex
multi-criteria decision support (MCDS) queries [1]. The in-
tuitive nature of specifying a set of user preferences has made
Pareto-optimal (or skyline) queries a popular class of MCDS
queries [1]–[3]. These MCDS systems need to support real-
time result generation while processing queries that: (1) access
data from disparate sources via joins, and (2) combine several
attributes across these sources through possibly complex user-
defined mapping functions to characterize the final result. In
this work, we target queries which evaluate user preferences
over the join, here known as SkyMapJoin (SMJ) queries.

Real-time MCDS applications need to process queries with
a high degree of responsiveness. Therefore, the query exe-
cution strategy must report partial results as early as pos-
sible rather than waiting until the end of query processing,
commonly known as progressive result generation [4], [5].
Also, they must guarantee correctness, i.e., an early reported

partial result must be guaranteed to remain in the final result
set. Lastly, the query execution strategy must produce the
complete result set, i.e., no promising candidates should ever
be discarded. We substantiate these requirements by studying
a wide variety of applications such as those listed below.

B. Motivating Real-World Applications

Example 1: Internet Aggregators. The increase in the use
and popularity of on-line vendors has resulted in Internet
aggregators such as mySimon.com for durable goods and
kayak.com for travel services. Aggregators access and combine
data from several sources to produce complex results that are
then pruned by the skyline operation. For example, a Kayak-
user planning a holiday in Europe visiting both Rome and
Paris has different preferences in each leg of the journey. For
instance, as Rome is an ancient city with many historic sites,
the user is willing to walk twice as much in Rome than in
Paris. In addition, the user has a cumulative goal of minimizing
the total cost of the trip. Rather than waiting to see 1000’s or
more matches all at once, a user of such an application may
want to have results progressively displayed as soon they are
being computed.
Example 2: On-line Search Refinement. The underlying
databases of any on-line search application expect precisely
defined queries while users may seldom have the exact knowl-
edge [6]. A query against a large database may be long
running and could potentially output an empty answer set.
In such applications, the results of a slightly reformulated
query may satisfy the user’s needs equally well. However,
careless relaxation of queries can potentially result in large
and therefore unusable answer sets. Therefore, one must only
return results that are as close as possible to the original query,
i.e., a skyline of results [6]. To avoid wasting resources on
producing unnecessary relaxations, it is prudent to produce
early results as they are generated - thereby providing an
opportunity to the user for providing immediate feedback [7].
Example 3: Supply-Chain Management. A manufacturer in
a supply chain aims to maximize profit and market share,
while minimizing overhead and delays. This is achieved by
structuring a production and distribution plan through the
evaluation of various alternatives. To illustrate, Q1 (as in
Figure 1.a) identifies the suppliers that can produce “100K”
units of the part “P1” and couples them with transporters that
deliver it. The preference is to minimize both total cost (tCost)
and delays (delay).

Skyline Aware Join Ordering to Support
Progressive Result Generation

Venkatesh Raghavan1, Elke A. Rundensteiner2

Department of Computer Science, Worcester Polytechnic Institute,
100 Institute Road, Worcester MA, USA
{1venky,2rundenst}@cs.wpi.edu

Abstract—

I. INTRODUCTION

Skyline over Disparate Sources. The rapid growth in the
number of Internet users1 has resulted in the development of a
variety of on-line services to facilitate commerce, information
retrieval and social networking. This phenomenon has high-
lighted the need for supporting complex multi-criteria decision
support (MCDS) queries [1]. The intuitive nature of specifying
a set of user preferences has made Pareto-optimal (or skyline)
queries a popular class of MCDS queries [1–3] resulting
in several efficient algorithms [1, 3–6] that evaluate skyline
queries over a single data set. However, these state-of-the-art
techniques make a common assumption of viewing skyline as
an operator on top of the traditional SPJ queries making them
inefficient for a vast majority og real-time MCDS. Instead,
they require to (1) access data from disparate sources via joins,
and (2) combine several attributes across these sources through
possibly complex user-defined functions to characterize the
final composite product. To substantiate these needs we draw
from a wide diversity of applications as listed below:

• Internet Aggregators. The rapid increase in the number of
online vendors has resulted in internet aggregators such
as Froogle1 for durable goods and Kayak2 for travel
services, are fast growing in popularity. Such aggregators
access and combine data form several sources to produce
complex results that are then pruned by the skyline
operation. To illustrate, consider a usecase scenario where
a user planning a holiday in Europe visiting both Rome
and Paris. The user may have different preferences in each
leg of the journey, for instance since Rome is an ancient
city the user is willing to walk twice as much in Rome
than in Paris. In addition, the user has a cumulative goal
such as the total cost of the trip that is to be minimized.

• Supply-Chain Management. A manufacturer in a sup-
ply chain aims to maximize profit, market share, etc.,
and minimize overhead, delays, etc. This is achieved
by structuring an optimal production and distribution
plan through the evaluation of various alternatives. To
illustrate, Q1 identifies the suppliers that can produce
“100K” units of the part “P1” and couples them with

1http://www.internetworldstats.com/
1http://froogle.google.com/shoppinglist, 2www.kayak.com

transporters that deliver it. The preference is to minimize
both total cost (tCost) as well as delays (delay).

Q1: SELECT R.id, T.id,
(R.uPrice + T.uShipCost) as tCost,
(2 * R.manTime + T.shipTime) as delay
FROM Suppliers R, Transporters T
WHERE R.country=T.country AND
‘P1’ in R.suppliedParts AND R.manCap>=100K
PREFERRING LOWEST(tCost) AND LOWEST(delay)

• Query Refinement. Databases expect precisely defined
queries while users may seldom have this exact knowl-
edge [7]. Therefore, long running queries against large
databases may output an empty answer set even though
the results of a slightly reformulated query may satisfy
the users needs equally well. To avoid undesired relax-
ations, such a system must produce quick partial results,
thereby giving the opportunity to obtain user feedback
(preference) and facilitate iterative query refinement [8].

In this work, we target such queries which perform skyline
and map operations over the join, here known as SkyMapJoin
(SMJ) queries.
Motivation. To provide real-time response, such applications
need the processing of user queries to have a high degree of
responsiveness. In otherwords, the primary query optimization
criteria must be to deliver the partial results as quick as possi-
ble, or known in literature as progressive output generation [6,
9]. In addition, the chosen execution strategy must guarantee
the generation of the complete result set.

!"##$%&'()*+,)

-'./(#0'1&'()*-,)

2345)%/)+6("##$%&73.'1()))

89:)+6;./<.#)=>)4??@)

A)

!

S
P

!

!"

!

µ
F

X

B0%/CD%'(1)!EF$%/&CG.1&'))

))))))))*BDC!G,)

:&(%'&7)8##'0.HI)

J;&)

!KBC)L"&'F)3'0H&((%/M)*!KBCL3,)

!KBCL3)

+&("$1()

3'0M'&((%N&)+&("$1)O&/&'.J0/)

J;&)

4)

D.(1&')PQ&H"J0/)R)

K.#) !EF$%/&)B0%/)

+&("$1()

!KBCL3)

*.,)-'.7%J0/.$)L"&'F)3$./)

*S,)-'.7%J0/.$)PQ&H"J0/)!1'.1&MF)

*H,):&(%'&7)8##'0.HI)

Fig. 1. Traditional Query Plan for Q1

Challenge. To highlight the challenges in achieving progres-
sive output generation when processing skylines over join
we first look at the commonly used translation of a SMJ
queries into a query plan using canonical relational operators
as depicted in Figure 1. State-of-the-art techniques [1, 7, 10]
that employ such a query are unable to deliver progressive
output generation due the blocking nature of such a plan. The
blocking nature of operation is caused by two factors namely,

(a)

!"##$%&'()*+,)

-'./(#0'1&'()*-,)

2345)%/)+6("##$%&73.'1()))

89:)+6;./<.#)=>)4??@)

A)

!

