
WPI-CS-TR-09-10 October 2009

Interface Design For Programmable Cameras

by

Clifford Lindsay
Robert W. Lindeman

Emmanuel Agu

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Interface Design For Programmable Cameras

Clifford Lindsay∗

Worcester Polytechnic Institute
Robert W. Lindeman†

Worcester Polytechnic Institute
Emmanuel Agu‡

Worcester Polytechnic Institute

Abstract

This paper outlines the process of designing a set of interfaces for
a programmable digital camera back-end. The set of interfaces in-
cludes a traditional, advanced and development interface. The tra-
ditional interface is a replication of a typical camera interface which
is present on today’s commodity cameras. The advanced interface
provides access to the programmable pipeline on the new camera
architecture [Lindsay and Agu 2009]. The development interface is
a tool that provides the building blocks for assembling new camera
pipelines. We discuss the process and design decisions that were
used in implementing the camera interfaces. We also describe how
user tasks were modeled and the types of interaction the interfaces
provide. This paper also explains the implementation details of
building the three interfaces, along with an Expert User study to
validate our design.

Keywords: HCI, Computational Photography, Mobile Graphics

1 Introduction

Traditional cameras, such as Point & Shoot cameras, are tools for
capturing scenes that are visually accurate. In a separate project
from the one described in this paper, we developed a new camera
architecture and prototype that provides full control over how the
camera renders an image [Lindsay and Agu 2009]. Our new camera
architecture provides a mechanism for camera users to write small
programs, called shaders, which influences how the camera ren-
ders a photograph. As a result of the additional capabilities of this
new camera architecture, traditional camera User Interfaces (UI)
will no longer suffice. This is due to the complexity associated
with providing programmable features for non-programmer cam-
era users (users with little or no shader programming knowledge).
Therefore, a new camera interface, as well as a development tool
for non-programmers and programmers alike, had to be designed.

To facilitate the use of our camera’s programmable features, we de-
signed and developed three camera interfaces. The first interface
was the development tool, which we call the Workbench, is used
for creating new camera pipelines. The Workbench is a standalone
application that allows the camera user to define the stages of the
camera pipeline through a series of filters. The filters, which are
implemented using Camera Shaders [Lindsay and Agu 2009], are
small programs that are executed on the camera’s graphics process-
ing unit (GPU). Each filter takes as input an image and returns a
modified version of that image to the next filter (see figure 1). The
second interface, which runs on the camera, is the traditional cam-
era interface. This interface allows the user to interact with the

∗e-mail: clindsay@wpi.edu
†e-mail:gogo@wpi.edu
‡e-mail:emmanuel@cs.wpi.edu

camera in the traditional sense, by allowing the user to take pic-
tures, review and edit the pictures, and modify the camera settings.
The third camera interface, which also runs on camera, is the ad-
vanced interface. This interface allows the camera user to choose,
activate, and configure any of the camera pipelines created with the
Workbench application. Once activated the new pipeline manipu-
lates any captured image, and stores the results on the camera for
review and editing within the traditional camera interface.

In this paper, we discuss the human-computer interaction decisions
used to develop the interfaces, the programming paradigm for the
pipelines, and the constraints imposed on the design due to the tar-
get platform. Furthermore, we discuss the implementation of the
interfaces, including a survey of UI frameworks, programming lan-
guages, and software packages used to implement the functionality
of the camera. Because this is a new type of interface, an expert user
study was conducted in order to validate the design of the camera
interfaces. Finally, we discuss the future work of this project based
on the findings of the user study as well as other features that were
not included in the original design of the camera interfaces.

2 Interface Design

2.1 Overview

The traditional design philosophy for shader development software
follows a Directed Acyclic Graph (DAG) or other tree representa-
tion [Slusallek and Seidel 1995; Apodaca and Gritz 1999], which
represents the inter-relationship of the shaders comprising an effect.
For our shader development design, we chose to use a filter-based
approach such as described in [Bennett and McMillan 2003], which
and can be thought of as a decorator design pattern [Gamma et al.
1995]1. It organizes filters in a sequence where the result of one
filter is the input to the next. This filter design philosophy is con-
sistent with the camera/photography community’s philosophy, as
filters (physical and effects) are generally used to modify images,
such as those placed in front of a lens or used in Photoshop.

Our filter-based design is also consistent with the programming
paradigm known as Stream Processing as described in [Owens et al.
2000], where a kernel (analogous to filter) takes as input a stream of
data (image analog) and produces an output stream. In our case the
streams are the input and output data from each filter. Thus each
filter acts like a kernel, applying an operation on its entire input
stream and producing an output stream.

2.2 Workbench

The primary development tool for creating and modifying camera
pipelines is the Workbench application. The main goal of the Work-
bench is to allow the user to organize a series of filters and their
properties to form a new camera pipeline. The Workbench inter-
face provides a toolbox widget (figure 2, on the left hand side) to
organize the filters available for modifying pipelines. The other
widgets in the Workbench interface include the camera pipeline
view, properties editor, and a preview window. When designing

1From this point forward we will refer to shaders as filters to avoid any
confusion unless describing a feature specific to shaders

input
resultresul

inppuutinppuut

Filter: 1 2 3 4

Figure 1: Input image with a series of filters applied. Each filter is
implemented using a Camera Shader.

the Workbench application, the interface was centered on the fil-
ter philosophy previously mentioned. Each of the four components
of the Workbench interface is purposed for organizing and editing
filters, therefore they were arranged in a location that attempts to
facilitate ease of use. For example, each component was placed in
a location that promoted a left to right type design, where an opera-
tion begins at the left-side of the Workbench with the tool box and
generally ends at the Properties Editor at the right-hand side.

To modify the pipeline, the user drags a filter icon onto the pipeline
view in the desired location2. The location of the pipeline is di-
rectly adjacent to the toolbox, which allows dragging and dropping
of filters with few mouse movements facilitating its ease of use. Ad-
ditionally, the Toolbox is organized into a series of shelves3, where
similar filters can be organized into logical groups defined the user.

