
     

     

  

WPI-CS-TR-12-04 
  

                       September 2012 
 

  

 
HandsOn DB: Managing Data Dependencies involving  

Human Actions 

by 

 

Mohamed Eltabakh, Walid Aref, Ahmed Elmagarmid,  
Mourad Ouzzani 

 

 

  

  

  

  

  

  

  

     

 Computer Science 

Technical Report 

Series 
  

 

 

  

  

 
 

WORCESTER POLYTECHNIC INSTITUTE  

   

 Computer Science Department 

100 Institute Road, Worcester, Massachusetts 01609-2280 

 

 

 



HandsOn DB: Managing Data Dependencies involving
Human Actions

Mohamed Eltabakh1, Walid Aref2, Ahmed Elmagarmid3, Mourad Ouzzani3
1 Worcester Polytechnic Institute, MA, USA, meltabakh@cs.wpi.edu

2 Purdue University, IN, USA, aref@cs.wpi.edu
3 Qatar Computing Research Institute, Qatar, {aelmagarmid, mouzzani}@qf.org.qa

ABSTRACT

Consider two values, x and y, in the database, where y =
F(x). To maintain the consistency of the data, whenever x
changes, F needs to be executed to re-compute y and up-
date its value in the database. This is straightforward in
the case where F can be executed by the DBMS, e.g., SQL
or C function. In this paper, we address the more chal-
lenging case where F is a human action, e.g., conducting a
wet-lab experiment, taking manual measurements, or col-
lecting instrument readings. In this case, when x changes, y
remains invalid (inconsistent with the current value of x) un-
til the human action involved in the derivation is performed
and its output result is reflected into the database. Many
application domains, e.g., scientific applications in biology,
chemistry, and physics, contain multiple such derivations
and dependencies that involve human actions. In this pa-
per, we propose HandsOn DB, a prototype database engine
for managing dependencies that involve human actions while
maintaining the consistency of the derived data. HandsOn
DB includes the following features: (1) semantics and syn-
tax for interfaces through which users can register human
activities into the database and express the dependencies
among the data items on these activities, (2) mechanisms
for invalidating and revalidating the derived data, and (3)
new operator semantics that alert users when the returned
query results contain potentially invalid data, and enable
evaluating queries on either valid data only, or both valid
and potentially invalid data. Performance results are pre-
sented that study the overheads associated with these fea-
tures and demonstrate the feasibility and practicality in re-
alizing HandsOn DB.

1. INTRODUCTION
In many application domains such as scientific experimen-

tation in biology, chemistry, and physics, the derivations
among the data items are complex and may involve se-
quences of human actions, e.g., conducting a wet-lab exper-
iment, taking manual measurements, and collecting instru-
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ment readings. In traditional derived data that are stored
inside the database, e.g., deriving age from the date-of-birth
attribute, simple procedures internal to the database sys-
tem can be coded and executed automatically to maintain
the consistency of the data. In contrast, when the deriva-
tions among the data items involve human actions, these
derivations cannot be coded within the database. Hence,
updating a database value may render all dependent and
derived values invalid until the required human actions are
performed and their output results are updated back in the
database.

Typical databases may contain multiple dependencies
which may cascade and interleave with other dependencies
that involve executable functions, e.g., SQL and C functions.
Hence, a complex dependency graph is created among the
database items. Since human actions may take long time to
prepare for and perform, parts of the underlying database
may remain inconsistent for long periods of time while the
data still need to be made available for querying. Our focus
in this paper is on managing dependencies that involve hu-
man actions or more generally, real-world activities, inside
the database engine while maintaining the consistency of the
derived data under update and query operations.

Motivating Examples: Figure 1 illustrates an exam-
ple, from the biology domain, of a pipeline collecting differ-
ent pieces of information about genes/proteins and storing
them in the database. As depicted in the figure, the ini-
tial sequence files stored in the database will be used as in-
put to a set of procedures involving human actions in order
to discover more information, e.g., the protein family, gene
function, and the location of SNP (Single-Nucleotide Poly-
morphism). If the underlying sequence data is modified due
to correction of sequencing errors or an improved assembly,
then the corresponding output data from the procedures be-
come potentially invalid and need to be re-verified. Another
example of chemical reactions is illustrated in Figure 2 where
chemists may store in the database descriptions of chemical
reactions, e.g., substrates, reaction parameters, instruments
settings, and products. Clearly, these chemical reactions
require human intervention. If, for example, any of the sub-
strates in the reaction are modified, then the products of the
reaction may change as well, and hence they become invalid
until the reaction is re-executed or the chemist verifies the
old value.

The presence of potentially-invalid values in the database
directly affects the correctness of the queries’ answers as
well as any decisions based on the results. For example,
continuing with the biology pipeline (Figure 1) assume the
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Figure 1: Real-world dependencies in biological pipeline.
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Figure 2: Real-world dependencies in chemical
reactions.
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Figure 3: Querying invalid values.

database instance shown in Figure 3 where the sequence of
gene JW0014 has been updated, and hence the dependent
values become invalid (marked as black table cells). Al-
though the reported result from query Q1 seems correct, it is
missing crucial information, e.g., the reported value “14457”
is potentially invalid and needs to be verified, and the first
tuple in the answer matched the query predicate (Predicted-
Function = “F2”) based on an invalid value F2, and hence
its presence in the output is questionable.

Candidate Solutions with Current Technology:
One possible approach is to store metadata information
along with the data values, e.g., a version number or times-
tamp, to track whether values are up-to-date or outdated.
However, this approach has several limitations including:
(1) Without explicitly modeling the dependencies inside the
DBMS, the maintenance of the auxiliary metadata is dele-
gated to end-users which is both an overwhelming task and
error prone. (2) Integrating the metadata information in-
side the query engine is problematic because users’ queries
have to incorporate the metadata information in their evalu-
ation. For example, dependencies may span multiple tables,
e.g., values in table R depend on values in tables Si and Sj ,
and hence a query on only table R needs to be extended to
also check tables Si and Sj to decide whether R’s values are
up-to-date or outdated, which will make even simple queries
very complex. (3) All curation operations, e.g., why certain
values are invalid and how to re-validate them, and which
external activities need to be performed and using which pa-
rameters, will be manually performed without any system
support. Another possible approach is to delay the updates
to the database until all derived values are computed, i.e.,
keeping the partial results outside the database. Although
feasible in some scenarios involving simple dependencies, it
has several limitations as it does not scale with complex de-

pendencies, and storing the data outside the database is not
a preferred solution w.r.t. recovery, instant availability of
results, and ensuring the consistency of the new values with
other database values.

Contribution: The above limitations motivate the need
for a more systemic mechanism and an end-to-end solution
that enables scientists to focus on running their experiments
and uploading the results, instead of tracking the dependen-
cies among the data items and verifying their consistency. In
this paper, we propose HandsOn DB, a prototype database
engine for managing dependencies that involve real-world
activities while maintaining the consistency of the derived
data. HandsOn DB addresses all of the above limitations
as it enables users to reflect the updates immediately into
the database, i.e., instant availability of the data, while the
DBMS keeps track of the derived data by marking them
as potentially invalid (aka outdated) and reflecting their sta-
tus in the query results, i.e., the consistency of the data is
not compromised. HandsOn DB introduces extended query
operators for evaluating users’ queries on either valid data
only, thus avoiding relying on any potentially invalid values
(no false-positive tuples), or both valid and potentially in-
valid data (include false-positive tuples). HandsOn DB is
a component in bdbms [?, ?], our proposed database sys-
tem for scientific data management. We first highlighted
the main research challenges involved in managing complex
real-world dependencies in [?]. In this paper, we propose
novel solutions to these challenges.

The contributions of this paper are as follows:

• Proposing new SQL syntax and its corresponding
semantics to register real-world activities into the
database and to express the dependencies among data
items using these activities.

• Introducing an extended relational algebra and new
semantics for query operators to alert users of any
potentially-invalid data in the query results, and to
enable querying either valid data only or both valid
and potentially-invalid data.

• Proposing new data manipulation and curation oper-
ations for invalidating and revalidating the data, and
for keeping track of the real-world activities that need
to be performed in order to revalidate the data.

• Experimentally evaluation the proposed features of
HandsOn DB and demonstrating the system’s prac-
ticality.



• Proving the correctness of HandsOn DB under a given
set of user-defined dependencies. That is, the execu-
tion of the proposed algorithms is guaranteed both to
terminate and to generate a unique final state of the
database. HandsOn DB is realized via extensions to
PostgreSQL and the empirical results show its appli-
cability and practicality.

The rest of the paper is organized as follows. Section 2
overviews the related work. Section 3 presents the needed
definitions. Sections 4 and 5 introduce the data manipula-
tion operations as well as the new query operators, respec-
tively. In Section 6, we present several design issues. The
performance analysis is presented in Section 7. Section 8
contains concluding remarks.

2. RELATED WORK
The theory of functional dependencies (FDs) in DBMSs,

e.g., [?, ?, ?], is used to model dependencies among data
items, infer keys, and systematically normalize database
schemas to prevent several inconsistency problems, e.g., re-
dundancy, and update and delete anomalies. However, FDs
cannot solve the inconsistency problem raised in this pa-
per mainly because the dependencies that involve real-world
activities cannot be modeled or coded inside the database
(E.g.,using triggers or user-defined functions) regardless of
how well the schema is designed or normalized. The exis-
tence of such external activities that cannot be handled by
DBMSs triggered the research in long-running transactions,
e.g., [?, ?], where a database transaction may involve exter-
nal activities, e.g., getting a manager’s signature to complete
a purchase transaction. Systems for long-running transac-
tions took the approach of loosening the ACID properties,
using optimistic concurrency control techniques, and using
compensating transactions in the case of failures. The key
objective of these systems is to keep track of the derived
data that are already modified by the transaction to roll
them back if needed (compensating transactions). However,
long-running transactions do not keep track of the derived
data that are still awaiting to be updated and are currently
inconsistent, and hence they delegate this inconsistency is-
sue to the end-user without any system support. More im-
portantly, the currently inconsistent values are subject to
querying—possibly for long periods of time— without any
special query processing or notification mechanisms.