S
P

!

!"

!

µ
F

X

B0%/CD%'(1)!EF$%/&CG.1&'))

))))))))*BDC!G,)

:&(%'&7)8##'0.HI)

J;&)

!KBC)L"&'F)3'0H&((%/M)*!KBCL3,)

!KBCL3)

+&("$1()

3'0M'&((%N&)+&("$1)O&/&'.J0/)

J;&)

4)

D.(1&')PQ&H"J0/)R)

K.#) !EF$%/&)B0%/)

+&("$1()

!KBCL3)

*.,)-'.7%J0/.$)L"&'F)3$./)

*S,)-'.7%J0/.$)PQ&H"J0/)!1'.1&MF)

*H,):&(%'&7)8##'0.HI)

(b)

Fig. 1. Motivating Example: a) Query Q1 b) Traditional Query Plan for Q1

C. State-of-the-art Techniques

The traditional approach [1], [6] is to view skyline pro-
cessing independent from join evaluation (Figure 1.b). Such
a query evaluation is divided into disjoint steps. Thus, the
skyline operation has to wait until all join results have been
generated and inspected to even begin to generate a skyline
result over them. This approach renders the query execution
to be blocking– making it not viable for progressive result
generation. Recently, [8], [9] proposed techniques exploiting
the principle of skyline partial push-through [1], [10] on each
individual data source. However, as the number of dimensions
increases the pruning capacity of the push-through principle is
greatly reduced, sometimes up to the size of the entire source
[11]. Since the skyline partial push-through is itself blocking,
the local pruning employed in [8], [9] may be computationally
intensive without yielding a single progressively generated
partial result. In addition, [8], [9] are unable to look ahead into
the output space to make decisions that can further optimize
progressive result generation.

D. Our Proposed Solution: The ProgXe Framework

We propose a progressive query execution framework called
ProgXe. ProgXe avoids diving directly into the expensive
tuple-level join and skyline processing as in [1], [6], [8],
[9]. Instead, we look ahead into the mapped output space to
determine interrelations between the input and output spaces
to identify progressive result generation opportunities missed
by current techniques. The proposed approach facilitates pro-
gressive result generation by: (1) efficiently looking ahead
into the output space without having to conduct any query
processing at the granularity of individual tuples, (2) exploiting
the mapped output space knowledge to determine where
partial results lie that can be reported early, and (3) ensuring
correctness and completeness guarantees by analyzing the
dependencies in the output space.

E. Our Contributions

• We design a pipelined execution framework ProgXe that
represents the foundation of our progressive result gen-

eration approach. ProgXe exploits the skyline knowledge
at various levels of data abstraction in both the input and
output space.

• We propose the progressive driven ordering (ProgOrder)
optimization which employs a cost benefit model to
determine the order in which we perform the expensive
tuple-level processing; such that the rate at which the
partial results can be output early is maximized.

• During the tuple-level processing, to ensure the correct
reporting of early results, we present the progressive
result determination (ProgDetermine) technique. ProgDe-
termine enables us to identify the subset of results gener-
ated so far which are guaranteed to be in the final skyline
and therefore can be output early.

• Our experimental analysis demonstrates the superiority of
our proposed techniques over state-of-the-art techniques
across a wide variety of data sets.

The rest of the paper is organized as follows: in Section II
we review the preference model used in the skyline operation;
and the algebra model used to represent queries such as Q1.
We introduce the main intuition of our ProgXe framework in
Section III. The core algorithms proposed in this work, namely
progressive driven ordering and progressive result determi-
nation are presented in Sections IV and V respectively. Our
experimental evaluation is described in Section VI. Section VII
reviews related work while Section VIII concludes the paper.

II. PRELIMINARIES

A. Preference Model: Used in Skyline Operation

Each d-dimensional object is defined by a set of attributes A
= {a1, . . ., ad}. For a given object ri, the value of the attribute
ak can be accessed as ri[ak]. Dom(ak) denotes the domain of
the attribute ak and Dom(A) = Dom(a1)× . . .×Dom(ad).
Given a set of attributes E ⊆ A, the preference Pi over the set
of objects R is defined as Pi := (E,�P) where �P is a strict
partial order on the domain of E. Given a set of preferences
{P1, . . ., Pm}, their combined Pareto preference P is defined
as a set of equally important preferences.

Definition 1: For a set of d-dimensional tuples R and pref-
erence P = (E,�P) over R, a tuple ri ∈ R dominates tuple
rj ∈ R based on the preference P (denoted as ri �P rj), iff
(∀(ak ∈ E) (ri[ak] � rj [ak]) ∧ ∃(al ∈ E) (ri[al] � rj [al])).

B. Query Model Containing Map and Skyline Operation

For each input tuple ri the mapping function fj in the set
of k mapping function F={f1, . . . fk}, takes as input a set
of attributes Bj ⊆ A and returns a value x. That is, fj :
Dom(Bj)→ Dom(x).

Map (µ[F,X]) operator applies a set of k mapping functions
F to transform each d-dimensional object ri ∈ R into a k-
dimensional output object r′i defined by a set of attributes X =
{x1, x2, . . ., xk}, with xj generated by the function fj ∈ F .

Skyline (SP). Given a set of tuples R and a preference P ,
SP (R) returns the subset of all non-dominated objects in R.

III. PROGRESSIVE QUERY EXECUTION FRAMEWORK

In this section, we provide an overview of the main steps of
our proposed progressive query execution framework, ProgXe.
In this work, we assume the input data sets are partitioned into
a multi-dimensional grid structure. Other space-partitioning
methodologies such as quad-tree and R-tree structures can
also be utilized. The principles proposed in this work are still
applicable with some modifications.

!"! #$%$&'($)(*$)+,-%)&$./0(.)(*'()1'2)(,)(*$).$0$3($4)'5.(&'36,%)

7"! 8$&9,&1).:;0-%$)3,12'&-.,%.)<*-0$)1-%-1-=-%>)(*$)(,('0)%/15$&),9)

.:;0-%$)3,12'&-.,%.)%$$4$4)(,)>$%$&'($)(*$)2'&6'0)&$./0()

?@A8@A)B8CDE)F)G??H)CIECJ)

!"#$%"&'(

)*(+,-.(

/012-/34,51(

5..6(2,(0.(

7-,3.11.6(

!"! #$%$&'($),/(2/()'5.(&'36,%.)9&,1)(*$)-%2/()'5.(&'36,%.)

7"! J-.3'&4)4,1-%'($4),/(2/()'5.(&'36,%)>/'&'%($$4)(,)%,()

3,%(&-5/($)(,)(*$)K%'0).:;0-%$)

89:(;<.-=(

!" #">1.-(

?/2/((

8,<-3.1

@-,A-.11BC.(@/-4/D(%.1<D21(

!"! J$($&1-%$)$'&0;),/(2/()4$2$%4$%3-$.)'1,%>)'5.(&'36,%.)