In the pipeline view, each filter is displayed with its name, state,
and an icon representative of its type. To provide visual feedback
to the user regarding the state of the filter, especially when a filter
is not active, its checkbox will be unchecked, the filter icon will be
grayed out, and the filter will not influence the resulting image in
the pipeline. To get a more detailed view of the each filter within
the pipeline, the user can select an individual filter by clicking on
the filter icon in the pipeline which will load its properties in the
properties editor.

The property editor allows the user to change the input values or pa-
rameters of the individual filters that are active within the pipeline.
The filter properties are the input values for each filter and thus
influence the behavior the algorithm used to implement the filter.
When a filter’s property is modified, its value is automatically up-
dated in the pipeline and the result of the change appears immedi-
ately within the preview window. The preview window gives the
user an indication of how the current state of the pipeline would
look given the sequence of filters and their properties applied to a
static image.

2The camera pipeline is a sequence of filters in which the order deter-
mines the sequence of operations. Therefore dropping a filterin a certain
location can have varying effects depending on the order.

3The term shelf is a metaphor used by the visual framework described in
section 4

Toolbox Pipeline View

Preview

Window

Properties

Editor

Figure 2: The Workbench application provides an interface that
allows users to create and modify camera pipelines. The interface
is organized in a left-to-right fashion to facilitate ease of use and
minimal number of steps to perform operations. The interface is
comprised of four widgets, toolbox, pipeline view, properties editor,
and preview window.

2.3 Traditional Camera Interface

Unlike the Workbench interface, which is a stand-alone application,
the camera has two distinct user interfaces, the traditional camera
interface and the advanced user interface. Each of these interfaces
was designed to be run simultaneously on the camera. The tra-
ditional camera interface provides the functionality for acquiring
and editing photographs, similar to the features provided with com-
modity cameras. Like commodity cameras, our traditional camera
interface is further divided into a collection of sub-interfaces called
Picture Mode, Picture Review, and Camera Settings. Each of the
sub-interfaces are displayed using tabbed windows, which are be
brought into focus by clicking on the respective tab name (figure 3
provides a screen shot of these tabs).

The Picture Mode sub-interface (figure 3, left) controls the camera’s
photographic activities as well as providing an information display
regarding the camera settings and the scene preview. The display
of information within this interface is divided into two groups, the
photography settings and the camera’s state. The photography set-
tings that are displayed include shutter speed, exposure, orientation,
and color space. The second group displays information about the
camera’s state, such as the mode, the date/time, if the flash is active
and a battery life indicator. Situated to the right of the settings is
the preview window, which shows the current field of view for the
camera. The second sub-interface is the Picture Review interface
(figure 3, center), which provides the user with a view of pictures
that have already been taken. This interface also provides some
basic tools for editing the images such as adjusting the saturation,
contrast, and brightness. Once the pictures have been edited, the
user can save those edits by clicking the ”Save” button or delete the
image if the image is no longer desired.

2

Figure 3: The Traditional camera interfaces; left is picture mode, center is picture review, right is the camera settings.

2.4 Advanced Camera Interface

The Advanced Interface provides additional functionality beyond
that of the Traditional Interface, and allows users to define the cam-
era’s pipeline through the use of programmable filters. The fil-
ters are applied to images during the capture process and form a
new camera pipeline in lieu of the traditional static camera pipeline
found in today’s cameras. As illustrated in figure 1, each filter ap-
plies its modification of the image then the results are fed into the
next filter. The Advanced Interface provides four components to the
user for configuring and previewing the available camera pipelines.
These components are the Pipeline Selector (labeled ”‘Available
Pipelines”’ in figure 4A), the Pipeline View (figure 4B), the Prop-
erties Editor (figure 4C), and a preview and information display
(figure 4D).

Available

Pipelines
A)

B) Pipeline

C) Properties

Editor

D) Preview

Figure 4: The advanced user interface. Top right is the component
where the use can select the available pipeline (exported from the
Workbench). Below the pipeline selection, are the editable proper-
ties of the selected pipeline.

As can be seen from figure 4, the UI components for selecting and
configuring the pipelines are all located on the right-hand side of the
interface. They are organized in a top-down or hierarchical fashion,
where the top component is used for selecting the desired pipeline,
the middle component is used for selecting the individual stages in
the pipeline (determined by selecting a filter), and the lower com-
ponent shows the properties of the selected filter. The user can ac-
tivate a pipeline to be used on the camera by selecting the desired

pipeline from the list of ”Available Pipelines” (figure 4A). By de-
fault the first filter in the pipeline is selected and its properties are
displayed in the bottom component (figure 4C). If the user desires
to display and edit the properties of another filter within the current
pipeline, the user can do so by selecting a different filter (figure
4B). When a property is edited, the value is automatically activated
in the camera pipeline. This saves the user from performing any
unnecessary steps in order to apply the change.

The Advanced Interface also contains a preview window and a com-
ponent for displaying the current pipelines meta-data and rendering
properties. The preview window displays the results of the current
pipeline on on the camera scene. The preview window will update
the image when a change to any filter is made, otherwise it remains
static. In addition to the preview window, the properties relating to
the pipeline as a whole are displayed above the preview window.
The information displayed there tells the user information about
the pipeline, specifically the number of filters used, the name of the
pipeline, the rendering quality, and whether it is active.

3 Interaction Design

3.1 Task determination

For capturing an image using a programmable camera, there are
two main tasks the user has to perform, first is creating a camera
pipeline and second is using that pipeline to acquire images. The
Workbench application was designed and implemented for creating
new camera pipelines. Creating new pipelines can be further di-
vided into three sub-tasks, pipeline building, pipeline fine-tuning,
and pipeline storage. The second main task is acquiring images,
which can be carried out via the following steps or sub-tasks, im-
age sensing (activating the camera’s capture capabilities), reviewing
captured photographs, adjusting camera and pipeline settings, and
changing the camera’s pipeline. Each sub-task can be described as
a series of atomic actions or small tasks accomplished in a single
step, and which bring the user closer to completing the main task
[Shneiderman 1986]. To aid in acquiring images, we designed a
camera interface that can be mapped to the previously described
sub-tasks. The rest of this section describes in more detail each of
the main tasks and their corresponding sub-tasks.