Active databases [?, ?, ?] provide mechanisms (through
triggers) to respond automatically to events taking place
either inside or outside the database. The outside events
are ultimately mapped to operations that the DBMS can
capture, e.g., insertion, deletion, or calling of a user-defined
function. Unlike active databases, in HandsOn DB, a change
inside the database, e.g., updating the gene sequence in Fig-
ure 3, may trigger the execution of a real-world activity out-
side the database to update the derived data. Until this
activity is performed, the system needs to keep track of all
potentially invalid data items, reflect their status over query
results, and provide mechanisms for re-validating these in-
valid items. Active databases do not address these chal-
lenges.

Multi-version systems and databases, e.g., [?, ?, ?], main-
tain the old and new values of updated data. However, like
snapshot databases (which is the focus of this paper), multi-
version databases model only the computable dependencies

among the data items. And hence, the provided isolation
level and consistency degree are based on the traditional
notion of transactions. For example, if value vj depends on
value vi through an external activity, then a transaction up-
dating vi to v′i would create a newer version of the database
where both v′i and vj are viewed as consistent and up-to-date
values. Although this is correct with the traditional notion
of transactions, it is semantically incorrect because the ex-
ternal dependency is not taken into account. Extending the
proposed techniques in the context multi-version databases
is left as future work, and in this case, the history of depen-
dencies changing over time can be also maintained.

Some systems such as checkout\checkin systems [?] con-
sider querying an old consistent version of the data while
updating an off-line version until all required changes to all
dependent data items have been performed. Then, the off-
line version is released as the newer consistent version. The
drawbacks of this approach include violating the need for
making users’ updates available as early as possible, hid-
ing possible data corrections for unbounded long delays,
and resolving any consistency issues outside the DBMS, i.e.,
data conflicts are resolved at the checkin time using version-
control systems outside the DBMS. HandsOn DB resolves
all these issues within the database system.

Probabilistic and fuzzy database systems (PDBMSs),
e.g., [?, ?, ?, ?], overlap with HandsOn DB assuming that
data invalidation introduces uncertainty to the data, e.g.,
potentially invalid values can be viewed as unknown values.
However, the focus of the two systems is different. In Hand-
sOn DB a change in the state of a database value, i.e., being
valid or invalid, is triggered by database operations, while
in PDBMSs the uncertainty is inherent to the data and is
given as external input. These uncertainties do not change
over time unless users manually modify them. Therefore,
PDBMSs do not address several challenges, that are the core
of HandsOn DB, such as modeling the dependencies among
the data items, keeping track of when and why a data item
becomes uncertain (invalid), and keeping track of how to
revalidate a data item to become certain (valid).

Provenance management, e.g., [?, ?, ?, ?], follows two
main approaches; inversion-based and annotation-based.
Inversion-based techniques are not applicable to the problem
at hand since we deal with external activities that cannot
be executed by the DBMS in the first place. Annotation-
based techniques [?, ?, ?, ?] lack the ability of modeling and
integrating real-world activities inside the database system,
and hence the dependency graph involving these external ac-
tivities cannot be constructed. Annotations, therefore, can
neither maintain the consistency of the derived data items
(computable or non-computable) nor keep track of pending
activities that need to be performed to re-validate the data.
Provenance has been also studied extensively in the context
of scientific workflows, e.g., [?, ?, ?, ?] where workflow sys-
tems are instrumented to capture and store the provenance
information. In these systems, a database can be a single
component within a bigger workflow. Although these sys-
tems can capture that certain values in the database are
generated from external activities, they have not been de-
signed to track or ensure the consistency of these values once
they are in the database. In these systems, the database is
treated as a black box within the workflow and all of its
operations are hidden from the workflow system. Hence,
HandsOn DB can be used in conjunction with workflow sys-



tems to achieve stronger consistency of the data.
Other related systems are update exchange systems,

e.g., [?, ?], that allow reliable exchange of data among differ-
ent participants (sites) while tracking their provenance [?,
?]. These systems are complementary to HandsOn DB as
they focus on providing import/export techniques, publish-
ing mechanisms, and provenance tracking to ensure consis-
tent sharing of data across the different sites. In contrast,
HandsOn DB focuses on providing mechanisms for main-
taining the consistency of the data within each site indepen-
dently while the data evolve through derivations and up-
dates.

3. MODELING ACTIVITIES & DEPEN-
DENCIES

In this section, we present the formal definitions of activ-
ities and dependencies, and show how to model them inside
the database. We assume a relational database model, and
we use the term ”database cell” to refer to an attribute value
in a single tuple. The value itself can be primitive, e.g.,
integer or string, or complex, e.g., arrays or bit maps.
Definition (Real-world Activity): A real-world ac-

tivity (RWA, for short) is an activity that requires human
intervention, and hence cannot be executed by the DBMS.
RWA takes one or more input parameters and produces one
or more output parameters.

Since real-world activities are very close in definition to
functions, we define the concept of a real-world activity func-
tion that maps a real-world activity to a nondeterministic
function inside the database. RWA functions are nondeter-
ministic since RWAs such as lab experiments may not gener-
ate the same exact output given the same input parameters.
Definition (Real-world Activity Function): A

real-world activity function RWA-F is a nondeterministic
function inside the database that represents a real-world ac-
tivity. RWA-F is of type ‘real-world activity’ and has a sig-
nature that specifies the function name and the input and
output types. RWA-F has no associated code.

Similar to defining SQL, C, or Java functions inside the
database, we extend the SQL Create Function command to
define real-world activity functions as follows:

9 Create Function <activity_name> (<input_types>)
Returns (<output_types>) As real-world activ-

ity;
Once real-world activity functions are defined in the

database, users can create dependencies among the data
items using these functions. Users can also create depen-
dencies among the data items using executable functions,
e.g., SQL or C functions. Each dependency defines the func-
tion name involved in the dependency, the input parameters
to the function (the order of the inputs matters only if the
function is executable), and the output parameters from the
function.
Definition (Dependency Instance): A dependency

instance DI is a dependency between a set of input parame-
ters (database cells) and a set of output parameters (database
cells) through a specific execution of a function. A depen-
dency instance is defined as DI= (F, SP, DP), where:

• F: The function name involved in the dependency.

• SP (Source Parameters): A set of database cells
that are the input parameters to F .

Alter Table <R> 
Add Dependency [<dependency_id>] 
Using <func_name> 
Source <T1.c1[, T2.c2, ...] > 
Destination <R.c’1 [, R.c’2, ...]> 
[Where <predicates>] 
[Invalidate Destination] ; 

Create Table <R>  
( 
   <columns_definitions >  
    …. 
  Add Dependency [<dependency_id>]  
  Using <func_name> 
  Source <T1.c1[, T2.c2, ...] > 
  Destination <R.c’1 [, R.c’2, ...]> 
  [Where <predicates>]  
); 

Alter Table <R> 
Drop Dependency <dependency_id> 
[Invalidate Destination] ; 

Figure 4: Adding and dropping dependencies.

• DP (Destination Parameters): A set of database
cells that are the output parameters from F .

If F is of type real-world activity, then DI is called real-
world dependency, otherwise, DI is called computable depen-
dency. The dependency of DP on SP is complete in the
sense that each database cell in DP depends on all database
cells in SP.

Dependency instances are conceptually defined at the
cell level, i.e., they capture the dependencies between the
database table cells. Such fine-granular level of expressing
the dependencies may sometimes involve high overhead as
reported in [?]. In HandsOn DB, we introduce a higher
level of abstraction using the Add Dependency construct, by
which users may define dependencies over one cell, multi-
ple cells, or even entire columns at once. Dependencies are
created in (or dropped from) the database using the Add
Dependency (or Drop Dependency) constructs that are aug-
mented to the SQL Create Table and Alter Table commands
as illustrated in Figure 4.

A new dependency is defined over Table R that contains
the destination attributes R.c′1, R.c′2, ... of the dependency.
The dependency id is a unique id that is either defined by the
user or generated automatically by the system. If the depen-
dency applies to multiple destination tables, then it is de-
fined over each of these tables with different dependency id.
The optional Where clause contains join and selection pred-
icates over the source and destination tables to specify the
exact table cells that are linked together. Examples 1 and 2
below illustrate defining dependencies over single and mul-
tiple tables.

Example 1: Single-table  
                    dependency 
!
Create Table Gene(!
  GID text  primary key,!
  GSeq text,!
  GDirction char,!
  GFunction text,!
     ... 
    ADD Dependency  
    Using GeneFunExp!
    Source GSeq, GDirection!
    Destination GFucntion); 
 
Description: Each gene function is  
inferred from the corresponding  
gene’s sequence and direction the  
using GeneFunExp. 

Example 2: Cross-table dependency 
 

Create Table Protein(!
  PID text primary key,!
  GID text references Gene(GID),!
  PSeq text,!
  PFunction text,!
         ... 

    ADD Dependency Using A-Prediction 
    Source Gene.GSeq, Gene.GDirection!
    Destination Protein.PSeq!
    Where Protein.GID = Gene.GID!
    And Gene.GFunction = ‘F1’,!
 

    ADD Dependency Using B-Prediction 
    Source Gene.GSeq!
    Destination Protein.PSeq!
    Where Protein.GID = Gene.GID!
    And Gene.GFunction != ‘F1’); 
 

Description: For proteins whose gene functions = ‘F1’, 
the protein sequence is inferred from the corresponding  
gene’s sequence and direction using A-Prediction.  
Otherwise, the protein sequence is inferred from only the  
gene’s sequence using B-Prediction. 