7"! ?&4$&)'5.(&'36,%.)9,&)(/20$L0M0)2&,3$..-%>)(,),261-=$)(*$)&'($)

'()<*-3*)2'&6'0)&$./0(.)'&$),/(2/()$'&0;)'%4).$0$3(),%$)

8N?#NEBBOPE)JNOPEQ)?NJENOQ#)

E012-/32(CB.F(,*(2G.(,<27<2(17/3.((

A@8GELGEPEG)8N?DEBBOQ#)

8N?#NEBBOPE)NEB@GA)JEAENROQCAO?Q

J$($&1-%$)(*$).$(),9)(/20$.)>$%$&'($4).,)9'&))

(*'()3'%)%,<)5$).'9$0;),/(2/()

8.D.32.6(/012-/34,5

!<--.52(,<27<2(17/3.((

Fig. 2. Overview of the Progressive Query Execution Framework

The ProgXe framework (Figure 2) can efficiently exploit the
skyline knowledge at various steps of query processing (both
in evaluation and early output) as well as at different levels of
data abstraction. Without directly having to dive into expensive
tuple-level processing like existing state-of-the-art techniques
[6], [8], [9], we look ahead into the output space in our first
step, thus named output space look-ahead. The goals of this
step are to: (1) generate the higher-level abstraction of the
output space and (2) prune dominated abstractions early on.

Next, in our progressive driven ordering step we investi-
gate the output space to identify output abstractions that have
a higher likelihood of generating tuples that can be output
early. The goal of this step is to maximize the rate at which
the results are output early. This is achieved by ordering the
sequence in which the output abstractions are considered for
the expensive operation of tuple-level processing. The chosen
output abstraction is then sent for tuple-level processing. In
this step we (1) generate the join results that map to the
output abstraction, (2) map the join results by user defined
mapping functions, and (3) minimize the number of dominance
comparisons needed to generate the intermediate tuples.

From the generated intermediate results, we need to next
determine the subset of these results that safely belong into
the final skyline so that they can be output early. In our
progressive result determination step, we analyze the de-
pendencies in the output space to determine which tuples can
be output early since they are guaranteed to belong into the
final result set. The last three phases of the ProgXe pipelined
steps are repeated until all output abstractions have either been
considered for tuple-level processing or are dominated (and
thus guaranteed to not contribute to the final result).

Next, we present a brief overview of the output space look-
ahead and tuple-level processing in Sections III-A and III-
B respectively, while the full details can be found in our
technical report [12]. In Section IV we elaborate on the
progressive benefits of ordering, followed by our progressive
driven ordering algorithm to achieve this goal. Lastly, in
Section V we present the details of our progressive result
determination phase. The notations used in this work are
summarized in Table I.

A

B

CR 1,2 R 4,1

R 3,1

D

d

g

F

K

LR 1,3

a

b

c e

G

E

H

f

J
I

j

i

k
l

tcost

delay

Output Partitions dominated by S

Regions dominated by S

Potential Combined Partitions

pes

pes

Lower Bound

Upper Bound Not in Spes

Upper Bound in Spes

pessimistic skyline ()Spes

h

R 2,1

Fig. 3. Output Space Look-Ahead: Avoid Join and/or Skyline Costs

A. Output Space Look-Ahead

The aim of this step is to perform the join and skyline query
execution at a higher granularity of abstraction rather than at
the level of individual tuples. More specifically, for a pair of
input partitions, one from each table IRa ∈ R and ITb ∈ T ,
we first determine if the set of tuples in these partitions are
guaranteed to produce at least one join result. To avoid tuple-
level comparison, we maintain for each partition the signature
of the list of join domain values of the tuples contained in
the partition. These signatures can be efficiently maintained
by either Bloom Filter or a bit vector. Partitions that do not
share even a single join domain value are guaranteed to not
generate any join result. Therefore such input partition pairs

TABLE I
NOTATIONS USED IN THIS WORK

Notation Meaning
IR

i Input partition in R
IR Set of all input partitions in R
rf tg Join result, rf ∈ R; tg ∈ T
Ri,j Region in the output space to which

the join results from the input partitions
[IR

i , I
T
j] are mapped to

R Set of all regions in the output space
LOWER(X) Lower-bound point of a region or partition
MARK(Oi) Mark partition Oi as “non-contributing”

IS MARKED(Oi) True, if partition Oi is marked, else false.

are no longer considered for further processing. Second, we
apply the mapping functions to determine the region of the
output space into which the generated join results would fall
(denoted as Ra,b) if they were to be generated.

Example 1: Consider an input partition from Supplier(R),
IR1 with bounds [(0, 4)(1, 5)] and the partition IT2 [(3, 1)(4, 2)]
from Transporter (T), that share at least one join value. By
applying the mapping functions in Q1, we can determine that
during tuple-level processing the tuples in the above partitions
when joined with each other would generate join result(s) that
would fall into the region bounded by the lower-bound point
b(3, 5) and the upper-bound point B(6, 7). In Figure 3 we
denote this region as R1,2.

For a given set of regions that are guaranteed to be populated
during tuple-level processing, we apply domination-based rea-
soning to prune dominated regions as they are guaranteed
to not contribute to the final skyline. This avoids the join
evaluation and any subsequent dominance comparison costs
altogether for such dominated regions.

Example 2: In Figure 3, UPPER(R1,3) � LOWER(R3,1).
Since R1,3 is guaranteed to be populated during tuple-level
execution there exists at least one intermediate result rf tg ∈
R1,3 that dominates the intermediate results that map to R3,1.
Thus, R3,1 is guaranteed to never contribute to the final result.

To further reduce the number of skyline comparisons, we
partition the output space such that each region is composed
of a set of output partitions. Next, we identify output partitions
that are dominated by other output regions. This allows us to
discard all intermediate join results that map to such dominated
partitions as they will not contribute to the final result.

Example 3: In Figure 3 the output region R1,2 is partially
dominated. That is, its output partitions: O[(6,8) (7,9)], O[(7,8)
(8,9)], O[(6,9) (7,10)] and O[(7,9) (8,10)] are dominated by
the upper-bound point of output region R1,2 with upper bound
B(6, 7). SinceR1,2 is guaranteed to be populated we can mark
the dominated partitions as “non-contributing”.

B. Tuple-Level Processing

Next, in the tuple-level processing phase we perform the
expensive join, map and skyline operations at the granularity
of individual tuples. The optimization goals in this phase are

to: (1) reduce the total number of domination comparisons,
and (2) identify intermediate results that can be output early.
We achieve this by piggy backing on the knowledge about the
output space gained from the previous steps.

rf tg

Dominated by rf tg

Incomparable to

Currently empty

Comparable to

Oh

tCost

delay

rf tg

rf tg

Fig. 4. Tuple-Level Processing: Avoid Skyline Comparisons

For the output regionRa,b chosen for tuple-level processing,
we first evaluate the join conditions between the tuples in IRa
and those in ITb . Join results are then mapped to its output
partition by applying the mapping functions given in the query.
Intermediate results that map to dominated output partitions
are discarded without performing any dominance comparisons.
Next, for each intermediate result rf tg that does not map
to a dominated output partition, we reduce the dominance
comparisons to only a small set of output partitions containing
tuples that can potentially dominate it. In Figure 4 we observe
the following:

1) Results that map to partitions in the top-left corner and
the bottom right corner of Oh cannot dominate rf tg and
vice versa. Thus, such comparisons can be avoided.

2) Partitions in the bottom-left corner of Oh are currently
empty, else Oh would be marked as being dominated.

3) Intermediate results rf tg ∈ Oh can be only dominated
by result that map to the slice of partitions that either
have the same tCost or delay attribute value as Oh.

The optimization benefits (i.e., the reduction in the number
of skyline comparisons) achieved by our tuple-level processing
can be quantified as follows. Let us assume that each dimen-
sion in the output space is partitioned into k partitions. That
is, the d-dimensional grid structure has a total of kd output
partitions. For any skyline algorithm in the worst case scenario
all tuples are in the final skyline. Therefore, a naı̈ve approach
in the worst case scenario would have to compare against
tuples in all kd partitions. Instead, for each newly generated
tuple rf tg ∈ Oh in the worst case we only perform dominance
comparisons against tuples that are mapped to a much smaller
set of [kd − (k − 1)d] partitions.