3.1.1 Pipeline Creation Tasks (1st Main Task)

The first high-level task of building a pipeline consists of organiz-
ing a sequence of filters, in a particular order, to achieve the desired
rendering effect. The overall process is described in the flow dia-
gram in figure 5. We can describe the atomic actions the user needs
to perform as dragging and dropping a filter located in the toolbox
(see figure 2) onto the pipeline. Thus, building of a camera pipeline

3

is an iterative as well a progressive process, consisting of one or
more of these atomic actions with each iteration getting the user
closer to the desired result. The user has completed the task when
the output of the preview window displays the desired effect.

The second task is pipeline fine-tuning (property editing), which
can be done simultaneously with the building of the pipeline and/or
after the pipeline is assembled. The tuning task is iterative in na-
ture as well, with the repeated performance of atomic actions until
the desired effect is displayed in the preview. The atomic actions in
this case are the editing of the properties and removing and reorder-
ing of individual filters. The properties of each filter can be edited
within the properties editor (see figure 2) after selecting a filter. Re-
ordering the pipeline requires the user to select and drag and drop
an existing filter within the pipeline to another location within the
pipeline, or remove it entirely by clicking the delete button under-
neath the pipeline.

Done?

Drag

Filter

Start

Edit Filter

Properties?

Yes

No

No

Select Edit Prop

Save

Export?

Export

Yes

No

Finished

Figure 5: Flow chart diagram depicting the tasks to create a new
pipeline using the workbench application.

The final task of storing or ”‘exporting”’ the pipeline can be per-
formed after the pipeline is assembled and its parameters tuned.
Storage can be achieved in two ways. First, a local copy of the
pipeline can be saved by clicking the ”Save” icon. The other per-
sistence method is exporting the pipeline to the target camera by
clicking the ”Export” icon. Saving the pipeline allows the user to
save a pipeline locally for further editing at a later date without
exporting to the camera. Exporting the newly created pipeline con-
verts the pipeline to the camera’s internal format and pushes it to
the camera, making it available on the target camera. Modifying a
pipeline that has been exported to the camera, is achieved by open-
ing an existing locally saved pipeline and re-export it using the same
pipeline name.

3.1.2 Image Acquisition Tasks (2nd Main Task)

On the camera, the main task is capturing an image. This high-level
task can be divided into three subtasks when using traditional cam-
eras; image capture, reviewing captured photographs, and adjusting
camera settings. For a programmable camera, we add a separate
subtask, which is activating a new camera pipeline. The image cap-
ture task has requires the user to perform a physical action related to
aiming the camera and clicking the capture button. The review task
is slightly more complicated, where the user is required to navigate

to the Picture Review sub-interface where they can review the pic-
ture. Reviewing the picture involves three separate tasks, selecting
the picture, editing some basic image properties, such as contrast,
sharpness, and brightness, and saving the modified image. The third
task, involves editing the camera’s capture property on the Camera
Settings sub-interface. Selecting the desired property and modify-
ing the value using the pulldown widget results in modification of
the property. Once the property value has been changed within the
widget, this new value is automatically applied and thus reflected
elsewhere in the camera’s UI and future captured images.

The fourth and final task is modifying and changing the camera’s
pipeline. After navigating to the Shader Setup sub-interface, the
main subtask is to select and modify a camera pipeline for capturing
images. This task itself can be divided into two separate subtasks as
well, selecting the pipeline and editing the properties of the filters
within the selected pipeline (see figure 4). Selecting a new pipeline
requires an atomic action by the user, which is the user selecting
the desired pipeline. This action automatically activates the new
pipeline, thereby causing future images captured by the camera to
be rendered using this new pipeline. The second task of modifying
the pipeline requires two atomic actions, the first being selecting
the filter with the properties that need editing, and the second being
editing the property in the properties window (see figure 4). The
set of tasks within the Shaders Setup sub-interface is similar to the
Workbench with respect to editing the camera pipelines, due to us-
ing the same editing tasks and a similar layout.

Satis�ed?

Capture

Image

Start

Edit Camera

Settings, Images

or Pipeline?
Yes

No

Camera

Settings

Review

Image

Finished

Image

Properties

Camera

Pipeline

Figure 6: Flow chart diagram depicting the tasks to acquire an
image using the camera interfaces. The black text/lines denote tra-
ditional camera interface tasks and the red denotes tasks required
for the programmable camera interface.

3.2 Interaction Style

Most of the user interaction style employed by the Workbench and
camera interfaces can be classified as either direct manipulation or
menu-based manipulation as defined by [Shneiderman 1986]. The
direct manipulation interactions are the actions the user needs to
employ to visually create and manipulate camera pipelines. For ex-
ample, dragging a filter from the Toolbox to the pipeline changes
the pipeline, thus indicating that the user wants to include that fil-
ter within the pipeline. This direct manipulation interaction style
allows the user to ”physically” act as they are dropping filters to
influence the pipeline. Direct manipulation is also employed with a

4

subset of the properties of the filters, such as using a color picker,
value sliders, and spin boxes to edit properties.

In addition to the developed interfaces providing direct manipula-
tion, the Workbench and camera interfaces provide additional feed-
back in several different ways. The main feedback mechanism
used within the Workbench application and camera interfaces is
the use of preview windows for previewing changes to the cam-
era pipelines. The preview windows provide visual feedback in the
form of a modified image that reflects the changes made by the user.
For example, the user might assemble a new pipeline that contains
a single filter for converting captured color images to monochrome
images. Then by adding a Negative filter, the user will be able to
preview the effect of monochrome images having the pixel values
inverted. This immediate feedback could be a powerful means for
rapid prototyping of pipelines because it helps to facilitate the often
complex task of building a pipeline of filters by constantly provid-
ing feedback so the user can be guided.