In Example 1, the Where clause is omitted which indicates
that the source and destination table cells belong to the same
tuple. In this example, The dependency definition applies



c.Status = 0 (up-to-date) c.Status = 1 (outdated) 

Invalidate(c) - c.Status = 1 
- For each c’ in RealworldOutputs(c) 
       -invalidate(c’) 
- For each c’ in ComputableOutputs(c) 
       -invalidate(c’) 

 
 

------- 
 

Validate(c)  
 

------- 

-If each c’ in InputParameters(c) is valid 
     -c.status = 0 
   - For each c’ in ComputableOutputs(c) 
             -validate(c’) 

Update(c) - For each c’ in RealworldOutputs(c) 
       -Invalidate(c’) 
- For each c’ in ComputableOutputs(c) 
       -update(c’) 

-If each c’ in InputParameters(c) is valid 
        - c.status = 0 
- For each c’ in ComputableOutputs(c) 
       -update(c’) 

Insert(t) Delete(t): Reject if dependents exist Delete(t): Propagate Invalidation 

-Insert t  
-For each database cell c in t 
   -If c’ in InputParameters(c) 
                         is invalid Then 
         -invalidate(c’) 

-For each database cell c in t 
      -If ComputableOutputs(c) not empty   
         Or RealworldOutputs(c) not empty 
              -Reject deletion and rollback 
-Delete t 

-For each table cell c in t 
        -invalidate(c) 
-Delete t 
 

Figure 5: Procedures for data manipulation opera-
tions.

to all tuples in table GENE. In Example 2, the dependencies
are defined between the two tables, GENE and PROTEIN. In
this case, the Where clause contains a join between the two
tables. Join predicates are mandatory for cross-table depen-
dencies and are restricted to only equality joins between a
foreign key in the destination table, e.g., Protein.GID, and
the primary key in the source table, e.g., Gene.GID. This re-
striction ensures that each destination table cell is attached
to unique source table cells. Notice that the predicates of
the two Add Dependency constructs in Example 2 are not
disjoint, i.e., one tuple may have the gene function equals
”F1” and the start position greater than 10000. In this case,
the destination table cell of that tuple, i.e., the protein se-
quence, follows the definition of the second dependency (the
most recent one) as will be explained using the overriding
property in Section 4.

4. DATA MANIPULATION OPERATIONS
In this section, we present the data manipulation opera-

tions in HandesOn DB and define how they affect the value
and status of the database cells. These operations repre-
sent the interfaces through which the dependency graph—
created from the user-defined real-world and computable
dependencies—is manipulated. Conceptually, each table cell
has a status (0 = up-to-date, 1 = outdated) in addition to
the cell value. That is, Relation R having n attributes is
represented as:

R = {r =< (C1.value, C1.status), ..., (Cn.value, Cn.status) >
}.

We define five data manipulation operations, namely, in-
sert(t), delete(t), update(c), invalidate(c), and validate(c),
where t is a tuple and c is a database cell. In Figure 6, we
demonstrate a sequence of cumulative operations over two
sample tables T and S. Tuples in S reference the tuples in
T using the foreign and primary keys S.T fk, and T.T pk,
respectively. The dependencies among the two tables are
depicted in Figure 6(a), where the dashed and solid lines
represent computable and real-world dependencies, respec-
tively. The semantics of each dependency are presented in
Figure 6(b). Figure 6(c) gives the state of the database af-
ter performing each operation. The black-marked table cells

represent the outdated values while the red-marked ones rep-
resent modified or newly inserted values.

Throughout this section, we use the following shorthand
notations for a given database cell c. The database cells
from which c is derived are called InputParameters(c). The
database cells that are derived from c through real-world and
computable dependencies are called RealworldOutputs(c),
and ComputableOutputs(c), respectively. The procedures
for the data manipulation operations are summarized in Fig-
ure 5.
• invalidate(c): invalidates c and all database cells that

depend on c recursively, i.e., database cells in Computable-
Outputs(c) and RealworldOutputs(c). For example, when
Operation 1 in Figure 6 invalidates the database cell (t4,r1)
because of the existence of the real-world activity F2, the in-
validation propagates recursively to the dependent database
cells (t5,r1), (s1,r1), and (s3, r1).

• validate(c): validates c only if InputParameters(c), are
all up-to-date. If c is validated, then the validate procedure
is called recursively on the database cells in Computable-
Outputs(c) (See Figure 5). The database cells in Realworld-
Outputs(c) are not validated automatically because they are
waiting on real-world activities to be performed. Referring
to Operation 2 in Figure 6, when Activity F2 is externally
performed and its result (value 13) is updated in (t4, r1), the
dependent table cell (t5, r1) is re-computed and validated
automatically through the computable dependency involv-
ing F3. However, the validation does not propagate to (s1,
r1) because F4 is a real-world activity.

• update(c): updates the value of c as well as the values
of ComputableOutputs(c). If c is currently invalid, then c
is validated only if InputParameters(c) are all valid. Oth-
erwise, the status of c remains unchanged. Moreover, since
the value of c is modified, the database cells in Realworld-
Outputs(c) are invalidated (See Figure 5). For example, Op-
eration 1 in Figure 6 re-computes and modifies the value of
(t1, r1) from ‘9’ to ‘3’ while maintaining its status valid.
In contrast, the value in (t4, r1) is invalidated through the
real-world dependency involving F2. Similarly, Operation 3
results in re-computing the value in (s3,r1) to be ‘90’ instead
of ‘150’ through F5. However, this update does not validate
(s3,r1) because one of its input parameters, i.e., (s1,r1), is
still outdated.

• delete(t): If the values in t are neither source nor des-
tination parameters to any dependency, then t is deleted
without any further processing. The same rule applies if the
values in t are only destination parameters to some existing
dependencies. However, if the values in t are source param-
eters to some existing dependencies, then either the deletion
of t is rejected, or t is deleted and the destination parameters
of these dependencies are invalidated. The default behavior
in the system is to reject the deletion of t. This behavior can
be altered at the table level using the following command:
9 Alter Table <tableName> Add Constraint <const-
Name>
On Delete Propagate Invalidation;
Both deletion procedures are presented in Figure 5.
• insert(t): One of the restrictions on the Add Depen-

dency construct is that the destination table has to contain
foreign keys that reference the primary keys in the source
tables (Refer to Section 3). This restriction ensures the
uniqueness of the source table cells for a given destination
table cell. It also simplifies the insertion procedure since it



Op.# Operation Triggering event Consequence

1 Update cell (t2,r1) 
from 10 to 4 

--- -Update cell (t1,r1) with value 3

-Invalidate cell (t4,r1)

-Invalidate cell (t5, r1)

-Invalidate cell (s1,r1)

-Invalidate cell (s3,r1)

2 Update cell (t4,r1)

from 6 to 13

Activity F2 is conducted 
using the current values 
of cells (t2,r1) and (t3,r1). 
The output value is 13

-Validate cell (t4, r1)

-Update cell (t5,r1) with value 26

-Validate cell (t5,r1)

3 Update cell (s2,r1) 
from 80 to 20

--- -Update cell (s3,r1) with value 90

4 Insert into T tuple r3 --- ---

5 Update cell (t3,r3) 
from 4 to 8

--- -Invalidate cell (t4,r3)

-Invalidate cell (t5, r3)

6 Insert into S tuple r3 --- -Invalidate cell (s1,r3)

-Invalidate cell (s3,r3)

7 Alter Table S

Add Dependency

Using F6

Source S.s1

Destination S.s3

Invalidate destination;

The derivation 
mechanism of Column 
S.s3 is modified. 

-For each database cell c in S.s3

-Invalidate (c) 

-For each database cell c in S.s3

-The new dependency overrides     

the old one
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Type Description Source(s) Dest. Predicate(s)

F1 Computable Subtract one from the source T.t2 T.t1 None

F2 Real-world Wet-lab experiment T.t2, T.t3 T.t4 None

F3 Computable Multiply the source by 2 T.t4 T.t5 None

F4 Real-world Wet-lab experiment T.t5 S.s1 S.T_fk = T.T_pk

F5 computable Sum the sources S.s1, S.s2 S.s3 None
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Figure 6: Examples of database operations under a set of user-defined dependencies.

ensures that at the insertion time of t, there cannot be des-
tination parameters in the database that depend on t. The
default action is to insert t into the database with all its val-
ues up-to-date and no further processing is needed. The only
exception is when the values of t are destination parameters
to some existing real-world or computable dependencies. In
this case, for each database cell c in t, if any of the InputPa-
rameters(c) is invalid, then c is invalidated (See Figure 5).
For example, Operation 4 in Figure 6 inserts a new tuple
T.r3 with all its values up-to-date. In contrast, Operation 6
inserts tuple S.r3 (which references tuple T.r3) and invali-
dates the value in (s1,r3) because this value is inferred from
(t5,r3), which is currently invalid.

Other operations that may affect the status of the
database items are adding and dropping dependencies.
When a new dependency, say DI, is added to the database,
we need to address two issues: (1) whether or not DI
will form a cycle with other existing dependencies, and (2)
whether or not DI will override other existing dependencies.

A cycle among a set of user-defined dependencies indicates
that the derivations among the destination and source pa-

rameters of these dependencies may loop indefinitely. Cycles
are not allowed in HandsOn DB according to the following
definitions— Recall that DI.DP and DI.SP correspond to
the destination and source parameters of dependency DI,
respectively.
Definition (Cycle Formation): Dependency

instances DI1, DI2, ..., DIn form a cycle if
DIi.DP ∩ DIi+1.SP "= φ, for 1 ≤ i < n, and
DIn.DP ∩DI1.SP "= φ.

Property (Cycle-Free Dependency Graph): A
newly defined dependency instance DIi is rejected by the
system if ∃ dependency instances DIj , DIk, ..., DIn |
DIi ∪DIj , DIk, ..., DIn form a cycle.
The algorithm for detecting and preventing cycles among

the dependencies is discussed in Section 6.1.
Since the derivations among the data items may change

over time, the user-defined dependencies may change over
time as well, i.e., new dependencies may override other ex-
isting dependencies. For example, if a database cell c is a
destination parameter to dependency DIj and a new depen-



(a) Example of Database Instance. 
*Black-marked values are potentially-invalid. 

Predicate 1 Predicate 2 
Attr-N = “v2” Attr-N = “v2” AND  

Attr-1= “a3” 

F F 

T -ve 

+ve +ve 

F F 

-ve F 

F F 

(b) Predicate Evaluation. 

OID Attr-1 Attr-2 ! Attr-N 
1 a1 b1 ! v1 

2 a2! b2 ! v2 

3 a3 b3 ! v2 

4 a4! b4 ! v4 

5 A5 b5 ! v5 

6 a3 b6 ! v7 

Figure 7: Examples of predicate evaluation.

dency DIi is defined where c is its destination parameter,
then DIi overrides DIj w.r.t. c. Now c is being derived ac-
cording to DIi instead of DIj . Dependencies DIi and DIj
may or may not be of the same type (real-world or com-
putable). The overriding property is defined as follows:

Definition (Dependency Overriding) Depen-
dency instance DIi is said to override dependency
instance DIj w.r.t destination parameters DP ′ "= φ if
DIi.DP ∩ DIj .DP = DP ′ and DIi is defined (chronologi-
cally) after DIj .