IV. PROGRESSIVE DRIVEN ORDERING

In this section, we highlight the impact that ordering of
tuple-level processing can have on progressive result gener-
ation. We then propose our technique to optimize the query
execution strategy such that rate at which results are output
early is maximized. In particular, our solution orders the re-
gions based on their respective progressiveness capacity versus
penalty (that is, their respective processing costs required to
gain that benefit).

A. Effects of Ordering
The order in which we conduct the tuple-level processing

of regions can affect the rate at which the partial results
are output. To elaborate, let us compare two orderings of
regions for tuple-level processing. Consider a good ordering
that produces more results early: R1,2, R1,1, R1,3, and so
on, as depicted in Figure 5.a. Following this ordering, the join
results that map to the regionR1,2 are generated and then their
corresponding dominance comparisons are performed. While
examining the output space, as shown in Figure 3, we observe
that results that map to the partitions O[(3,5)], O[(3,6)],
O[(4,5)], and O[(4,6)] cannot be dominated by any future
generated tuples belonging to other regions. Therefore, tuples
that map to these partitions (4 of 6 partitions in R1,2) can be
safely output early. However, results that map to the remaining
two partitions O[(5,5)] and O[(5,6)] cannot yet be output.
They can potentially still be dominated by future generated
tuples that map to the partitions O[(5,4)] and O[(5,5)] during
the tuple-level processing of region R1,3. Thus, they must be
held in the output buffer.

R1,2 R1,1 R1,3
Tuple-level

processing

!"#$%&'(%)

!"#$%$*'%)

!"#+%&'(%)

!"#+%$*'%)

!"#,%&'(%)

!"#,%$*'()

!"#,%-'(%)

!"#.%-'(%)

!"#,%/'(%)

!"#.%/'()

!"#-%.'(%)

!"#/%.'(%)

!"#-%-'(%)

!"#/%-'(%)

!"#-%/'()

012)

Progressively

output tuples

in partition

R2,1 R1,3 R1,1
Tuple-level

processing

!"#-%.'(%)

!"#/%.'()

!"#$%&'(%)

!"#$%$*'()

!"#+%&'(%)

!"#+%$*'()

012)

Progressively

output tuples

in partition

(a) More Results Output Earlier

R1,2 R1,1 R1,3
Tuple-level

processing

!"#$%&'(%)

!"#$%$*'%)

!"#+%&'(%)

!"#+%$*'%)

!"#,%&'(%)

!"#,%$*'()

!"#,%-'(%)

!"#.%-'(%)

!"#,%/'(%)

!"#.%/'()

!"#-%.'(%)

!"#/%.'(%)

!"#-%-'(%)

!"#/%-'(%)

!"#-%/'()

012)

Progressively

output tuples

in partition

R2,1 R1,3 R1,1
Tuple-level

processing

!"#-%.'(%)

!"#/%.'()

!"#$%&'(%)

!"#$%$*'()

!"#+%&'(%)

!"#+%$*'()

012)

Progressively

output tuples

in partition

(b) Less Results Output Earlier

Fig. 5. Effects of Ordering on Progressiveness

Next, R1,1 is considered for tuple-level processing. At its
completion, we safely return tuples that map to all of R1,1’s
partitions. At the end of processing the third region R1,3

we would have reported results from 15 output partitions. In
contrast, consider the ordering in Figure 5.b where at the end
of processing three regions we could only report results that
map to 6 partitions. Therefore, orderings such as in Figure 5.a
are clearly preferable over those in Figure 5.b.

To effectively support progressive result generation we
propose a progressive driven ordering technique that is able
to identify abstractions that can produce the largest number
of results early using the least amount of CPU time spent on
tuple-level processing. Our proposed approach translates the
problem into a graph-based job sequencing problem.

B. Benefit Model: Progressiveness Capacity of a Region

We define progressiveness capacity of an output regionRa,b
as the number of skyline results in Ra,b that can be estimated
to be output early if tuple-level processing was conducted
on Ra,b. To estimate the progressiveness capacity of each
output region we first determine the maximum number of
partial results it can produce. Second and more importantly,
we identify the relationship between any two regions and the
impact of this relationship on the ability to safely release these
results at this point of time into the output.

First, we estimate the maximum number of tuples that an
output region could output early. In the context of computa-
tional geometry, [13], [14] addressed the problem of estimating
the average number of maxima in a set of vectors to be
Θ((ln(n))d−1/(d−1)!), where d is the number of dimensions
and n is the cardinality of the input data set. Given IRa and
ITb as the corresponding input partitions of the output region
Ra,b, we estimate the maximum number of skyline results that
each region can produce as follows:

Cardinality(Ra,b) = ln(σ · nRa · nTb)d−1/(d− 1)! (1)

where nRa and nTb are the number of tuples in the input
partition IRa and ITb respectively.

Re,f

Ra,b

(a) Complete Elimination (b) Partial Elimination

Re,f

Ra,b

Ra,b
Re,f

Ra,b

Re,f

(c) 1-way Output Dependence (d) 2-way Output Dependence

Fig. 6. Relationships between Output Space Abstractions

Next, we examine interrelationships which exist in the
output space that can prevent the tuples in Ra,b to be output
after the tuple-level processing of region Ra,b. Three types
of relationships are depicted in Figure 6. First, in Figure 6.a
the lightly shaded partitions in the region Ra,b can completely
eliminate all partitions in the region Re,f . Such a relationship
is called complete elimination. Second, in Figure 6.b the
lightly shaded partitions of Ra,b only dominated a subset
of the partitions (darkly shaded) in Re,f . In other words,
Ra,b partially eliminates Re,f . Lastly, in Figures 6.c and
6.d the tuple-level processing of any one region does not
eliminate any part of the other region. However, way future
generated tuples that map to the lightly shaded partitions can
“potentially” dominate tuples in the darkly shaded partitions

of the other regions. Therefore, in Figure 6.c to safely output
tuples mapped to the region Re,f we must wait for Ra,b to
finish its tuple-level processing as they potentially still can
become invalid and then must be discarded. Such a relationship
is called output dependence. For a pair of regions the output
dependencies can either be uni- or bi- directional as in Figures
6.c and 6.d respectively.

Next, we introduce a graph representation to capture these
relationships and the methodology to determine the progres-
siveness capacity of a region given its dependencies.

Elimination Graph (EL-Graph). A directed graph, de-
noted as EL-Graph (R, E,W): (1) R is the set of vertexes,
where each vertex represents an output region; (2) E is a set
of directed edges between the regions, where an edge exists
between the regions Ra,b and Re,f if and only if there exists
an output partition Oh ∈ Ra,b such that it either partially or
completely dominates Re,f .

R1,1

R1,2 R1,3

R2,1 R2,2

R4,1

R2,3

R3,2

R4,2 R3,3

R4,3

Fig. 7. Elimination Graph (EL-Graph) (Root noded depicted as shaded nodes)

Example 4: In our running example, as depicted in Figure
3, the output region R1,3 has partitions (O[(5, 4)] O[(6, 4)]
and O[(7, 4)]) if populated during tuple level processing can
completely dominate the output region R1,3[(4, 1)]. In addi-
tion, the above mentioned partitions can dominate a subset
of partitions in the region R2,2[(7, 4)]. In other words, R1,3

completely dominatesR4,1 and partially dominatesR2,2. Thus
in our elimination graph, as shown in Figure 7, we have a
directed edge from node R1,3 to R4,1 and R2,2.