3.3 Semi-automated Filter Creation

The Workbench and camera interface applications were intended to
be designed with a shallow-learning curve with respect to shader
writing (used to implement filters). We accomplished this through
the use of visual manipulation metaphors by allowing the user to
drag and drop filters, represented by icons, into the pipeline. The
Workbench application provides a set of foundation filters provided
within the Toolbox area of the Workbench application that can be
used to create pipelines without the need to modify the shader code
that implements the filters. The Workbench application provides
enough filters that a majority of the needs of users for creating
pipelines is satisfied, such as color conversion, image processing,
image manipulation, and several artistic operations. This allows
users with beginning to intermediate level shader writing experi-
ence to focus on creating the camera pipelines without forcing them
to learn the underlying graphics shader technology. To complement
the shallow-learning curve design, we also designed the Workbench
application to provide advanced and expert users the flexibility to
influence the underlying shader code and create new filters by pro-
viding two additional interfaces. The first is the shader editing ca-
pabilities provided in the properties editor component, and the sec-
ond is the XML/GLSL configuration used by the Workbench. The
shaders (filters) are implemented using the standard GLSL shader
language to provide cross-platform compatibility. The shallow-
learning curve with advanced editing capabilities strives for ”Uni-
versal Usability” while maintaining ”Internal Locus of Control” for
expert users as described in the principles of [Shneiderman 1986].

3.4 Visual Appearance

The color palette of the interface was somewhat conservative, be-
cause we intended user attention to be focused on the rendering
rather than being distracted by the color scheme. The use of a small
number (3-4) of colors within the color palette of the application al-
lows the color stimulation from the shader icons, preview windows,
and other color indicators to appear more prominent. This draws
the attention of the user to areas of importance when the user is
interacting with the interfaces. This is particularly important when
utlizing the Workbench application to design camera pipelines that
requires the user’s to focus attention on the color of the rendering.
One place where color was used to draw attention was in the se-
lection of filters within the pipeline. When the user selects a filter,
changing the border color and background to red highlights the tar-
get filter. This allows the user to discriminate between the different
shaders within the pipeline even though they may contain complex
colors themselves as described in [Shneiderman 1986].

4 Implementation

4.1 Overview

The implementation of both the Workbench application and the
camera interfaces went through two phases before completion, the
review phase and implementation phase. The review phase con-
sisted of evaluating three separate UI frameworks for possible im-
plementation of the Workbench and camera interfaces. The second
phase, the implementation phase, consisted of implementing the
Workbench and camera interfaces using our choice of UI frame-
work. For this project, we chose the Qt framework [Nokia 2009]
due to availability on the target computing platform (Beagleboard
[Beagleboard 2009]), the feature set it provided, and its compatibil-
ity with the chosen programming language (Python) memory foot-
print. In the following sections we describe the review process, the
implementation, and the software and hardware used to implement
the Workbench and camera interfaces.

4.2 UI Server Comparison

Each choice of UI framework depends on an underlying graphics
rendering environment in order to visually display their widgets.
Because we are using Linux as the target operating system kernel
(Angstrom as the OS), we have three choices for graphics rendering
environments, the X windows system, Qtopia (Trolltech/Nokia),
and using the frame buffer directly known as DirectFB. By far the
most widely used environment on all Linux and Unix kernels is the
X windowing system which provides a client/server configuration
for graphics rendering. Qtopia is a self-contained windowing sys-
tem implementing the Qt UI framework and is targeted for embed-
ded systems. Several UI frameworks have the capability to directly
access the frame buffer, such as GTK, thereby bypassing the over-
head of an intermediate hardware abstraction layer. Because each
framework considered depends on an underlying graphics environ-
ment, these dependencies have to be taken into consideration when
choosing. Table 1 provides a comparison of the criteria used for
determining the best UI framework for this project.

X allows reuse of many existing UI framework for embedded UI
thereby making the available number of frameworks much greater
than other graphics environments. Some examples of UI framework
currently running on the Beagleboard with X are Qt (not Qtopia),
GTK, FLTK, Motif, and Java’s AWT. Because X was designed in
a client/server paradigm, the network-oriented overhead associated
with communication and multiple processes of the server and client
is a concern. X servers are particularly useful in environments,
which is require several graphical applications simultaneously, such
as mobile internet devices (MID).

DirectFB provide a high-level abstraction of the Linux frame buffer
interface. This option provides access to the underlying hard-
ware via an abstraction but does not provide any graphics or ren-
dering routines. This is a popular choice for developing new UI
frameworks, such as with Clutter [Project 2009] for leveraging
OpenGL [SGI 2009] for rendering UI widgets. It requires drivers
for OpenGL ES 2.0, which are currently unavailable in the pub-
lic domain for the Beagleboard. This can be very fast as in future
releases may take full advantage of graphics hardware for acceler-
ation.

The embedded version of the QT UI framework called Qtopia
[Nokia 2009] is capable of running directly on the frame buffer,
enabling ported or new applications developed using Qt to run on
an embedded system with incurring the overhead cost of using X.
Qtopia is an integrated graphic software stack providing the graphic
environment, support libraries, and widget toolkit. Qtopia pro-

5

vides an optimized version (somewhat restricted) version of the Qt
framework to run on embedded platforms with a memory footprint
around 5MB. Qtopia and Qt on X provide two options for running
Qt based applications on embedded systems. Future versions will
also provide graphics acceleration via graphics hardware, thereby
allowing for faster rendering and integrated graphics widgets.

4.3 UI Frameworks Review

Before determining the UI framework that would be used to im-
plement the Workbench and camera interface, we reviewed three
viable options for the implementation. These frameworks were Qt,
Flex [Adobe 2009], and Glade [Glade 2009] with GTK [Gnome
2009]. Qt is a cross platform UI framework originally developed by
Trolltech (now owned by Nokia) in C++ with Python bindings. Flex
is an open source framework based on Adobe’s Flash for developing
rich Internet applications to be run within a browser that is and uses
an XML variant called MXML. Glade (User Interface Designer)
and GTK+ are two complimentary tools for creating cross platform
UIs written in C++ but has many bindings. Initially, we started the
development of the interfaces using all three frameworks.