Dependency overriding ensures that any database cell c
can be a destination parameter to at most one dependency
instance at any given time. Hence, there is exactly one way
to derive or infer c (if any).

• Adding/Dropping dependencies: A new depen-
dency is added to the database using either the extended
Create Table or Alter Table commands (See Section 3). If
an added (or dropped) dependency is defined using the Alter
Table command including the optional Invalidate Destina-
tion clause, then the destination table cells that satisfy the
dependency predicates are invalidated. Otherwise, the des-
tination table cells remain valid. Newly added dependencies
may override existing ones. For example, Operation 7 in
Figure 6 defines a new dependency indicating that the val-
ues in column S.s3 are new derived from the RWA-F F6
instead of the computable dependency involving F5. The
overriding mechanism is described in detail in Section 6.1.

5. EXTENDED QUERYING MECHANISM
Initially, all values in HandsOn DB have a valid status.

However, as users perform database updates, parts of the
underlying database will become potentially invalid (under
re-evaluation). Thus, it is crucial for end-users to get alerted
when their queries touch or depend on potentially invalid
values. In this section, we introduce extended semantics
for the query operators to annotate the query results with
the status information and to enable evaluating queries on
either valid data only (avoid getting false positive tuples), or
both valid and potentially invalid data (include false positive
tuples).

5.1 Predicate Evaluation
A predicate evaluation over a tuple typically results in a

boolean value True or False. With the status of each value
in the database being up-to-date or outdated, we extend the
predicate evaluation to return one of four possible values (4-
valued logic): True (T), False (F), Potentially false positive
(+ve), and Potentially false negative (-ve). The value True

T +ve -ve F

T T +ve -ve F

+ve +ve -ve F

-ve -ve F

F F

T +ve -ve F

T T T T T

+ve +ve +ve +ve

-ve -ve -ve

F F

T +ve -ve F

F -ve +ve T
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Figure 8: Predicate evaluation rules.

indicates that the tuple qualifies the predicate based on only
up-to-date values, and hence, the tuple is certainly part of
the answer (e.g., the 2nd tuple against Predicate1 in Fig-
ure 7). The value False indicates that the tuple disqualifies
the predicate based on only up-to-date values, and hence,
the tuple is certainly not part of the answer (e.g., the 1st

tuple against Predicate1 in Figure 7). The value Potentially
false positive indicates that the tuple qualifies the predicate
but based on outdated values, and hence, the tuple is poten-
tially a false positive (e.g., the 3rd tuple against Predicate1
in Figure 7). The value Potentially false negative indicates
that the tuple disqualifies the predicate based on outdated
values, and hence, the tuple is potentially a false negative
(e.g., the 5th tuple against Predicate1 in Figure 7). Although
it seems easier to set the potentially-invalid values to Null
and use the 3-valued logic supported by most DBMSs, i.e.,
True, False, and IS NULL, the proposed 4-valued logic has
several advantages: (1) Columns in the database may be
defined as Not NULL and hence the Null value may not be
allowed in the first place. (2) Null values are known to be
problematic to work with as they mandate the use of spe-
cial functions, e.g., IS NULL or NVL, when comparing val-
ues to avoid nondeterministic evaluation. Nevertheless the
complexity of manipulating Null values by query operators
such as joins and grouping. (3) Under the 3-valued logic,
the query operators still need to be extended to differenti-
ate between the user-inserted Null values and the system-
generated Null values, otherwise, simple operation like re-
porting the potentially-invalid values in a given column can-
not be performed.

In Figure 8(a), we present the rules for evaluating binary
predicates (Column <op> Column)— rules for evaluating
unary predicates (Column <op> constant) are trivial. As
an example, a predicate P over Columns ci and cj evaluates
to +ve if the values of ci and cj satisfy P while at least one of
the two values is outdated. The truth tables for evaluating
multiple predicates are presented in Figure 8(b).

5.2 Query Operators
In this section, we present extended semantics for the

query operators. Our goal is that the output produced from
the query operators should be both semantically meaning-
ful and easily interpretable by end-users. We extended the
selection and join operators with three different semantics
to enable retrieving tuples that evaluate the predicate(s) to



either T, +ve, or -ve. The semantics of the other opera-
tors, e.g., duplicate elimination and set operators, have been
also extended to take both the status and the value of the
database items into account while comparing them. The fol-
lowing notations are used in the rest of this section: R and
S are relation names, r and s are individual tuples in R and
S, respectively, and ci is a column name. When ambiguous,
we use r.ci to refer to Column ci in Tuple r.

• Selection: Tuples that evaluate the selection predicate
to T, +ve, or -ve are of interest since they either satisfy or
have the potential to satisfy the query. However, returning
these tuples altogether from one operator can be very mis-
leading and hard to interpret. In HandsOn DB, we define
three types of selection operators, namely, True Selection
(σT ), False-positive Selection (σ+), and False-negative Se-
lection (σ−), that return tuples that evaluate to each of T,
+ve, or -ve, respectively. The algebraic expressions of the
selection operators are as follows.

True Selection(σT,P ): Selects tuples that evaluate
Predicate P to T.
σT,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >

, |P (r) = T}

False-positive Selection(σ+,P ): Selects tuples that
evaluate Predicate P to +ve.
σ+,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >

, |P (r) = +ve}

False-negative Selection(σ−,P ): Selects tuples that
evaluate Predicate P to -ve.
σ−,P (R) = {r =< (c1.value, c1.status), ..., (cn.value, cn.status) >

, |P (r) = −ve}

• Inner Join: The evaluation of a join predicate over
a pair of tuples r and s results in one of four possible
values, i.e., T, +ve, -ve, or F. Join predicates are binary
predicates and hence they follow the evaluation rules
presented in Figure 8(a). Similar to the selection operator,
we define three types of join operators, namely, True Join,
False-positive Join, and False-negative Join, that return
tuples that evaluate to each of the values T, +ve, -ve,
respectively. The algebraic expression of the True Join
operator is as follows.

True Join(R #$T,P S): Returns the joined tuples r
and s that evaluate predicate P to T.
R "#T,P S = {z =< (r1.value, r1.status), ..., (s1.value, s1.status),

..., (sm.value, sm.status) > |P (z) = T}

The algebraic expressions of the False-positive (#$+,P )
and False-negative (#$−,P ) join operators are similar to that
of the True join operator with the exception of having Join
Predicate P(z) evaluates to +ve and -ve, respectively.

• Duplicate Elimination & Set operations: Two tu-
ples are considered identical iff they share the same value and
status for all their attributes. More formally, tuples r and s
are considered identical w.r.t. Columns c1, c2, ..., cn iff:
(r.ci.value = s.ci.value and r.ci.status = s.ci.status) ∀ i ∈
{1, 2, ..., n}. Duplicate elimination and set operators, i.e.,
union, intersect, and except, are extended based on this se-
mantics. Note that these operators do not have the notion
of +ve and -ve evaluation. The reason is that two identi-

X Y Z 

a ! 2 

a ! 3 

a " 1 

b ! 2 

b ! 5 

b " 4 

Grouping(X) COUNT(Z) 

a 2 

a 1 

b 3 

Grouping(X,Y) SUM(Z) 

a ! 5 

a " 1 

b ! 7 

b " 4 

Data table 

(a) Single-column Grouping 

(b) Multiple-column Grouping 

* Dark table cells contain outdated values 

Figure 9: Example of grouping and aggregation.

cal and invalid tuples may be invalid for different reasons,
however, since no extra information, e.g., the reason of in-
validation, is carried out with the tuples in the output, they
cannot be distinguished from each other. Hence, reporting
all the instances becomes very confusing and carries no ad-
ditional information to users, instead we chose to implement
the standard semantics and report only one instance of such
tuples to indicate the existence of such combination. In Sec-
tion 6.3, we present a set of curation operators that track
why certain tuples are invalid and report their dependencies.

• Grouping(γ(R)): Consistent with the semantics of
identical tuples, tuples that have the same values and sta-
tus in the grouping columns are added to the same group.
Therefore, two identical values with different status will form
two different groups with different status as well. For exam-
ple, the grouping over column X in Figure 9(a) results in
producing two groups for value a; one up-to-date and one
outdated.

• Aggregation(η(R)): An aggregate function, e.g., SUM,
AVG, COUNT, aggregates a set of up-to-date and outdated
values and returns a single value. The question is: What will
the status of the returned value be? We categorize the ag-
gregate functions into two categories, value-insensitive and
value-sensitive aggregators. A value-insensitive aggregator,
e.g., COUNT, always returns a value with an up-to-date sta-
tus. The reason is that the result from a value-insensitive
aggregator does not depend on the actual values in the ag-
gregated set. For example, the group corresponding to value
b in Figure 9(a) has count(Z) equals 3 with up-to-date sta-
tus although one of the values are outdated. In contrast, a
value-sensitive aggregator, e.g., SUM, AVG, MIN, or MAX,
returns a value with an up-to-date status only if all the val-
ues in the aggregated set are up-to-date, otherwise the re-
turned value will have an outdated status. For example,
the group corresponding to the pair (b,β) in Figure 9(b) has
sum(Z) equals 7 with outdated status since the sum depends
on the outdated value 5.

We extend the SQL select statement to include the newly
proposed operators. A comparison operator may be suffixed
with ‘@’, ‘+’, or ‘-’ to indicate a true, false-positive or false-
negative evaluation, respectively.

Example : Consider the following extended query:
9 Select GSeq, PSeq From GENE G, PROTEIN P

Where G.GID =+ P.GID And GFunction =- ‘F2’;

where =+, and =- correspond to false-positive and false-
negative equality operators, respectively. The query is equiv-
alent to the algebraic expression:

πGSeq,PSeq(σ−,GFunction=‘F2′(GENE #$+,G.GID=P.GID

PROTEIN))

6. DESIGN ISSUES



As discussed in Section 3, the user-defined dependencies
create a dependency graph among the database cells. Since
the graph may grow massively, materializing and storing it
inside the database may involve unnecessary and substan-
tial overhead. Therefore, HandsOn DB utilizes the powerful
triggering mechanism in database systems by dynamically
generating triggers that enforce the user-defined dependen-
cies and propagate the (in)validation operations accordingly
(Section 6.1). The maintenance of the real-world activities
pending execution is presented in Section 6.2.