The precise distribution of final tuples in each region will
only be determined after all tuples within that region have
been joined, mapped and dominance comparison have been
completed. The roots of the elimination graph (depicted as
shaded circles in Figure 7) represent regions whose processing
can neither be completely nor partially eliminated by other
regions and therefore have a higher probability of reporting
results early. We further investigate dependencies among these
root nodes to determine the next output region with the
highest expected benefit. The chosen region is then sent for
the expensive tuple-level processing. As each output region is
considered for tuple-level processing, other non-root regions
can become root nodes, making them potential candidates
for execution. In our proposed approach we incrementally
maintain the elimination graph.

Progressiveness capacity an output region Ra,b is defined
as the percentage of its estimated cardinality (from Equation
1) that can be safely output early at a given instance. The
main intuition is to identify all output partitions in a region
that solely depend on the tuple-level processing of itself to be

able to output early. To illustrate in Figure 8 for the region
R1,2, the tuples in partition Oh[(3, 5)(4, 6)] can be output at
the end of tuple-level processing of R1,2.

R 1,1

R 1,2

R 1,3

R 2,1

0 1 3 5 7 9

5

3

11

7

13

9

A

B

C

D

a

b

c

d

tCost

delay

O
h

Output Dependence Relationship

O
i

Fig. 8. Calculating progressiveness capacity

Definition 2: The progressive partition count (ProgCount)
for an output region Ra,b is defined as the number of parti-
tions in Ra,b that can neither be eliminated nor have output
dependencies to partitions belonging to other output regions.

Example 5: In Figure 8, the progressiveness count for R1,2

andR1,1 are both 4 while ProgCount(R1,3)=3. Since all par-
titions of the regionR2,1 are either dependent or eliminated by
partitions belonging to other regions, ProgCount(R2,1)=0.

The benefit of processing Ra,b is now defined to be the
product of its cardinality and the percentage of partitions that
are guaranteed to be output immediately at the end of its tuple-
level processing.

Benefit(Ra,b) =
ProgCount(Ra,b)

PartitionCount(Ra,b)
·Cardinality(Ra,b)

(2)
where PartitionCount(Ra,b) is the total number of output
partitions in the region Ra,b.
C. Cost Model: Tuple-Level Processing of Output Region

The time required, here considered a penalty, to complete
the tuple-level processing of the region Ra,b includes: (1)
the cost for materializing the join results (Cjoin), (2) cost of
mapping (Cmap), and (3) cost of skyline comparisons (Csky).

Cost(Ra,b) = Cjoin(Ra,b) +Cmap(Ra,b) +Csky(Ra,b) (3)

For an output region Ra,b we estimate the cost of join as the
product of the cardinalities of their respective input partitions.

Cjoin = (|IRa | · |ITb |) (4)

The cardinality of the join results is σ ·|IRa |·|ITb |, where σ is
the join selectivity between two input sources. If the amortized
cost to map each of the join results is O(1), then:

Cmap = (σ · |IRa | · |ITb |) (5)

Assuming independent data distribution, the average skyline
execution time by Kung et. al. [2] is O(|S| · logα|S|), where

|S| is the number of tuples to be compared against and α = 1
for d = 2 or 3, and α = d− 2 for d ≥ 4. In Section III-B we
concluded that for each newly generated join result we need to
perform dominance comparison with tuples in at most (k · d)
partitions. Then for each newly generated tuple rf tg ∈ Oh we
need to conduct (CPavg · savg) comparisons, where CPavg
is the average number of comparable partitions for a tuple
mapped an output partition (see Section III-B) and savg is the
average number of tuples in each output partition. Thus, the
amortized time for evaluating the dominance comparison for
a single intermediate result rf tg ∈ Oh is:

O

((
CPavg · savg

)
· logα

(
CPavg · savg

))
(6)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.
Let us denote |IRa | as nRa and |ITb | as nTb . By substituting

the respective terms in Equation 3 by those in Equations 4,
5 and 6, the amortized time for processing the output region
Ra,b now is modelled as:

O

((
nRa · nTb

)
+
(
σ · nRa · nTb

)

+ (σ · nRa · nTb)
((

CPavg · savg
)
· logα

(
CPavg · savg

)))
(7)

where α = 1 for d = 2 or 3, and α = d− 2 for d ≥ 4.

D. The ProgOrder Algorithm: Putting it all together

We now propose the progressive-ordering (ProgOrder) al-
gorithm that iteratively determines the order in which these
regions are considered for tuple-level processing. ProgOrder
ranks each output region that is a root in the elimination graph,
where rank(Ra,b) is derived from Equations 2 and 3 as:

rank(Ra,b) =
Benefit(Ra,b)
Cost(Ra,b)

(8)

The list of all such root regions is maintained in an inverted
priority queue. We pick the next region to be considered for
tuple-level processing from the top of this queue. After the
tuple-level processing of the chosen region is completed, the
graph and benefit models are incrementally updated in order
to accurately chose the next region. This process is repeated
until all regions in the mapped output space have either been
considered for tuple-level processing or have been dominated
by newly generated tuple(s).

The step-by-step description of ProgOrder is listed in Algo-
rithm 1. The algorithm maintains a list of current root nodes in
a priority queue PQueue (Line: 3-5). In PQueue the regions
are ranked in descending order of their respective rank. In each
iteration (Line: 6–19), we pick the next output region from the
top of the PQueue. The chosen region, say Ra,b, is then sent
for tuple-level processing (Line: 8). Thereafter, we update the
benefit model for all regions affected by the execution of Ra,b

(Line: 13). Next, we identify all regions that have “newly”
become root nodes in EL-Graph after removing Ra,b from
the graph (Line: 15). For all such regions, we calculate its
rank (Equation 8) and insert them into PQueue (Line: 18).
The above steps are iterated until all non-dominated regions
have been considered for tuple-level processing.

Algorithm 1 ProgOrder
Input: R {Region Collection}; input partitions (IR, IT)
Output: 0 to denote a successful execution; else return 1; {Iteratively

pick the a region for tuple-level processing}
1: Build the initial elimination graph, EL-Graph.
2: Initialize ELroot to the list of all root nodes in EL-Graph.
3: for each Ra,b in ELroot: do
4: analyse-Cost-vs-Benefit(Ra,b)
5: Add Ra,b to the inverted priority queue PQueue {PQueue

sorted by the scoring function rank(Ra,b)}
6: while |R| 6= φ do
7: Ra,b ← remove(PQueue) {Removes top of the list}
8: Perform tuple-level processing for region Ra,b

9: Discard those regions now dominated by the newly generated
tuple(s) in Ra,b using EL-Graph.

10: for each edge e =
−−−−−−−→Ra,b,Re,f ∈ EL-Graph do

11: Remove e
12: if Re,f ∈ PQueue then
13: Update its benefit, Benefit(Re,f).
14: else
15: ELnew−root ← nodes EL-Graph that became a root

due to the removal of edge e
16: for each Ri,j ∈ ELnew−root do
17: analyse-Cost-vs-Benefit(Ri,j)
18: Add Ri,j to PQueue
19: ELroot ← ELroot ∪ ELnew−root

20: Remove Ra,b from R
21: return 0;
22: procedure analyse-Cost-vs-Benefit(Ra,b)
23: Compute the progressiveness count ProgCount(Ra,b) and the

benefit, Benefit((Ra,b).
24: Calculate the cost to process the region, COST (Ra,b))

Time Complexity. Let n = |R| be the total number of regions
in the mapped output space. For our algorithm, in the worst
case scenarios all regions overlap each other. Then, after the
first iteration (first pick), we need to touch n − 1 regions,
in the second iteration n − 2 regions and so on. Therefore,
the time complexity for updating the benefit model is O(n2).
The time complexity to build PQueue is O(n · log(n)).
Therefore, ProgOrder has a worst case time complexity of
O(n2). However, in another extreme scenario when there is
no relationship between any two region, the time complexity
is reduced to the cost of maintaining the priority queue which
is O(n · log(n)). Since typically, n << N (number of tuples
in one source), O(n2) << O(N2).