Each of the available implementation frameworks we considered
were viable options. Therefore, we used a method of elimination to
determine the best framework for this project by considering perfor-
mance, available multi-media widgets, and if it was currently work-
ing on the Beagleboard ditribution operating system (Angstrom).
We conducted an informal review to determine which framework
would be the least viable option for our implementation. Consider-
ing that Qt provided a mature framework supported by a large com-
pany made it an attractive choice. But one very important criterion
we had to consider was how it would perform in an embedded en-
vironment. Qt is ideal for embedded environments because it offers
a specific version of its runtime for embedded systems called Qt
Embedded. The other two choices did not offer an embedded op-
tion, although Adobe Flash (proprietary version of Flex) has been
implemented on several mobile devices but currently not the Bea-
gleboard. Due to the lack of Flex/Flash plugins for the Beagleboard
browsers, it was currently impossible to run a Flex interface on the
embedded system itself and required a web browser on an external
machine in order to view the camera interface, which invalidated
this choice.

The programming model for Flex was considerably different than
the other two (considering the web based client/server model)
choices. GTK and Qt could be developed using a single pro-
gram with separate classes which is more traditional for desk-
top and embedded programming. Flex required a webserver that
was configured to run CGI scripts (for the Beagleboard, this was
Apache). In addition to providing a familiar desktop programming
model, QT also provided specific classes implemented to provide a
Model/View/Controller programming implementation.

Another determining factor was that the filters (shaders) imple-
mented for this project relied heavily on the use of OpenGL for
rendering. This means that the UI framework would have to have
an OpenGL compatible display widget. QT and GTK had such a
component, but at the time of implementation it was not clear that
Flex did. Because Qt had embedded support, was mature, provided
additional programming features (MVC), and was OpenGL com-
patible, it was chosen over the others.

5 Qt UI Implementation

As previously mentioned, for implementing the UI of the Work-
bench application and camera interface, we decided to use the Qt
UI framework. From Qt version 4.2 and above, the framework pro-

vides groupings of classes specifically designed to be used within
a Model/View/Controller programming paradigm. Both interfaces
used this paradigm for organizing the implementation software (fig-
ure 7). The View consisted of the QT UI widgets. The Controller
was Python code designed to react to and instigate actions that con-
stituted the application logic. A light-weight database was used as
the Model. This separation of components has the advantage of de-
coupling the UI from the code, and provides a clear segregation of
the application components, thus minimizing interdependency and
facilitating testing, refactoring, and reuse.

QT UI Widgets

Database

Other Libraries OpenGL

OS

Controller

Figure 8: The software organization of used for both the Work-
bench applications the camera interfaces. The top layer represents
the UI components used to interact with the user, the controller
provides the functionality of both interfaces and interaction with
the database. Direct acess to the Opengl rendering framework was
used to implement the shaders.

The Model of the application consisted of the shaders and their as-
sociated properties, which we used as filters. These properties were
loaded and stored within a lightweight database provided by Qt
called the QtStandardItemModel. Each shader was loaded and con-
verted into a subclassed QtStandardItem called PcamStandardItem.
Each item provided a tree structure to store the property values of
the corresponding shader. A root item was created, and each node
below the root was a shader property. Once the tree was completed,
it could then be inserted into the database. The QtStandardItem-
Model provided many convenience functions for querying, listing,
and updating various properties of each item.

The View of the application was implemented with two kinds of
widgets, ”‘simple”’ and ”‘complex”’ widgets. The simple wid-
gets, such as labels and buttons provide a basic look and feel with
minimal interaction capabilities. The complex widgets provided
a way of viewing models created with the QtStandardItemModel
database. The complex widgets constituted the View portion of the
MVC paradigm used because they allowed the view of the model
to be separate from the actual storage of the items. The view wid-
gets used were the Qt provided QtTableView and QtListView. In
addition to providing views, these widgets allowed a certain level
of interaction with the model through selection and drag and drop
operations. The views also used delegate classes to provide special
functionality such as non-standard rendering and interaction. These
delegates, called QtStyledItemDelegates were used to provide cus-
tomized rendering of the pipeline (QtListView), which include an

6

Api/Server Memory Multimedia Widgets Working on BB Scripting UI Designer RT
1 Qt on Qtopia 5MB (No X) Yes Yes Yes Yes Yes
2 Flex (Flash) <1MB (No X) Yes Yes Yes No Yes
3 Gtk 12-15MB No Yes Yes Yes Yes
4 FB (No X) N/A N/A N/A N/A Yes N/A

Table 1: A comparison of various features of four different UI frameworks we considered for implementing the camera interface.

Figure 7: Three screen shots of early UI from the each of the three sampled frameworks. Left, is the Glade/GTK+ running on the Beagleboard.
Center is the Adobe Flex interface running within a browser. Right is the Qt interface.

image, name, and activation checkbox for each filter. The proper-
ties of each camera shader within the pipeline were displayed using
the same model but a different view (QtTableView). A customized
QtTableView was implemented to provide a hierarchal view and
editing capabilities of the shader’s properties. The View was a ver-
tical table with the first column being the name of the property and
the second column being the value of the property. Each property
had a specific datatype (color, float, integer, enum, image, etc.) that
required a specialized editor to be implemented. Another complex
widget used within the interfaces was the OpenGL rendering wid-
get. The OpenGL widget converted the current pipeline into a vi-
sual rendering using the underlying graphics hardware (GPU).

The controller part of the interfaces facilitates the interaction be-
tween the UI widgets, the databases, and other libraries. The con-
troller takes interaction commands from the UI and performs a spe-
cific action related to editing this property, such as providing a wid-
get to the user for editing. These actions could be the movement of
shaders from the toolbox to the pipeline, editing a shader’s property,
or direct manipulation of the pipeline itself. The controller was im-
plemented primarily in Python and facilitating interaction between
Qt, OpenGL, and other libraries such as OpenCV (access/control of
camera).

6 Programming languages & Standards

Independent of the UI framework, we used Python as the founda-
tional programming language. Python is a high-level programming
language used for general-purpose programming. It has a minimal-
istic syntax, a comprehensive set of libraries, and it is cross platform
compatible. Because the intention is to utilize this project for the
long-term interface for our programmable camera, cross-platform
compatibility and bindings for each of the possible UI frameworks
was an essential trait for our programming language choice. An-
other potential language choice was C/C++ but because of the dif-
ficulties in cross compiling and library availability on the Beagle-
board, Python was the better choice of programming languages.