Storage Scheme: For each dependency, we store in cat-
alog tables the dependency definition, the names of the
source and destination tables and columns, the type of
the dependency as either computable or real-world, and a
unique identifier (dependency id) that is assigned to the de-
pendency at the creation time (See the Add Dependency
construct in Section 3). For each table cell c, in addi-
tion to c’s value, we keep two additional system-maintained
fields c status and c dependency id, where c status indicates
whether c is up-to-date (status = 0) or outdated (status =
1), and c dependency id stores the id of the most recent
dependency to which c is a destination parameter (if depen-
dency id is null, then c does not depend on other values
in the database). When a new dependency having depen-
dency id, say vi, is added to the database, all destination
table cells belonging to this dependency will have their de-
pendency id field updated to vi.

6.1 Realization of Dependencies using Trig-
gers

When a new dependency is added to the database, the
system extracts the predicates from the Add Dependency
construct and automatically generates triggers that enforce
the dependency. The processing of a given Add Dependency
construct involves four steps: (1) detecting whether or not
the new dependency forms a cycle with the already existing
dependencies, (2) assigning a unique id vi to the dependency,
(3) generating a set of triggers over the source and destina-
tion tables to enforce the dependency, and (4) overriding
other existing dependencies by modifying the dependency id
field of the destination parameters of the new dependency
to vi.

Formation of cycles: Testing the formation of a cycle
among the user-defined dependencies can be very expensive
if performed at the cell level. HandsOn DB, therefore, de-
tects cycles in two phases; filter (column level test) and re-
fine (cell level test). The intuition is that if no dependency
is found between columns T.ci and T.cj , then there is no
need to check the values in these columns (the filter phase).
If a dependency is found between T.ci and T.cj , then we
need to perform the more-expensive step and check which
exact table cells have the dependencies (the refine phase).
In the filter phase, we maintain a precedence graph among
the database columns, where an edge is added from column
T.ci to column S.cj if T.ci and S.cj are source and destina-
tion columns in a given dependency, respectively. If the new
dependency will not form a cycle in the precedence graph,
then the dependency is added to the database. Otherwise,
we move to the more-expensive refine phase in which we
check whether the candidate cycle at the column level forms
a real cycle at the cell level. In the refine phase, we form
a temporary table, say Tempi(Src, Dest), for each depen-
dency, say Di, involved in the column-level cycle. Tempi

1 src_list = the set of all source cells involved in the dependency other than Ti.ci;
2  dest_cell = the destination cell of the dependency;

3   IF (!"#$%&"''.dependency_id Œ"vi) THEN

4 Return; 

5 END IF;

6 IF ((!"#$%&"'' != null) and (ci.old != ci.new)) THEN

7 IF (ci_Status.old = ci_Status.new ?"Ðwr-to-fcvgÑ+"THEN

8 IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+"THEN

9 -- Insert a pending record into *"+!)+,-&$).)$/ to request an

execution of function F using #(&%')#$ and Ti.ci as inputs;
10 END IF

11 -- Update the status of !"#$%&"'' vq"ÐqwvfcvgfÑ;
12 ELSE IF (ci_Status.old ?"ÐqwvfcvgfÑ"cpf"ci_Status.new ?"Ðwr-to-fcvgÑ+"THEN

13 IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+"THEN

14 -- Insert a pending record into *"+!)+,-&$).)$/ to a request an

execution of function F using #(&%')#$ and Ti.ci as inputs;
15 END IF

16 END IF

17 ELSE IF ((!"#$%&"'' != null) and (ci_Status.old != ci_Status.new)) THEN

18 IF (ci_Status.old ?"Ðwr-to-fcvgÑ"cpf"ci_Status.new ?"ÐqwvfcvgfÑ+"THEN

19 IF (!"#$%&"''.status ?"ÐqwvfcvgfÑ+"THEN

20 IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+ THEN

21 -- Insert a compensating record into *"+!)+,-&$).)$/
22 END IF;

23 ELSE

24 -- Update the status of !"#$%&"'' vq"ÐqwvfcvgfÑ;
25 END IF;

26 ELSE IF (ci_Status.old ?"ÐqwvfcvgfÑ"cpf"ci_Status.new ?"Ðwr-to-fcvgÑ+"THEN

27 IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+"THEN

28 -- Insert a pending record into *"+!)+,-&$).)$/ to request an 

execution of function F using #(&%')#$ and Ti.ci as inputs;
29 END IF

30 END IF

31 END IF (a) Template for real-world activity function F over source column Ti.ci

1 src_list = the set of all source cells involved in the dependency other than Ti.ci;

2 dest_cell = the destination cell of the dependency ;

3 IF (!"#$%&"''.dependency_id Œ"vi) THEN

4 Return;  

5 END IF;

6 IF ((!"#$%&"'' != null) and (ci.old != ci.new)) THEN

7 Call function F using #(&%')#$ and Ti.ci as inputs to update !"#$%&"''.value;

8 IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+"THEN

9 -- Update the status of !"#$%&"'' vq"Ðwr-to-fcvgÑ;
10 END IF

11 ELSE IF ((!"#$%&"'' != null) and (ci_Status.old != ci_Status.new)) THEN

12 IF (ci_Status.old ?"Ðwr-to-fcvgÑ"cpf"ci_Status.new ?"ÐqwvfcvgfÑ+"THEN

13 -- Update the status of !"#$%&"'' vq"ÐqwvfcvgfÑ;
14 ELSE IF (status of all cells in #(&%')#$ ku"Ðwr-to-fcvgÑ+"THEN

15 -- Update the status of !"#$%&"'' vq"Ðwr-to-fcvgÑ="
16 END IF

17 END IF (b) Template for computable function F over source column Ti.ci

Figure 10: Templates for Add Dependency con-
structs.

contains the tuple ids of the source and destination table
cells for dependency Di (temporary tables can be expressed
as queries without materializing them). The temporary ta-
bles are then joined so that Tempi.Dest = Tempi+1.Src,
where 1 ≤ i ≤ n − 1, and Tempn.Dest = Temp1.Src (as-
suming the column-level cycle is of length n). If the query
returns any results, then there exists a cell-level cycle, and
the new dependency is rejected. Otherwise, the new de-
pendency is added to the database. Notice that if the new
dependency passes the refine phase, then any insertions or
updates to the base tables involved in the column-level cycle
need to be checked to ensure that they will not form a cycle
in the future. This check is not expensive since it will be
performed only for the newly inserted or updated tuple.

In principle, given a new dependency definition, HandsOn
DB creates automatically several triggers to enforce the de-
pendency and to propagate the status to dependent values.
In Figures 10(a) and (b), we present the After Update code
templates for real-world, and computable dependencies, re-



spectively. Consider the template in Figure 10(a). The trig-
ger fires when an update occurs to a tuple, say t, in Table Ti.
Column ci is the source column in the dependency. Lines 1
and 2 retrieve the source and destination table cells involved
in the dependency. If the dependency id value of the desti-
nation table cell does not match with the id value assigned
to the dependency when defined (vi), then the trigger termi-
nates because the destination cell is no longer a destination
parameter to this dependency (Lines 3-5). Lines 7-11 han-
dle the case when the value of ci is updated while its status
remains the same. If the status of ci as well as all other
source parameters of the dependency are up-to-date, then a
request record is inserted into the PendingActivity table (See
Section 6.2) to indicate that the involved real-world activity
should be performed based on the new value of ci (Line 9).
In Line 11, the destination table cell of the dependency is
marked outdated. The PendingActivity table is maintained
and populated automatically to help users identify which
real-world activities are ready for execution as will be pre-
sented in Section 6.2. Lines 12-15 handle the case when the
value is updated and the status is modified from outdated
to up-to-date. In this case, a request record is inserted into
PendingActivity only if all other source cells are up-to-date
(Line 14). Notice that dest cell remains outdated until the
real-world activity is performed.

The second part of the template (Lines 17-31) handles a
change in the status of ci without changing its value. In
the case when the status of ci is modified from up-to-date to
outdated, dest cell is marked outdated if it is currently up-to-
date (Line 24). However, if dest cell is currently outdated
and all the other source table cells are up-to-date, then a pre-
vious request must have been inserted into PendingActivity
to validate dest cell. This request can no longer validate
dest cell because ci is now invalid. For this reason, we insert
a compensating record (Line 21) into PendingActivity to pre-
vent the previous request from validating dest cell as will be
discussed in Section 6.2. In the case when the status of ci is
modified from outdated to up-to-date, then a request record
is inserted into PendingActivity only if all other source cells
are up-to-date (Line 28).

The computable-function template in Figure 10(b) is a
simplified version of that in Figure 10(a). An important
difference to note is that since the function involved in the
dependency is computable, the trigger executes this function
automatically to update dest cell whenever the value of ci is
modified (Line 7). Another key difference is that whenever
all the source parameters become up-to-date, the destination
parameter is automatically marked as up-to-date (Lines 9,
15). This is unlike the case of the real-world dependencies
in which a request record is inserted into PendingActivity.

6.2 Logging and Resuming Pending Activities
When a real-world activity function F has all its source

parameters up-to-date but its destination parameter out-
dated, a request record (of type pending) for F is inserted
into the PendingActivity table (Lines 9, 14, and 28 in Fig-
ure 10(a)). Before serving that request, i.e., executing F
and reflecting its output value into the database, the source
parameters of F may change again, or may get invalidated.
In the former case, more pending requests for executing F
are inserted into PendingActivity. Users have the option to
either serve these requests sequentially or serve only the last
request (See the Resume Function command below). In the

1    IF (the request status is “completed”, “overwritten”, or “compensating”) THEN 
2          Return; 
3    END IF; 
 
4    IF (there exist previous pending requests for the same destination table cell) THEN 
5            IF (cascade flag is False) THEN 
6                     Return; 
7            ELSE 
8                     update the status of these previous requests to “overwritten”; 
9            END IF; 
10   END IF; 
 
11    IF (there exist more recent requests for the same destination cell) THEN 
12          update the value of the destination table cell without validating it; 
13    ELSE 
14          update the value of the destination table cell and mark it as “up-to-date”; 
15    END IF; 
 
16    Update the status of the request to “completed”; 

Figure 11: Processing the PendingActivity records.

latter case, a compensating record is inserted into Pendin-
gActivity (Line 21 in Figure 10(a)) to indicate that any pre-
vious pending requests for executing F can still be served
to update the value of the destination table cell but without
validating it.