V. PROGRESSIVE RESULT DETERMINATION

At the completion of the tuple-level processing of region
Ra,b, not all of its tuples can be output since they could
potentially be discarded by tuples generated by other regions
(as in Figures 6.c and 6.d). Therefore, we need a strategy to
determine which subset of the tuples generated so far can be

output early as partial results. Our progressive result reporting
technique assures the results output early are correct. To ensure
correctness, our technique avoids reporting: (1) false positives:
partial results that were reported early even though they are
found to eventually not belong into the final skyline result,
and (2) false negative(s): not report or worst yet drop results
that eventually should have been in the final query result set.

To investigate whether a tuple generated by the tuple-level
processing can be output is a potentially blocking operation
since it requires the knowledge about the output space. To
support progressive result reporting, we first translate this
problem to decision making at the coarser granularity of output
partitions. More precisely, we translate the problem into the
process of determining tuples that map to a partition Oh
belong in the final result set and therefore can be safely output
early on. The intuition behind our approach is to guarantee
that any partition (say Ol) that may contain results that can
dominate those in Oh, have all been generated and their
skyline computations completed. That is, no future tuples will
map to Ol.

8

2

3

4

5

6

7

8

delay

94 5 6 7 10 11 12 13 14 15 16

tCost

b

c e

f j

i

k

h

Set 3: Dependent (Oh)

Set 4: Dependence(Oh)

Set 1: Dom(Oh)

Set 2: DomBy(Oh)

R4,1

R3,2

R1,3

R2,2

R2,3

R1,2

O
h

Fig. 9. Data Maintained for Oh[(11,4)(12,5)]

To illustrate the intuition consider the running example in
Figure 9 for the output partition Oh[(11, 4)]. To safely output
the tuples contained in Oh, we must first ensure that no future
tuples will map to the partition Oh. In other words, the tuple-
level processing for all output regions to which Oh contributes
has been completed. Second, we must ensure that the output
partition in Set 3 of Figure 9 will be empty in the final output
space. Lastly, we must also ensure that all tuples that map to
the output partitions in Set 1 of Figure 9 have already been
generated. When these conditions are met we can safely output
the generated tuples that map to Oh since none of the yet to be
generated tuples could ever dominate those in Oh. We translate
this core intuition into our correctness principle.

Principle 1 (Correctness Principle): The output partition
Oh containing result tuples can be safely output provided it
satisfies the following conditions:

1) Tuples that map to Oh have all been generated and their
corresponding skyline comparisons performed.

2) For all partitions Ol such that UPPER(Ol) �
LOWER(Oh), Ol is guaranteed to be empty in the
final output space.

3) For all partitions Ok such that UPPER(Ok) �
LOWER(Oh), it is guaranteed that no future gener-
ated tuple rxty will map into Ol that may satisfy the
condition rxty � rf tg where rf tg ∈ Oh.

To check for the first condition, for each partition Oh,
we maintain the count of all output regions (say Ra,b)
that contain Oh. Region count for a partition is denoted
as RegCount(Oh). We decrement RegCount(Oh) after the
tuple-level processing of Ra,b. To evaluate the second condi-
tion in Principle 1, we maintain a list of partitions that are
guaranteed to dominate Oh if they were populated. Set 1 in
Figure 9 is called the dominate list, denoted by Dom(Oh).
Inversely, the list of partitions that are guaranteed to be
dominated by Oh if |Oh| 6= φ, called the dominated-by list
(Set 2 in Figure 9). It is denoted as DomBy(Oh).

To evaluate the third condition in Principle 1, we maintain
for each output partition Oh a list of partitions (say Ok) which
satisfies the conditions: (1) UPPER(Ok) � LOWER(Oh),
and (2) there potentially could be tuples in Ok that can
dominate those in Oh. For example, Set 3 in Figure 9 can
potentially have tuples that can dominate those in Oh. This
list is called dependent list and denoted as Dependent(Oh).
Conversely, we also maintain a list called output dependence
list denoted as Dependence(Oh) (Set 4 in Figure 9).

Algorithm 2 ProgDetermine
Input: Ra,b {Region whose tuple-level processing has just been

completed}; R {Region Collection};
Output: Set of output partitions that can be output early.

1: Output = φ
2: for each partition Oh ∈ Ra,b do
3: Decrement RegCount(Oh);
4: if RegCount(Oh) = 0 then
5: Call Progressive-Maintenance(Oh);
6: Call Progressive-Output(Oh);
7: return Output
8: procedure Progressive-Maintenance(Oh)
9: for each partition Og ∈ DomBy(Oh)

10: Remove Oh from Dom(Og)
11: Call Progressive-Output(Og);
12: for each partition Og ∈ Dependent(Oh)
13: Remove Oh from Dependence(Og)
14: Call Progressive-Output(Og);
15: end procedure
16: procedure Progressive-Output(Oh)
17: if |Dom(Oh)| = 0) ∧ ¬IS MARKED(Oh)
18: if |Dependence(Oh)| = 0 then Add Oh to Output
19: end procedure

A. The ProgDetermine Technique: Putting it all together

Next, we present the technique (see Algorithm 2) that
utilizes the above mentioned lists to determine a set of
partitions that can be output early yet safely based on Principle
1. First, we assume that Algorithm 2 is triggered after the
tuple-level processing of each output region Ra,b. For each

output partition Oh ∈ Ra,b, we first decrement the partition
region count (Line: 3). If partition Oh is guaranteed to
have no future tuples mapped to it (i.e., RegCount(Oh)=
0) we trigger the progressive maintenance that updates the
corresponding lists associated with Oh. For example, in Line:
12-13 assuming that no future tuples will fall in Oh, for each
partition Og ∈ Dependent(Oh) we can now safely remove
Oh from their corresponding dependence list. While updating
these lists, we investigate if the partitions that are affected
by Oh can themselves be output (Line: 14). Finally, in Line:
6 we investigate whether Oh can itself be output early. If
|Dom(Oh)| = 0 we can guarantee that tuples that map to
partitions that dominate Oh have already been generated. To
verify condition (2) of Principle 1 we check if its dependence
list is empty, namely |Dependence(Oh)| = φ. To avoid
having to add and remove partitions from each of the lists, we
instead utilize a count-based realization. That is, we maintain
a dedicated count for each list. Now, instead of removing a
partition from a list (as in Line: 10, 13), we merely decrement
the corresponding count.
Time Complexity. Similar to our ProgOrder, in the worst case
scenarios all regions overlap each other and therefore the time
complexity of ProgDetermine is O(n), needed to update all
counts. However, in the best case it is O(1).