For representing shader assets we used the popular open digital
asset standard called Collada. Collada is a file format standard
used to exchange digital assets for rendering and image synthesis.

For example, Collada is used to store 3D models and textures for
games independent of the game engine or Digital Content Creation
(DCC) tool used to manipulate them. Collada is based on XML
and contains a wide variety of supported formats beyond just code
for shaders, such as formatting of 3D models, textures, and scene
graphs.

In addition to Collada, we used a simple XML based tree for orga-
nizing the Toolbox within the Workbench application. The XML
format organized the default shaders into categories and supported
meta-information as well as parameters for each shader. The Tool-
box categorization and ordering is determined by an XML file,
which is loaded at run time. When a particular shader within the
pipeline is selected, a properties editor is activated. The properties
editor allows the user to edit the specific properties defined by the
shader as well as activating and naming the particular shader in-
stance. If the user changes the parameter of a specific shader and
decides to provide this as a new default shader, the user can drag the
modified shader to the Toolbox and save it. This modifies the orig-
inal XML file used to configure and load the Toolbox at the start of
the application.

7 Software Packages & Other Frameworks

The implementation of the workbench and the camera interface re-
lied on three other software frameworks for performing rendering
and image manipulation Opengl, GLSL, and Python Image Library
(PIL). OpenGL and GLSL (OpenGL shading language) provided
the framework for implementing the camera shaders (i.e., filters)
and PIL was used to perform image enhancements. The Workbench
application and camera interface use both for providing previews of
the current pipeline. In addition to providing a preview, the camera
interface uses these two frameworks to render the final image.

After the captured image has been rendered, the images can be fur-
ther modified within the camera interface in the ”Picture Review”
interface (see figure 3). There the user can adjust the brightness,
sharpness, and contrast of the images that have been captured to fur-
ther enhance the image. The implementation of the basic enhance-
ments was done using the PIL (Python Image Library) module for
python. The PIL module also provides basic conversion capabilities

7

for images going between standard formats, such as JPG, GIF, and
PNG, and the image formats used within Qt (Qimage, Qpixmap).

8 Evaluation

8.1 Expert User Study Design

To validate the design of the Workbench and camera interface that
were implemented, we developed a user study. The IRB-approved
user study was an Expert User study, where an expert camera user
was recruited to use and evaluate the interfaces of the camera and
Workbench application and provide constructive feedback regard-
ing the layout and operations needed to perform camera related
tasks. The expert’s feedback provided a way for us to validate
the design of the interfaces as a whole. The primary reason for
validating the UI was to verify that we were able to provide ad-
ditional camera functionality while preserving the user interface
design within a typical camera. To standardize the study, we de-
veloped a protocol, which outlined the steps the expert user should
take when evaluating the interfaces. This allowed for focused feed-
back from the user with respect to the layout, organization of tasks,
and preservation of expected camera functionality. The protocol
outlined three areas of focus for the evaluation, the normal camera
interface, the advanced camera interface, and the Workbench. The
evaluation was done on a simulated camera system using a laptop
with an embedded web camera. The study was recorded via video
camera for review.

To evaluate the typical camera operations, the user was instructed
to perform tasks related to normal camera functions, such as taking
a picture, reviewing and adjusting captured images, and modifying
the camera settings. The interface study allowed the user to take as
many pictures as the user wanted while transitioning from one in-
terface to another as the user would on a commodity camera. When
the user completed taking pictures, several questions related to the
interface of the camera were asked. When evaluating the typical
camera interface, we provided the user with the traditional camera
pipeline only.

The next task performed in the user study was the evaluation of the
advanced camera interface, which is used to select and configure
alternate camera pipelines. The user was given access to the ad-
vanced interface, and was instructed on how to select and configure
new camera pipelines. Then the user performed the same operations
as with the normal camera interface, but with the new pipeline. The
user was allowed to take pictures, adjust the images, change and
reconfigure the pipeline at any time during the study. Again, when
the user completed taking pictures, several questions related to the
interface of the camera were asked.

The third part of the user study involved the user performing
pipeline-creation tasks on the Workbench application, such as
building, previewing, and exporting a new camera pipeline. The
user was asked to create a new pipeline using the existing filters
available within the Toolbox area of the Workbench application.
When the user was sufficiently satisfied with the pipeline that was
created the user was asked to export the pipeline to the camera.
When the user completed evaluating the workbench application,
several questions related to the Workbench interface were asked.
To conclude the study we asked several questions with respect to
the interfaces as a whole.

8.2 Results of Expert User Study

The Expert User study provided informative feedback with respect
to the design of all the interfaces including the Workbench appli-
cation. The organization and layout of the normal camera UI (i.e.

non-advanced UI) was indicated to be consistent with normal cam-
era operations seen in commodity cameras. The most prominent
issue indicated by the Expert User was the lack of feedback with
respect to taking pictures. When the user performed the actions for
capturing images, there was no auditory or visual feedback when a
picture was actually taken. For example, when taking a picture with
film-based cameras, the mechanics of the shutter provided an audi-
tory ”click” and subtle vibrations, Digital cameras mimic this cue
by providing a synthetic auditory ”clicking” sound and sometimes
blacking out the preview screen momentarily to simulate a shutter.

For the advanced operations, such as selecting and tuning a new
camera pipeline, the user indicated that the additional functionality
and layout did not over complicate the design and operation of the
traditional camera functionality. But two issues were raised with re-
spect to the interaction with the advanced functionality of the cam-
era: 1) preserving the original image (traditional pipeline) was de-
sirable, and 2) making the normal interface aware of the advanced
features. For the first issue, the user indicated that they would prefer
to view the new pipeline in real-time as well as saved the rendered
image while also retaining an un modified or raw image as well.
The second issue stemmed from the use of the normal interface,
specifically changing the scene type rapidly. The user indicated
that it would be more natural for new pipelines to be available for
selection within the Camera Settings sub-interface under the ”scene
types” setting. This would integrate new pipelines into the modality
of new scenes, which the user considered new pipelines to be. This
would also alleviate the need for additional steps for switching be-
tween different scenes and different pipelines. The user suggested
allowing the advanced interface to selectively save new pipelines to
the list of pre-existing scene types.