A request record consists of the following fields: a unique
request id, the function name F to be externally executed,
the input arguments to F , an update statement that up-
dates the destination table cell once the new results from F
are known, and a status field that shows the status of the
request. The status field takes one of the following values:
pending, completed, overwritten, or compensating. When F
is performed and its output result is available, the result is
passed to the system using the following command:
9 Resume Function <func_name> Value <func_output>

References <RequestId> [Cascade];
where RequestId references the unique request id that is
assigned to each request in PendingActivity. The procedure
for executing the Resume Function command is presented
in Figure 11. If the request has a status of either completed,
overwritten, or compensating, then the procedure terminates
without further processing (Lines 1-3). If there are previous
pending requests targeting the same destination table cell
and the optional Cascade keyword is not specified, then the
procedure terminates because, in this case, requests have to
be served in order (Line 6). If Cascade is included, then any
previous pending requests are marked as overwritten and the
current request is served (Line 8). Lines 12 and 14 update
the value of the destination table cell, and depending on
whether or not there are requests more recent than the one
currently at hand, the destination table cell either remains
invalid (Line 12) or gets validated (Line 14).

The intuition behind updating the destination table cell
using the Resume Function command instead of the SQL
update command is that in the latter case the DBMS can-
not tell which input arguments are taken into account when
executing F . Hence, the DBMS cannot decide whether or
not the new output value of F is consistent with the source
parameters currently exist in the database.

6.3 Curation Operators
HandsOn DB provides a set of curation operators that

help users managing and tracing the dependencies among
the data. The query and curation operators are complemen-
tary to each other where the former operators allow users to
seamlessly query the data, the latter operators allow users



to track why certain tuples/values are invalid and how to
validate them. In this section, we present three of these
curation operators, i.e., dependency tracking (DTrack), hi-
erarchical dependency tracking (HDTrack), and dependency
roots (DRoots). All the operators execute over the output
from an SQL select statement as depicted below.

[DTrack | HDTrack | DRoots] (
Select *
From <table name>
Where <predicates> );

For each output tuple t from the select statement, the
DTrack operator reports for each attribute value v in t, the
status of v, the dependency id to which v is a destination,
and the source table cells on which v depends. DTrack starts
by retrieving the c dependency id values stored in t and then
based on the dependency definitions, it executes a reverse
query to retrieve the source table cells. The HDTrack oper-
ator executes in a similar way as DTrack except that it re-
ports the complete hierarchy of dependencies until it reaches
values with no further dependencies, i.e., HDTrack recur-
sively executes DTrack until no further dependencies can
be found. Both DTrack and HDTrack help users to trace
the dependencies upward in order to re-validate certain val-
ues. DRoots, on the other hand, reports all invalid values
within the selected tuples that depend only on all up-to-date
values—and hence they are the ones to start re-validating
(the roots). To find the roots in a given set of tuples, DRoots
scans the Pending Activity table (Refer to Section 6.2) for
records with pending status and no compensating counter-
parts. The destination table cells in these records are the
set of roots in the database which will then be filtered based
on the user’s selection.

6.4 Correctness of Execution
In this section, we study two important properties of the

data manipulation operations defined as follows:

• Termination: The procedures of the data manipula-
tion operations are guaranteed to terminate after a set
of database modifications.

• Confluence: The final state of the database after any
of the data manipulation procedures is unique. That is,
the order in which non-prioritized dependencies (de-
pendencies that do not have precedence among each
other) are triggered always leads to the same final state
of the database.

These two properties have been studied in the context
of active databases [?]. In the following, we prove that
both properties hold under a given set of user-defined
dependencies.

(I) Termination :
It is proven in [?] (Theorem 5.1) that if the user-defined
rules do not form a cycle, then the execution is guaranteed
to terminate. In our model, the user-defined dependencies
are not allowed to form cycles as presented in Section 4.
Therefore, the following theorem holds.

Theorem 1 (Termination): The procedures of the data
manipulation operations are guaranteed to terminate after
a set of database modifications.

(II) Confluence:

)2667

0

1 2

5
7

8

3

4

!91 !93
!92

!98

!95
!97

)2665

)0663
)0662

)1665

)4661 )0661

)1668

)5668
)7668

)3667

:+;,<#"$=&'!&,&.>&.?@

AB#&)."='!&,&.>&.?@

66 C&#'+('<%&)6>&(-.&>'>&,&.>&.?-&%'
66 !9-D'>&,&.>&.?@'-.%#".?&'E*+%&'>&%#-."#-+.'
デ;HﾉW"IWﾉﾉ"ｷゲ"けｷげ

66 )%F>D')<=&'G,)+?&><)&H'I&.&)"#&>'$@'!9- #+'''''''''''
ヮヴﾗヮ;ｪ;デW";ﾐ┞"┌ヮS;デW"ﾗ┗Wヴ"ゲﾗ┌ヴIW"けゲげ"デﾗ""""
SWゲデｷﾐ;デｷﾗﾐ"けSげ

%0

>0

>1

)%06>0

)>06>1

)%06>1
!90

!91

66 J<=&%')%06>0 ".>')%06>1 ")&'<.6,)-+)-#-K&>'".>'
")&'.+#'?+;;<#"#-L&''$&?"<%&'>0 E*-?*'-%'E)-##&.'
$@')%06>0''-%'-.'C+<)?&%G)%06>1H

66 M*&)&';<%#'&B-%#')<=&')>06>1 E*-?*'-%'&N<-L"=&.#'#+')%06>1

!"# $"%&'($&%)'($&%*'($*%)'($"%+'($+%*'($*%)'($+%,'($,%)'($"%-'($-%, '($,%)

!&# $"%-'($-%,'($,%)'($"%&'($&%*'($*%)'($&%)'($"%+'($+%*'($*%)'($+%, '($,%)

$"%&'($&%)'($&%*'($*%)'($"%+'($+%*'($*%)'($+%,'($,%)'($"%-'($-%, '($,%)
!"# $"%&'($"%+'($+%*'($"%-'($-%, '($,%)

$"%-'($-%,'($,%)'($"%&'($&%*'($*%)'($&%)'($"%+'($+%*'($*%)'($+%, '($,%)
!&# $"%-'($"%&'($"%+'($+%*'($+%, '($,%)

!"#$$%&'"'(&)*$+&,$-./.)-.)0(.*$ ")-$,12.*

!3#$4)5/,(&,('(6.-$ ")-$)&'$0&771'"'(8.$ ,12.*

ふSぶ"vﾗゲゲｷHﾉW"ヮ;デｴゲ"ｷﾐ"デｴW"W┝WI┌デｷﾗﾐ"ｪヴ;ヮｴ"HWI;┌ゲW"ﾗa"┌ヮS;デｷﾐｪ"デ;HﾉW"IWﾉﾉ"けヱげ

ふWぶ"vﾗゲゲｷHﾉW"ヮ;デｴゲ"ｷﾐ"デｴW"ヴWS┌IWS"W┝WI┌デｷﾗﾐ"ｪヴ;ヮｴ"HWI;┌ゲW"ﾗa"┌ヮS;デｷﾐｪ"デ;HﾉW"IWﾉﾉ"けヱげ

P1 P2

*
*+

+rs-
k

rs-
k

rs'-m

rs'-m

!0#$$9&771'"'(8.$,12.*$()$,.-10.-$.:.01'(&)$/"';*

66 O0'".>'O1'")&',"#*%'-.'"')&><?&>'&B&?<#-+.'
I)",*
66 J<=&%')%6P ".>')ゲげ6; ;<%#'$&'?+;;<#"#-L&')<=&%'''''

Figure 12: Example used in the Confluence analysis

In the following, we introduce the notations and definitions
used in the analysis. The example in Figure 12 is used as a
demonstrative example throughout the analysis.

Dependency Instance DIk: DIk is the dependency in-
stance whose destination table cell is ’k’. Since each table
cell can be a destination parameter to at most one depen-
dency instance, then a dependency instance can be uniquely
identified by its destination parameter. For example, DI8 in
Figure 12(a) is the dependency instance whose destination
table cell is ’8’. The set of all dependency instances in the
database is D.
Rule rs−d: rs−d is a rule (procedure) generated by depen-

dency DId to propagate the updates over the source table
cell ’s’ to the destination table cell ’d’. For example, rules
r2−8 in Figure 12(a) is a rule generated by dependency in-
stance DI8 to propagate the updates from table cell ’2’ to
table cell ’8’. The set of all rules in the database is R.
Sources(rs−d): Sources(rs−d) is the set of all source ta-

ble cells that are read by rule rs−d. These sources are the
source parameters of dependency instance DId. Intuitively,
’s’ ∈ Sources(rs−d). For example, Sources(r2−8) in Fig-
ure 12(a) are {’2’, ’6’, ’7’}.

Equivalent rules: Two rules rs1−d1 and rs2−d2 are said
to be equivalent iff, starting from the same database in-
stance, they read the same table cells, write the same table
cells, and generate the same new database instance. By de-
fault, every rule is equivalent to itself.



Lemma 1 (Equivalent rules): Two rules rs1−d and
rs2−d in D are equivalent.

Proof: Rules rs1−d and rs2−d are generated from the
same dependency instance DId. Therefore, Sources(rs1−d)
= Sources(rs2−d), the two rules write the same destination
table cell ’d’, and they execute the same functionality im-
posed by DId. Therefore, rs1−d and rs2−d are equivalent.

Execution graph EG: As defined in [?](Section 4), an
execution graph EG is a directed graph in which the paths
represent all possible execution sequences during the rule
processing. Branching in the graph results from having dif-
ferent eligible commutative rules to be triggered at the same
time. For example, updating table cell ’1’ in Figure 12(a)
triggers the execution of a sequence of rules. Two possible
execution paths are depicted in Figure 12(d).

Lemma 6.1 in [?] have mentioned six conditions that need
to be false in order for rules ri and rj to commute. These
conditions are:

1. ri can cause rj to be triggered.

2. ri can un-trigger rj by nullifying the cause for trigger-
ing rj .

3. ri performs an operation (insert, delete, update) that
affects what rj reads.