VI. PERFORMANCE STUDY

A. Experimental Setup

Alternative Techniques. State-of-the-art techniques that
handle skylines over joins are: first, JF-SL using a hash-
based join [6]. Second, an optimized JF-SL+ which uses the
principle of skyline partial push-through to prune each data
source. Third, SAJ [6] extended the popular Fagin technique
[15] following the JF-SL paradigm. Recently [8] proposed the
Skyline-Sort-Merge-Join (SSMJ) technique to handle skylines
over joins. SSMJ maintains for each data source two active
lists of objects: (1) those objects that are in the source-level
skyline generated by ignoring the join condition (denoted as
LS(S)), and (2) the objects that are in group-level skyline
for each join attribute value (denoted as LS(N)). Next, the
approach performs the query evaluation across the different
data sources. First, the tuples in the source-level sets are joined
with those in the source-level sets of the other source i.e.,
LS(S) 1 LS(S). SSMJ can only output the first batch of
partial results once all the join results have been generated,
mapped and skyline comparisons conducted. Next, SSMJ
performs query evaluation to generate tuples generated from
LS(S) 1 LS(N), LS(N) 1 LS(S) and LS(N) 1 LS(N)
and the results reported at the end of query evaluation. In
short, SSMJ produces results at two distinct moments of time
in batches. Since this method cannot exploit the knowledge of
the output space, SSMJ cannot support the early output of the
results as generated like in our proposed techniques. [9] noted
that for low join selectivity of ≤ 0.000001, SSMJ is ineffective
in pruning many objects both at the source- and group-level
of each data source.

Experimental Platform. All algorithms were implemented in
Java. All measurements were obtained on a workstation with
AMD 2.6GHz Dual Core CPUs and 4GB memory running
Java HotSpot 64-Bit Server VM and Java heap set to 2GB.
Evaluation Metrics. We study the robustness of our approach
by varying: (1) data distributions, (2) cardinality N , and (3)
dimensions d. For each setting we measure the following: (1)
the time stamp of when the output results were reported by
the various algorithms to measure progressiveness, (2) the total
execution time to return the complete result set.
Data Sets. We conducted our experiments using data sets that
are the de-facto standard for stress testing skyline algorithms
in the literature [1]. The data sets contain three extreme
attribute correlations, namely independent, correlated, or anti-
correlated. For each data set R (and T), we vary the cardinality
N [10K–500K] and the # of skyline dimensions d. The
attribute values are real numbers in the range [1–100]. The join
selectivity σ is varied in the range [10−4–10−1]. The mapping
function used is an addition operation between the attribute-
values of the corresponding dimensions similar to those in our
motivating queries. We set |R| = |T | = N .

B. Experimental Analysis of ProgXe Variations

Variations of ProgXe. To get a better understanding of the
benefits and the cost incurred due to progressive ordering, we
implemented the core ProgXe framework with the ability to
enable or disable the progressive driven ordering. Therefore,
we now have the first variation, ProgXe-(No-Order), where
regions are chosen for tuple-level processing in random. How-
ever, in ProgXe (No-Order) we enable the progressive result
determination feature to support early output. The principle
of skyline partial push-through [1], [10] is complimentary
to ProgXe. To study the effects of skyline partial push-
through with ordering, we extended our core approach and no-
ordering based technique to exploit the push-through principle.
Thus, we introduce two more variations, namely ProgXe+ –
the core ProgXe approach with push-through and ProgXe+
(No-Order) – which exploits push-through but with random
ordering. For each dimension d, we chose the same partition
size δ for all variations of our proposed approach and all data
distributions. For a given dimension d, our core framework
is shown to exhibit stable performance across all distributions
and thus this enables us to find a good partition size δ [12].
Progressive Result Generation. In Figures 10.a, 10.b and
10.c we compare the total number of results output over time.
Correlated data is a skyline friendly distribution since a few
10s of tuples can dominate the entire table. In such a scenario,
we observe that both variations ProgXe+ and ProgXe+ (No-
Order) show identical performance. ProgXe starts producing
results from t=20 seconds instead of t=10 seconds achieved by
ProgXe+ and ProgXe+ (No-Order). In Figure 10.b we show
that for independent data sets progressive drive ordering is
able to produce both early as well as faster results. For the
anti-correlated data sets, both ProgXe and ProgXe+ techniques
are able to report ≈ 25% of the total results before the random
ordering techniques start reporting results. For anti-correlated

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 100

 200

 300

 400

 500

 600

 700

 20 40 60 80 100 120 140 160

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 50 100 150 200 250 300 350 400 450

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

(a) Correlated; σ=0.001 (b) Independent; σ=0.001 (c) Anti-correlated; σ=0.001

 0

 50

 100

 150

 200

 250

 300

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

p

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

ProgXe (No-Order)
ProgXe+ (No-Order)

(d) Correlated Distribution (e) Independent Distribution (f) Anti-correlated Distribution

Fig. 10. Performance Study of ProgXe and its variations
ˆ
ProgXe+, ProgXe (No-Order) and ProgXe+ (No-Order)

˜
when d=4 and |N |=500K. Progressiveness

Comparisons (a, b, and c); Total Execution Time Comparisons (d, e, and f)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0 100 200 300 400 500 600 700

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 250 500 750 1000 1250 1500 1750

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ

(a) Correlated; σ = 0.01 (b) Independent; σ = 0.01 (c) Anti-correlated; σ = 0.01

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 2500 5000 7500 10000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

y

ProgXe
ProgXe+

SSMJ

(d) Correlated; σ = 0.1 (e) Independent; σ = 0.1 (f) Anti-correlated; σ = 0.1

Fig. 11. Progressiveness Comparisons of ProgXe, ProgXe+ and SSMJ; d = 4 N = 500K

data sets, as in Figure 10.c, we observe that ProgXe is able to
produce earlier results than ProgXe+. This is due to the fact
that ProgXe+ consumes time trying to prune the individual
sources which in the case of anti-correlated data sets is not cost
effective. To summarize, ProgXe+ is effective in producing

early results across all distributions. In contrast, ProgXe is best
suited for anti-correlated data while still being competitive for
the independent and correlated data sets.
Total Execution Time. To measure the overhead of ordering
we compare the total query execution time. When σ < 0.01,

Figures 10.d, 10.e and 10.f show that ProgXe has identical
execution time as ProgXe (No-Order). This highlights that our
ProgOrder and ProgDetermine algorithms are cheap and in
fact can be considered negligible in overhead. For σ ≥ 0.01 we
observe that ordering tuple-level processing helps reduce the
total execution cost of the algorithm. ProgXe+ and ProgXe+
(No-Order) is shown to take about the same time to finish the
query evaluation. To summarize, the overhead incurred due to
ordering is insignificant but has good progressiveness benefits
as shown in Figures 10 a–c.

C. Comparisons with State-of-the-art Techniques

JF-SL, JF-SL+ and SAJ techniques all follow the join
first skyline later methodology and therefore are blocking in
nature. Hence, we ignore their comparisons here. However
their execution time comparisons is presented in [12]. [9]
acknowledged that their technique has identical performance
characteristics to SSMJ for all join selectivities σ ≥ 10−5.
Thus we limit our comparative study henceforth to SSMJ.

In Figure 11, we compare the progressiveness of the differ-
ent algorithms when d=4. For the non-friendly anti-correlated
data ProgXe and ProgXe+ outperforms SSMJ by 3 to 4
orders of magnitude, as shown in Figures 11.c and 11.d.
For correlated data, Figures 11.a, and 11.d, we observe that
ProgXe+ has almost similar performance to SSMJ. In Figures
11.b and 11.e, for independent distribution, ProgXe+ has a
slightly better performance than SSMJ.