Most of the constructive feedback and observations came from the
Workbench application. The Expert User was familiar with cam-
eras, video editing, and various digital content creation tools. Al-
though the Expert User was aware that shaders could be written,
the expert had no experience in doing so. Within several seconds
the Expert user was able to assemble a new pipeline in the Work-
bench application and when asked the layout and design seemed to
be easy to use and produced results rapidly. One indication of a
flaw in the layout was the fact that the user repeatedly tried to drag
and drop shaders onto the preview window despite being instructed
that the filters needed to be dropped on to the pipeline. When asked,
it was indicated that the preview window in the Workbench appli-
cation seemed like the logical place to drop the shaders, probably
due to the visual layout and Direct Manipulation style of the ap-
plication. The user also indicated the need for reversing or ”undo-
ing” actions as was typical in other creation tools. Undo capability
was indicated a missing feature that was highly desirable. The final
constructive criticism from the user was that it would be useful for
the application to indicate the progressive changes each filter made
by providing a thumbnail image for each filter indicating how the
pipeline looked at that point in the pipeline.

9 Future Work

9.1 Improvements From Evaluations

The user study provided an evaluation of the Workbench and cam-
era interface software that produced valuable recommendations for
improvements. While some of the recommendations will be easily
implemented, a number of them will require more involved refac-
toring of the code base. Below are some improvements for future
work:

1. Workbench: Reversal of Actions (undo)

8

2. Workbench: Drag to Preview window

3. Workbench: Each pipeline stage has thumbnail preview

4. Camera: Integrating New Pipelines into ”scene type” pull-
down for ease/speed

5. Camera: Needs indication of a shot (sound/shutter open/close
animation, etc)

6. Camera: Retention of original and modified images

9.2 Camera Control Scripting System

Control scripting for programmable cameras allows users to con-
trol the action of the camera by providing a script that triggers cam-
era functionality in a predetermined way. The scripting system is
a set of camera commands and logic that allow the user to pre-
program the steps the camera will take when a shot is taken. For
example, if the user wants to take an High Dynamic Range photo-
graph by defining the exposure of the camera then the user would
write a script that would take a sequence of photographs with dif-
ferent exposure settings, run a particular camera pipeline on the
photographs, and store the results.

The scripting system can be used to control the features of the cam-
era such as the shooting action, flash, as well timing. It can also
be used to control the camera’s photogenic properties such as expo-
sure, shutter speed, and focus. Such systems already exist in vari-
ous forms, most predominately in the Canon Hackers Development
Kit (CHDK) [CHDK 2009] as an unauthorized scripting system for
Canon cameras. For some time now, camera manufacturers have
made digital still cameras (DSC) with scripting capabilities such
as the Kodak DCS260 (with Flashpoint’s Digita OS), the Minolta
Dimage 1500 and the more recent Canon cameras with Digic II and
III processors. Scripting within cameras gives the camera user the
ability to trigger existing camera functionality by automating a se-
quence of steps, normally performed manually by the camera user,
through the use of small programs called scripts. For example, the
CHDK firmware ”enhancement” lets Cannon Powershot users write
camera scripts that mostly emulate button clicks or menu selections
the user would perform while using the camera.

9.3 Export System Improvements

Currently our system for exporting camera pipelines to the camera
requires a two-step manual process. First, the user clicks the save
button and a file dialog appears. The user has to find a location to
store the pipeline on their file system. Once the pipeline is saved,
the user then has to manually copy the pipeline file to the location
of the camera system, which maybe on another computer. Instead
we would like to automate the process of exporting that preclude
the user from having to use the file system to store the pipeline file
and instead copy it directly to an available camera.

In addition to simplifying the interface, we would also like to pro-
vide better adherence to the Collada standard for our pipeline ex-
ports. Ideally each pipeline would consist of a single Collada file,
which embeds, the Camera Shaders, all the assets associated with
each Camera Shader (e.g., textures), and any pipeline properties
such as rendering quality.Also, each pipeline could include in the
Collada file the scripting code associated with the pipeline.

9.4 OpenCL

OpenCL is a framework for executing stream-oriented programs
that will be executed across multiple processors (GPUs & CPUs),
specifically aimed at multicore processor platforms with mixed

CPUs and GPUs. OpenCL will be an open standard such as
OpenGL and OpenAL, therefore it will be supported on various
platforms with CPUs and GPUs like mobile and embedded devices.
Future versions may include support for OpenCL processing code
instead of low-level GPU programs. In addition, the possibility of
using OpenCL programs in conjunction with OpenGL programs ex-
ists. In order to provide maximum flexibility in terms of heteroge-
neous computations (general purpose and graphics) future imple-
mentations may contain OpenCL code to leverage both the CPU
and GPU for graphics and general-purpose computations.

Appendix

9.5 Terminology

• Pcam - The design of a new type of programmable camera
that allows for arbitrary and programmatic enhancement of
static camera pipelines. It is intended as a replacement for
traditional camera pipelines.

• Interface- Is a software application that is used to control a
complex system of software and hardware that contains text
or visual elements indicating state of the system and ways of
influence/control that state.

• Sub-interface- Is a part of the interface that is separate from
the other parts.

• Framework- A system of software used to provide a founda-
tion for building applications.

• Workbench- Is the application designed and developed by use
for the purpose of creating new camera pipelines.

• Camera interface- Is the application designed and developed
by us to be used to control the camera.

• Toolbox- An area of the Workbench application used for stor-
ing the default shader/filters for building new pipelines.

• Component- A dedicated area within the application. This
area is generally used to perform a particular function or task,
such as a preview window or editor.

• Shaders- A set of instructions, usually in the form of a small
computer program or function that describes how part of an
image is going to be manipulated.

• Camera Shaders- A shader that is processed on-camera in
order to manipulate the image captured by the camera.

• Filters - A process that is designed to enhance or manipulate
an image in someway. Also used a synonym for shaders.

• User Interface (UI)- Visual software that is used to interact
with the software’s user.

• Programmable Cameras- A new type of camera that replaces
the static pipeline of today’s cameras and replaces it with a
programmable pipeline.