4. ri insert operations may affect the update and delete
operations of rj .

5. ri and rj can update the same database cell.

6. any of the above 1-5 conditions with ri and rj reversed.

In our model, two rules rs1−d1 and rs1−d2 that are trig-
gered because of an update in table cell s1 are considered
un-prioritized rules and they will both become eligible for
execution at the same time. For example, rules r1−2, r1−3,
and r1−4 in Figure 12 are un-prioritized rules that will all
become eligible for firing when table cell ’1’ is modified.
Given the two rules rs1−d1 and rs1−d2 , we find out that
all of the above conditions are guaranteed to be false ex-
cept for Condition 3. In Condition 3, rule rs1−d1 may per-
form an update operation that affects what rs1−d2 reads
only if d1 ∈ Sources(rs1−d2), i.e., the destination table cell
of rs1−d1 is a source parameter to rs1−d2 . This case is il-
lustrated in Figure 12(b). However, if this case occurs, i.e.,
d1 ∈ Sources(rs1−d2), then there must exist another rule
rd1−d2 in D since d1 is a source parameter to dependency
DId2. Moreover, according to Lemma 1, rules rd1−d2 and
rs1−d2 are equivalent. We will show next that we can gen-
erate a reduced execution graph (based on rule overwriting
discussed below) in which rs1−d2 is replaced by rd1−d2 . As
a result, the reduced execution graph will contain the prior-
itized rules rs1−d1 and rd1−d2 which cannot be eligible for
execution at the same time, and hence the commutativity
property is not required.

Lemma 2 (Rule overwriting): Rule rs1−d is said to
overwrite an equivalent rule rs2−d in an execution path P
if rs1−d appears after rs2−d in P. As a result, rs2−d can
be removed from P without affecting the final state of the
database resulted from P. By default, every rule overwrites
itself.

Proof: Lemma 2 is proved if the following two conditions
are true:

1. The execution of rs1−d does not depend on the exe-
cution of rs2−d. That is, rs1−d does not read values
written by rs2−d or by any rule that is triggered be-
cause of executing rs2−d.

2. All rules that are triggered between rs2−d and rs1−d

because of firing rule rs2−d are guaranteed to be trig-
gered again after rs1−d. That is, rules that are affected
by the execution of rs2−d will be overwritten by rules
that fire after rs1−d.

Condition 1 is a direct byproduct of having no cycles
among the user-defined rules. With respect to Condition
2, all rules that are triggered between the execution of rs2−d

and rs1−d are categorized into two categories; rules that
are triggered because of the firing of rs2−d (category A),
and rules that are triggered independently from the firing of
rs2−d (category B). Since rs1−d modifies the same destina-
tion table cell as rs2−d, i.e., ’d’, then all rules in category
A must fire again after rule rs1−d. Therefore, the execution
of category A rules that occurred between the execution of
rs2−d and rs1−d will be overwritten by rules occurring after
rule rs1−d. Thus, Condition 2 holds.
Reduced execution graph REG: A reduced execution

graph REG is an execution graph in which rule rs2−d is
removed from each execution path P if there exist rule
rs1−d that overwrites rs2−d in P. An execution path in
REG is called reduced execution path (See Figure 12(d)).

Back to the special case of having two un-prioritized rules
rs1−d1 and rs1−d2 that do not commute with each other
because they satisfy Condition 3 above. Recall that, in
this case, another rule rd1−d2 must exist in the dependency
graph. This problem is solved in the reduced dependency
graph as follows. Since rules rd1−d2 and rs1−d2 are equiv-
alent, then there are two possible cases in any reduced ex-
ecution path, either rd1−d2 overwrites rs1−d2 (Case 1), or
rs1−d2 overwrites rd1−d2 (Case 2). In Case 1, the problem is
no longer exist because rs1−d2 is removed from the execution
path and the existing two rules are prioritized rules. In Case
2, since rs1−d2 overwrites rd1−d2 , then rule rd1−d2 appeared
before rule rs1−d2 in the execution path and that is why
it is overwritten. Since rd1−d2 appeared before rule rs1−d2 ,
then rule rs1−d1 has to be also appeared in the execution
path before rs1−d2 (rs1−d1 has to appear before rd1−d2 in
any execution path). Therefore, we can safely replace rule
rs1−d2 by rule rd1−d2 in the execution path and eliminate
the problem.

The reduced execution graph has the following interesting
properties:

1. Each reduced execution path contains at most one rule
for each dependency DIk, say rule rs−k.

2. After the execution of rule rs−k, the source parame-
ters of of DIk, i.e., Sources(rs−k), are guaranteed not
to change. The reason is that if any of the source
parameters have changed after the execution of rs−k,
then another rule rs′−k would have been added to the
execution path that overwrites rs−k.

3. There are no equivalent rules. The reason is that if
there are two equivalent rules, then the second one
would have overwritten the first one.



4. Any two un-prioritized rules having the same source,
e.g., rs1−d1 and rs1−d2 , in the reduced execution path
are commutative. This reason is that if rs1−d1 and
rs1−d2 are not commutative, then we would have ap-
plied the replacement mechanism mentioned above to
eliminate this case.

In a reduced execution graph, the following lemma holds.
Lemma 3 (Rule commutativity in REG): In a re-

duced execution graph, if two rules rs−k and rs′−m switched
their execution order in two different execution paths, then
rs−k and rs′−m are commutative.

Proof: In the case where rules rs−k and rs′−m have the
same source, i.e., s = s′, then rs−k and rs′−m are commuta-
tive according to the 4th property of the reduced execution
graph mentioned above. In the case where s "= s′, then
we check the two rules against the six commutativity condi-
tions [?](Lemma 6.1) and prove that all the conditions are
false (Refer to Figure 12(c) for illustration). Condition 1
is guaranteed to be false because if we assumed that one of
the two rules, say rs−k, can trigger the other rule, say rs′−m,
then the execution path in which rule rs−k is executed after
rs′−m would form a cycle which contradicts with Theorem
1. Moreover, since neither of the two rules can modify the
sources of the other rule, then Condition 2 is always false.
Condition 3 is also guaranteed to be false because if one
rule, say rs−k, performs an operation that affects what the
other rule, say rs′−m, reads, then the path in which rs′−m

is executed before rs−k contradicts with the 2nd property of
the reduced execution graph mentioned above.

Based on the properties of the reduced execution graph
and Lemma 3, we prove Theorem 2.

Theorem 2 (Confluence): In a reduced execution graph
generated from a set of user-defined dependencies, two dif-
ferent execution paths P1 and P2 are equivalent. Hence, the
execution graph is confluent.

Proof: The proof of Theorem 2 is based on re-ordering
the rules in execution path P2 to match the order of the rules
in P1. We maintain one pointer over each execution path,
initially each pointer points to the first rule. If the pointers
point to equivalent rules (Refer to Lemma 1), then we move
the two pointers one step. Otherwise, the pointers point
to two different rules in P1 and P2, say rs−k, and rs′−m,
respectively. In this case, rule rs−k (or one of its equivalent
rules ) has to appear in P2 after rs′−m (other rules may exist
between rs′−m and rs−k in P2). If we proved that rs−k in P2
commutes with each rule before it till rs′−m inclusively, then
we can move rs−k up in P2 to match the corresponding rule
in P1, and then we shift the two pointers one step. Consider
rule ri−j that is before rs−k and after rs′−m in P2. If the
two rules have the same source, i.e., i = s, then the two
rules are commutative according to the 4th property of the
reduced execution graph. Otherwise, rule ri−j (or one of its
equivalent rules) has to appear in P1 after rule rs−k. Hence,
rules ri−j and rs−k have switched their execution order in
two different paths, and according to Lemma 3, the two rules
are commutative. By repeatedly applying the above steps,
we can re-order the rules in P2 to match the order of the
rules in P1 which proves that the two paths are equivalent.

Theorem 3 (Termination and Confluence): Given
a valid set of user-defined dependencies, the execution of
the procedures enforcing these dependencies is guaranteed
to terminate (Termination) and to generate a unique final
state of the database (Confluence).

Proof: Theorem 3 applies directly from Theorems 1 and
2.

7. PERFORMANCE ANALYSIS
We implemented HandsOn DB via extensions to Post-

greSQL that include: (1) adding new SQL syntax for creat-
ing the real-world activity functions and modeling the de-
pendencies, (2) adding new data manipulation operations,
i.e., invalidate() and validate(), (3) augmenting mechanisms
for automatically creating ( or deleting) triggers when de-
pendencies are added (or deleted), (4) introducing new query
operators in PostgreSQL with the semantics presented in
Section 5, and (5) adding the Resume Function() command
for resuming pending activities. In this section, we study the
overheads associated with these extensions and demonstrate
the feasibility and practicality of HandsOn DB.

Datasets: We use three datasets: Genobase, a real bi-
ological database of size approximately 40MB, PubChem-
substance, a real chemical database of size approximately
300MB, and a synthetic dataset of size approximately
450MB. Genobase stores the gene details of the Ecoli or-
ganism along with different mutation types. PubChem-
substance stores information about chemical substances,
e.g., substance ids, sources, synonyms, compounds, and
atoms. The synthetic dataset is designed primarily to stress
on the cascading effect of the dependencies as will be ex-
plained later. It consists of 10 tables, i.e., R1, ..., R10. Each
table consists of ten attributes, i.e., c1, c2, ..., c10, in ad-
dition to the primary and foreign keys. Each table Ri+1

contains two foreign keys that point to the primary keys of
tables Ri and Ri−1. Columns c1 to c5 are of type integer
while columns c6 to c10 are of type text storing strings of
length varying from 100 to 1000 characters.
Storage: In Figure 13, we study the storage overhead im-

posed from adding the status (one bit) and dependency id
(two-bytes integer) columns for each database column. The
figure illustrates that the storage overhead ranges from 2%
to 7% of the database size. As expected, the storage over-
head is relatively insignificant. The reason is that scientific
databases typically store many large-size attributes such as
text and sequence fields that dominate the storage overhead.
PubChem-substance shows the highest storage overhead be-
cause the average length of its attributes is smaller than
those of the other two databases.