For d=5 and independent data (Figure 12.a) the performance
of SSMJ is unacceptable as it starts producing tuples later
when t > 350 seconds. In contrast, ProgXe and ProgXe+
take 40 and 50 seconds respectively. Under one minute is
considered an acceptable wait time for an interactive system.
The slower performance of SSMJ is due to the fact that as the
number of skyline dimensions increases the pruning capacity
of skyline partial push-through is dramatically reduced. As
SSMJ cannot exploit the knowledge of the output space, it
can neither optimize for early output of results nor its query
execution time. For anti-correlated distribution, SSMJ fails to
return a single result even after several hours. In Figure 12.b,
we observe ProgXe+ has near identical performance to ProgXe
since the push-through re-write is not as effective and it has to
solely rely on the optimization methods proposed in ProgXe.
Summary of Experimental Conclusions. (1) The progres-
sive query execution framework ProgXe and its optimized
ProgXe+ are robust for all distributions, cardinalities and join
factors. (2) The principle of skyline partial push-thorough is
complimentary for lower dimensions. (3) For anti-correlated
data sets, our proposed techniques have superior performance
since they output results early; in many cases by 2-4 orders of
magnitude. (4) For correlated and independent data sets and
(d ≤ 4), ProgXe+ is shown to have competitive performance
with SSMJ. (5) For higher dimensions (d=5) ProgXe and
ProgXe+ are superior to SSMJ across all distributions and
selectivity. In particular, for anti-correlated data sets SSMJ is
unable to return results even after several hours (Figure 12.b).

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

SSMJ

(a) Independent

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 5000 10000 15000 20000 25000

To
ta

l N
um

be
r o

f R
es

ul
ts

 O
ut

pu
t

Time (sec)

p y

ProgXe
ProgXe+

(b) Anti-correlated (SSMJ did not return results)

Fig. 12. Higher Dimension of d = 5 and σ = 0.1; SSMJ for Anti-correlated
data set fails to return any results even after several hours

VII. RELATED WORK

Progressive Skyline Algorithms. In the context of single-
set skyline algorithms, [4], [5] proposed progressive algo-
rithms by pre-loading the entire data-set into bitmap or R-Tree
indices first. However, these techniques are not efficient in the
context of SkyMapJoin queries for the following two reasons.
First, to ensure correctness when applied to existing methods,
the skyline evaluation must be delayed until all possible join
results have been generated and loaded into the respective
indices, rendering the process fully blocking. Second, for SMJ
queries the input to the skyline operation is generated on the
fly based on the pipeline of join and mapping operations. In
our context of skylines over join, if we used such techniques
we would now add on index loading cost as a part of the
query processing costs and yet we cannot take advantage of
the performance benefits gained in [4], [5].

Skyline Algorithms over Disparate Sources. In the context
of returning meaningful results by relaxing user queries,
[6] presented various strategies that follow the “blocking”
paradigm known here as join-first, skyline-later (JF-SL) (as in
Figure 1.b). Very recently, [8] proposed techniques to handle
skylines over join by exploiting the principle of skyline partial
push-through. They focus on optimizing the total execution
time. Furthermore, this approach suffers from the following
three drawbacks. First, SSMJ [8] is only beneficial when the
local level pruning decisions can successfully prune a large
number of objects, like for skyline friendly data sets such
as correlated and independent data sets or very high join
selectivity [9]. In our experimental study we show that even

 0

 20

 40

 60

 80

 100

 120

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

SSMJ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

p

ProgXe
ProgXe+

SSMJ

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0.0001 0.001 0.01 0.1

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Join Selectivity

ProgXe
ProgXe+

SSMJ

(a) Correlated Distribution (b) Independent Distribution (c) Anti-correlated Distribution

Fig. 13. Total execution time comparison: Proposed techniques vs. SSMJ (d = 4; N = 500K)

in data sets where SSMJ has good performance our approach
performs equally well. Second, after partial push-thorough
SSMJ for queries such as Q1 involving mapping functions
once all local decisions have been made, this approach reverts
back to the traditional (JF-SL) evaluation of SMJ queries.
Since SSMJ cannot exploit the knowledge about the output
space it is unable to use it to maximize the number of partial
results output early. Third, their claim that objects in the
source-level skyline of an individual table are guaranteed to
be in the output no longer holds when mapping functions are
considered as in our context as the later may affect dominance
characteristics.

Blocking vs. Non-Blocking Query Operators. Relational
algebra operators can be classified as either being blocking
or non-blocking [16]. Operations such as Select (σ) and
Project (π) that can return results immediately after processing
each input tuple are called non-blocking. On the other hand,
operators such as Group-By (G), and Skyline (S) that require
at least one full scan of the entire input data to return any
results are called blocking. Transforming a blocking operation
or even a full query into a non-blocking (in some case at least
partially-blocking) operation has received much attention in
the literature [16]–[18]. Techniques include to push aggregates
through the join operations in certain cases or a window-based
evaluation of aggregates. However, these techniques are not
applicable for processing SMJ queries.

VIII. CONCLUSION

Real-time multi-criteria decision support (MCDS) require
to support the early output of results rather than waiting until
the end of query processing. To achieve progressive result
generation one must be able to take advantage of optimization
opportunities that are available by looking ahead into the
mapped output space and exploiting this knowledge in various
steps of query processing as well as different level abstraction
in both individual sources and the complete query. In this
work, we propose a progressive query evaluation framework
ProgXe that is successful in achieving this goal. We further
optimize ProgXe by presenting an effective ordering technique
that optimizes the rate at which partial results are reported by
translating the optimization of tuple-level processing into a
job-sequencing problem. We demonstrate the superiority of
our approach over state-of-the-art techniques in many cases

by several orders of magnitude, for a wide range of data sets,
confirming the robustness of our methodology.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under Grant No. IIS-0633930 and CRI-0551584. We thank
Dr. Donald Kossmann for giving us access to the de-facto
benchmark synthetic data generator for skyline evaluation. We
thank David Sampson for his valuable feedback.

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421–430.

[2] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of
a set of vectors,” J. ACM, vol. 22, no. 4, pp. 469–476, 1975.

[3] I. Bartolini, P. Ciaccia, and M. Patella, “Salsa: computing the skyline
without scanning the whole sky,” in CIKM, 2006, pp. 405–414.

[4] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in VLDB, 2001, pp. 301–310.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in SIGMOD, 2003, pp. 467–478.

[6] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica, “Relaxing join and
selection queries,” in VLDB, 2006, pp. 199–210.

[7] C. Mishra and N. Koudas, “Interactive query refinement,” in EDBT,
2009, pp. 862–873.

[8] W. Jin, M. Ester, Z. Hu, and J. Han, “The multi-relational skyline
operator,” in ICDE, 2007, pp. 1276–1280.

[9] D. Sun, S. Wu, J. Li, and A. K. H. Tung, “Skyline-join in distributed
databases,” in ICDE Workshops, 2008, pp. 176–181.

[10] B. Hafenrichter and W. Kießling, “Optimization of relational preference
queries,” in ADC, 2005, pp. 175–184.

[11] S. Chaudhuri, N. N. Dalvi, and R. Kaushik, “Robust cardinality and cost
estimation for skyline operator,” in ICDE, 2006.

[12] V. Raghavan, S. Srivastava, and E. Rundensteiner, “Skyline and mapping
aware evaluation over disparate sources,” Dept. of Computer Science,
Worcester Polytechnic Institute, Tech. Rep. WPI-CS-TR-09-03, 2009.

[13] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, “On
the average number of maxima in a set of vectors and applications,” J.
ACM, vol. 25, no. 4, pp. 536–543, 1978.

[14] C. Buchta, “On the average number of maxima in a set of vectors,” Inf.
Process. Lett., vol. 33, no. 2, pp. 63–65, 1989.

[15] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS, 2001, pp. 102–113.

[16] J.-H. Hwang, U. Çetintemel, and S. B. Zdonik, “Fast and reliable stream
processing over wide area networks,” in ICDE Workshops, 2007, pp.
604–613.

[17] S. Chaudhuri and K. Shim, “Including group-by in query optimization,”
in VLDB, 1994, pp. 354–366.

[18] W. P. Yan and P.-Å. Larson, “Performing group-by before join,” in ICDE,
1994, pp. 89–100.