• Fragment Shader- A small program that is executed on the
GPU that manipulates fragments and converts them into po-
tential pixels.

• Vertex Shader- A small program that is executed on a GPU
that manipulates the input vertices of a 3D representation of a
scene.

• Image Processing- The process of applying an operation on
an image for the purpose of changing the image in a meaning-
ful or artistic way.

9

• Camera Pipeline- Series of stages that a captured image goes
through to render the final image. These steps generally help
to convert the image from a low-level format to a representa-
tion that is amenable to interpretation by humans.

• Model/View/Controller Paradigm (MVC)- MVC is a software
engineering programming paradigm that separates software
components according to their role in the application. The
three roles are the Model (data and associated functionality),
Controller (application or business logic), View (the UI com-
ponent).

9.6 Questionaire & User Study Script

Below is a copy of the script used for the expert user study (4
pages):

User Study Script:

This study looks at the usability of an advanced camera interface. This study will walk you through

several steps with the goal of applying image processing effects to images on a new type of

programmable camera. The steps below should be followed in order.

Step 1 – Generate a pipeline that does simple edge detection. You will use three shaders

organized in a pipeline: Grayscale, Sobel Filter, and Negative.

Open the Pcam Workbench application. To generate a pipeline, you need to drag and drop shaders

from the Shader Toolbox area to the Rendering Pipeline area (see figure 1). A preview of the how the

pipeline will affect the rendering is visible in the Preview Window, which appears below the Rendering

Pipeline area.

F

Figure 1: Workbench Application. To apply image filter to

the preview window, drag and drop a specific filter from the

Camera Shaders Toolbox to the Rendering Pipeline are.

Step 2 – Export the new pipeline to the Camera Interface.

Once you are satisfied with the look of the rendering for your new pipeline, you need to export the

pipeline to the camera so the camera can use it to affect images captured by the camera. To do this,

click on the Save icon in the application. This will bring up a file dialog for which you will have to

name your pipeline. Type in a name for your new pipeline and click “Save”.

Step 3 – Apply the new pipeline on the camera.

Open the camera interface application and select the Shaders Tab. This will open the part of the camera

interface where you can load and configure the pipeline you saved in the Pcam Workbench application.

Click on your pipeline in the Available Pipelines area. This will select and load the pipeline, and the

camera will begin rendering this pipeline's effects. Once you’ve selected your pipeline, you can then

1

References

ADOBE, 2009. Adobe flex 3. http://www.adobe.com/products/flex/.

APODACA, A. A., AND GRITZ, L. 1999. Advanced RenderMan:
Creating CGI for Motion Picture. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

BEAGLEBOARD, 2009. The beagleboard is an ultra-low cost, high
performance, low power omap3 based platform designed by bea-
gleboard.org community members. http://beagleboard.org/.

BENNETT, E. P., AND MCM ILLAN , L. 2003. Proscenium: a
framework for spatio-temporal video editing. InMULTIMEDIA
’03: Proceedings of the eleventh ACM international conference
on Multimedia, ACM, New York, NY, USA, 177–184.

modify any parameters for that pipeline in the Shader Properties area.

Figure 2: The camera interface's Shader Setup Tab. To activate a

Pipeline created in the Workbench application just select the

pipeline's name with the mouse.

Step 4 – Taking a picture with the new pipeline applied.

Once the new pipeline has been selected and configured, you can use it to take pictures. Click on the

“Picture Mode” tab. This will change the interface to display a real-time image of what the camera

sees with the new pipeline applied. You can now take pictures, which will be saved on the camera. The

next step allows you to edit the image. Below is an image with of the interface with a real-time effect

applied.

Figure 3: In the camera interface using the Picture Mode tab, you

can take pictures by clicking on the button labeled “Shoot”. A

2

CHDK, 2009. Canon hackers development kit.
http://chdk.wikia.com/.

GAMMA , E., HELM , R., JOHNSON, R., AND VLISSIDES, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. No. ISBN 0-201-63361-2. Addison-Wesley.

GLADE, 2009. Glade - a user interface designer.
http://glade.gnome.org/.

GNOME, 2009. Gtk+ is a highly usable, feature rich toolkit for
creating graphical user interfaces which boasts cross platform
compatibility and an easy to use api. http://www.gtk.org/.

L INDSAY, C., AND AGU, E. 2009. P-cam: A programmable cam-
era back-end. Tech. Rep. 999999, Worcester Polytechnic Insti-
tute, September.

NOKIA , 2009. Qt a cross-platform application and ui framework.
http://qt.nokia.com/.

OWENS, J. D., DALLY , W. J., KAPASI, U. J., RIXNER, S., MATT-
SON, P., AND MOWERY, B. 2000. Polygon rendering on a
stream architecture. In2000 SIGGRAPH / Eurographics Work-
shop on Graphics Hardware, 23–32.

PROJECT, O., 2009. Clutter. http://clutter-project.org/.

SGI, 2009. Open graphic language. http://www.opengl.org/.

SHNEIDERMAN, B. 1986. Designing the user interface: strate-
gies for effective human-computer interaction. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

10

preview of the picture you are about to take with the shaders

applied is presented in the window. Here a negative shader is in

effect.

Step 5 – Editing and saving photographs.

Photographs taken with the camera can be edited and saved using an interface similar to that of a

traditional camera. To use this interface, click on the “Picture Review” tab at the top of the camera

interface. Edit the previously taken photographs by modifying the brightness, saturation, and contrast

using the provided Spinboxes.

Figure 4: The camera interface's picture review tab. Once the picture

has been taken, you can review the picture, adjust some of the basic

properties, and save any changes.

Step 6 – Changing the camera settings.

To change the camera settings, click on the “Camera Settings” tab to select the camera setting

window. To edit the base camera settings such as shutter speed, focus, and encoding, select the

appropriate settings from the pull-down menus.

3

SLUSALLEK , P., AND SEIDEL, H.-P. 1995. Vision - an architec-
ture for global illumination calculations.IEEE Transactions on
Visualization and Computer Graphics 1, 1, 77–96.

Figure 5: The Camera interface's Settings Tab. In this tab you can

modify the camera settings.

4

11