Adding Dependency: In Figure 14, we study the aver-
age time needed for adding a new dependency. This time
involves detecting whether or not a cycle exists, and creating
the required triggers. In this experiment, we vary the num-
ber of generated dependencies from 25 to 211 (the X-axis)
distributed over 5 tables with an average cascading length
of 2. One half of the generated dependencies has a single
source table while the other half has two source tables. To
create multiple non-overlapping dependencies over a single
destination attribute, we divide this attribute into disjoint
subsets and assume that each subset is inferred or computed
using a different function. In the experiment, we study the
two cases where the newly defined dependency either invali-
dates the destination table cells (labeled as ‘With Inv-Dest’)
or keeps them as valid (labeled as ‘Without Inv-Dest’). Fig-
ure 14 illustrates that the size of the database does not sig-
nificantly affect the execution time. The reason is that the
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time taken to detect whether or not a cycle exists and to cre-
ate the required triggers is not influenced much by the size
of the underlying database. Also, the figure illustrates that
the average time taken in the case of invalidating the desti-
nation table cells is higher than that where the destination
table cells are kept valid. The reason is that invalidating the
destination table cells will propagate this invalidation to all
dependent data items which may span multiple tables.

Dropping Dependency: In Figure 15, we measure the
average time required for dropping a dependency. Initially,
we add 211 dependencies to each of the three databases dis-
tributed over five tables with an average cascading length
of two. In this experiment, we vary the number of destina-
tion table cells that belong to the dropped dependency from
25 to 210 (the X-axis) and measure the required time under
the cases where the destination cells are either invalidated
(labeled as ‘With Inv-Dest’) or validated (labeled as ‘With-
out Inv-Dest’). The measured performance depends on the
initial status of the database cells, e.g., invalidating table
cells that are already invalid is less expensive than invali-
dating up-to-date cells, and the same applies for validation.
Therefore, we compute each point in the figure as the av-
erage over five runs each with a different percentage of the
outdated values in the destination column. Since in typical
scenarios most of the database items are up-to-date, we vary
the percentage of the outdated values in the destination col-
umn over the set of {0%, 5%, 10%, 15%, 20%}. Figure 15
illustrates that dropping a dependency can be an expensive
operation especially when invalidating a large number of des-
tination table cells. The overhead associated with invalidat-
ing the destination parameters of the dropped dependency
is around three or four times higher than that associated
with validating the destination parameters. The reason for
this difference is that most of the data items in the database
are already valid, and hence the validation procedure is not
as expensive as the invalidation procedure. The invalidation
procedure typically propagates the invalidations to more de-
pendent table cells. More analysis on the performance of
both procedures will be discussed in Figure 16. Figure 15
illustrates that the synthetic and PubChem databases en-
counter higher overhead compared to Genobase. The reason
is that the tables of the former databases are around 8 to 10
times larger. In general, dropping a dependency is expected
to be an infrequent operation especially when the number
of associated destination table cells is large. Otherwise, the
overhead involved in re-verifying and re-validating these des-
tination table cells would probably dominate the overhead

of the Drop Dependency operation.
Manipulation Operations: The performance of the data

manipulation operations is presented in Figure 16. In this
experiment, we use only the synthetic database that is de-
signed primarily to enable creating long cascading paths
among the database tables. Each of the ten tables contains a
number of tuples that varies from 1,000 to 50,000. Each ta-
ble Ri contains the following dependency types among its at-
tributes: (1) computable dependency from c1 to c2, (2) real-
world dependency from c2 and c3 to c4, and (3) computable
dependency from c4 to c5. Each defined dependency targets
a small subset of the destination column, and hence multi-
ple dependencies can be defined over the destination column
without overriding each other. The database contains also
cross-table dependencies defined as follows: (1) computable
dependency from Ri.c5 to Ri+1.c1, and (2) real-world depen-
dency from Ri.c2 to Ri+1.c7. Using this database design, the
length of a cascading path varies from 0 to 40 operations.
In Figure 16, we study the average time needed to perform
each of the update, invalidate, validate, or Resume Function
operations. For the first three operations, each measurement
represents the average over 50 randomly-selected table cells
(five from each table). The figure illustrates that the update
operation involves the highest cost. The reason is that the
update procedure performs extra processing (including call-
ing the user-defined functions involved in the computable
dependencies2) regardless of whether the updated table cell
is up-to-date or outdated. This is unlike the invalidate and
validate procedures that may take no actions if the table
cell is already invalid or valid, respectively. The cost of
the invalidate operation is less than that of the update op-
eration because if the invalidated table cell is already out-
dated, then the procedure terminates without any further
processing. Otherwise, it involves the cost of invalidating
all dependent data items. The figure illustrates also that
the overhead of the Resume Function operation is higher
than those of the validate and invalidate operations. The
reason is that resuming a function updates the destination
table cell, which triggers calling the appropriate user-defined
functions to propagate the updates. Although resuming a
function triggers an update operation, its average time is
less than that of the update operation. One explanation is
that the resume operation updates a table cell whose depen-
dent items are already invalid, and hence, propagating the
invalidation does not take place.

92The computable UDFs used in experiments involve only sim-
ple arithmetic operations, e.g., additions and subtractions.
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Figure 17: Selection performance
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Figure 18: Join performance

Query Operators: With respect to data querying, we de-
fine extended semantics for the comparison operators, e.g.,
=@, =+, and =-, correspond to the true, false-positive, and
false-negative evaluation of the equality operators, respec-
tively. Other operators, e.g., >, <, and <>, are extended
in the same way. Queries that involve the extend operators
are re-written using the standard operators according to the
re-writing rules presented in Figure 19.

In Figure 17, we study the performance of the three types
of selection operators over a table consisting of 50,000 tu-
ples from the synthetic database. The select statement is
in the form of Select * From R Where R.a OP <const> ,
where OP is one of the extended selection operators. The
values in the selection column R.a have a duplication factor
that varies uniformly over the range from 1 to 10. Since
the performance of the selection operators depends on the
percentage of the outdated values in R.a, we run each exper-
iment over two different percentages of the outdated values,
20% and 80%, as illustrated in Figure 17. We build B+-tree
indexes over both the data column involved in the where
clause, i.e., R.a, and R.a’s corresponding status column, i.e.,
R.a status. In the experiment, we consider three different
types of comparison operators: equality, larger than, and in-
equality. In the case of equality, the true and false-positive
selections have relatively lower overhead (compared to false-
negative) because they make use of the index on the value
columns to find the matching values. The false-negative op-
erator utilizes the index on the status field (in the case of
20% outdated values), but performs a full-scan (in the case
of 80% outdated values) which explains the difference in the
execution time illustrated in Figure 17. The inequality com-
parison has the inverse behavior of the equality compariosn.
The false-negative selection is rewritten as equality and hence
its evaluation uses the index on the data column regardless
of the percentage of the outdated values.

With respect to joins, we focus on studying the perfor-
mance of the three types of equality joins as depicted in
Figure 18. We use two relations R and S from the syn-
thetic database, each consisting of 50,000 tuples. The Select
statement is in the form of Select * From R, S Where R.a
OP S.b And <ExtraCond> , where OP is one of the extended
equality join operators. The values in the join attributes
R.a and S.b are randomly generated over the range from 1
to 10,000 with a duplication factor that varies uniformly over
the range from 1 to 10. Both columns and their correspond-
ing status attributes have B+-tree indexes. In Figure 18,

Extended operator Re-writing rule 

 
Unary 
operators 

R.a =@ <constant>  R.a = <constant> and R.a_status = 0 

R.a =+ <constant>  R.a = <constant> and R.a_status = 1 

R.a =- <constant>  R.a <> <constant> and R.a_status = 1 

 
Binary  
operators 

R.a =@ S.b R.a = S.b and (R.a_status = 0 and  S.b_status = 0) 

R.a =+ S.b R.a = S.b and (R.a_status = 1 or S.b_status = 1) 

R.a =- S.b R.a <> S.b and (R.a_status = 1 or S.b_status = 1) 

 Other comparison operators, e.g., ‘>’, ‘<’, ‘<>’, have similar rules * 

Figure 19: Re-writing rules of the extended opera-
tors

we consider three different scenarios that trigger different
query plans: (1) the scenario where there are no extra con-
ditions in the select statement, called NoCond, (2) the sce-
nario where there is a true equality selection condition on
R.a, called TrueCond, and (3) the scenario where there is a
false-positive equality selection condition on R.a, called Pos-
itiveCond. Each scenario is evaluated under 20% and 80%
percentages of outdated values in the joined columns, i.e.,
R.a and S.b. The Y-axis in the figure is a logarithmic scale.

In the case where the query includes only the join condi-
tion (NoCond case), the true and false-positive join operators
use a hash-based join algorithm since the join condition is
an equality between R.a and S.b. The true join has less ex-
ecution time in the case where the outdated percentage is
80% because the query optimizer uses the index on the sta-
tus column to retrieve only the 20% up-to-date values that
can contribute to the join. In contrast, the false-negative
join operator uses a nested-loops join and that is why it in-
volves high overhead. In the case where the query includes
a true equality selection on R.a(TrueCond), the values from
R.a that satisfy the selection predicate are all up-to-date.
Hence, for the false-positive and false-negative joins, the val-
ues from S.b column have to be outdated. In this case, the
re-written predicates for the false-positive and false-negative
joins will only contain conjunctive predicates. In the case
where the query includes a false-positive equality selection
on R.a(PositiveCond), the values from R.a that satisfy the
selection predicate are all outdated. Hence, the result set
from the true join is always empty because the true join re-
quires the joined values to be both up-to-date. This explains
the very low overhead involved in this join type.

8. CONCLUSION



In this paper, we proposed HandsOn DB system for sup-
porting dependencies that involve real-world activities while
maintaining the consistency of derived data under update
and query operations. HandsOn DB addresses several chal-
lenges that include: (1) keeping track of the potentially
invalid data items and reflecting their status in the query
results, (2) introducing new semantics for query operators
that enable evaluating queries on either valid data only (no
false-positives), or both valid and potentially-invalid data
(include false-positives), (3) proposing new mechanisms for
invalidating, revalidating, and curating the data items, and
(4) proposing dynamic techniques through database triggers
for enforcing the dependencies without materializing them.
We studied the correctness of execution and proved that
database operations are guaranteed both to terminate and
to generate a unique final state of the database. We also
evaluated experimentally the performance of HandsOn DB
and demonstrated the feasibility and practicality of its op-
erations.


