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Abstract

The dominant Internet protocol, TCP, does not work as well as it could over
the wide-variety of networks facing today’s applications. Bottleneck Bandwidth and
Round-trip time (BBR) congestion control has been proposed as an improvement,
with the promise of higher throughputs and lower delays as compared to current TCP
congestion control algorithms. While BBR has been implemented for Linux, unfortu-
nately, there is not yet an implementation for ns-3, a powerful, flexible and popular
simulator used for network research. This paper presents BBR’, an implementation
of BBR for ns-3. BBR’ extends ns-3 TCP implementations in a fashion similar to
other TCP congestion control algorithms, making BBR’ extensible and re-using ex-
isting interconnection mechanisms. Preliminary validation shows BBR’ behaves and
performs similarly to BBR, and preliminary performance evaluation shows BBR’ has
slightly higher throughputs and significantly lower round-trip times than CUBIC in
some wired and 4G LTE wireless scenarios.

1 Introduction

The Transmission Control Protocol (TCP), the dominant network protocol in use on the
Internet, was developed for traditional wired networks in an era with limited network re-
sources (low bandwidths and small router queues). As such, TCP was intentionally designed
so that lost packets indicate congestion, even though packet loss in modern networks may not
indicate congestion but rather corrupt signals over wireless. In addition, TCP determines

*This work is sponsored by the Verizon Labs and WPI. Opinions, interpretations, conclusions and rec-
ommendations are those of the authors.



congestion limits by filling router queues until they drop, but today’s queues can be quite
large, causing considerable delays when filled.

Fortunately, TCP has proven modular enough to be adaptable to emerging networks, with
many improvements to TCP’s congestion control being proposed, implemented, evaluated
and, eventually, widely deployed. This has proven successful through major TCP versions
such as TCP NewReno [Flo99] and TCP CUBIC [HRX08], today’s dominant TCP version
of TCP. Most versions of TCP have been thoroughly vetted through analysis, simulation
and implementation before being widely deployed. Thus, there is an opportunity to improve
TCP performance over today’s varied networks by implementing a new congestion control
algorithm and testing it in a variety of environments.

A recently proposed congestion control algorithm is Bottleneck Bandwidth and Round
Trip (BBR) for TCP [CCGT16]. BBR seeks to keep router queues at the bottleneck link
empty by sending at exactly the bottleneck link rate limit. To do so, the BBR sender infers
the delivery rate at the receiver and uses this estimate as the bottleneck bandwidth. BBR
also uses an estimated minimum round-trip time in order to keep exactly enough packets in
flight to maximize throughput. Compared to loss-based congestion control algorithms such
as Reno [MABO09] or CUBIC [RXH"17], BBR has the potential to offer higher throughputs
for bottlenecks with shallow buffers or random losses, and lower queuing delays for bottle-
necks with deep buffers (avoiding “bufferbloat”). Google has already deployed BBR in its
data centers, claiming significant throughput increases and latency reductions for internal
backbone connections at google.com and YouTube Web servers.

Despite a promising start, BBR has not been thoroughly vetted through the many net-
work scenarios facing TCP connections in today’s networks. In particular, the BBR has yet
to be evaluated over 4G LTE wireless, and such networks have characteristics not faced by
traditional wired networks, e.g., lossy channels, variable bitrates, potentially high latency,
and mobile end users.

While BBR has recently been added to the Linux kernel,! many advances in network
research have been made through simulation, specifically the family of network simulators
(ns). The ns-family simulators are discrete-event simulators meant to provide for rapid, yet
accurate, design, development and evaluation of network protocols. Ns version 22 (ns-2) has
been the de facto simulator for network researchers for decades, while ns version 3* (ns-3)
extends ns-2 by providing more fidelity to wireless links, such as 4G LTE. Unfortunately,
there is not yet an implementation of BBR for ns-3, meaning the power and flexibility of
ns-3 cannot be brought to bear on evaluating, and potentially improving, BBR.

This paper presents our design, implementation and evaluation of BBR’, an implemen-
tation of BBR for ns-3. Like other TCP congestion control algorithms in ns-3 (and Linux),
BBR’ is a module separate from the core TCP mechanisms, allowing full compatibility with
all the existing TCP mechanisms (e.g., connections, retransmissions, and flow control), and
interfacing with application and Internet layers as does any other version of TCP. Also like
BBR, BBR’ only requires changes to the sender side, not to the network nor to the receiver
side.

https://patchwork.ozlabs.org/patch/671069/
2http://nsnam.sourceforge.net/wiki/index.php/User_Information
Shttps://www.nsnam.org/overview/what-is-ns-3/



Validation shows BBR’ behaves as expected under controlled simulation conditions, and
comparison with published BBR results [CCG*16, CCGT17] shows that BBR’ in simulation
performs similarly to BBR in the real world. Performance evaluation comparing BBR’ to
CUBIC over simulated wired and 4G LTE wireless networks shows BBR’ achieves slightly
higher throughputs, but with dramatically lower round-trip times owing to BBR’s ability to
keep bottleneck queue occupancy low.

The rest of this paper is organized as follows: Section 2 gives an overview of BBR, includ-
ing the protocol’s states; Section 3 details our BBR’ implementation, with code explained
for the major functionality; Section 4 validates BBR’ through analysis of protocol behavior
and comparison with previously published BBR results; Section 5 evaluates BBR’ compared
with CUBIC in basic wireless and 4G LTE wireless scenarios; Section 7?7 describes the latest
BBR’ code updates; Section 6 summarizes our conclusions; and Section 7 presents possible
future work.

2 BBR

BBR [CCYJ17a] attempts to run a TCP connection at the bottleneck bandwidth rate with
minimal delay. This happens only when the total data in flight is equal to the bandwidth-
delay product (bandwidth x delay), or BDP.

In order to compute the BDP, BBR determines the minimum round-trip time (R, )
and the maximum delivery rate (called the bottleneck bandwidth, B,,., ) on the path from
the sender to the receiver.

To determine the round-trip time, BBR keeps a window of round-trip time estimates for
the past 10 seconds. R,,;, is then selected as the smallest value in this window.

To determine the bottleneck bandwidth, BBR keeps a window of the estimates of the
receiver delivery rate [CCYJ17b] for the past 10 round-trip times. B, is then selected as
the largest value in this window.

BBR uses B, and R,,;, to determine the number of bytes to have in flight, or the BDP
via BDP = Bae X Roin-

Every time BBR receives a packet acknowledgment, it estimates the round-trip (R;) and
the receiver delivery rate (B;) for that packet.? It then adds R; and B; to the round-trip
time and bandwidth windows, respectively.

BBR paces sending packets at a rate that matches estimated delivery rate at the receiver
(Bmae ) — the pacing rate is BBR’s primary control parameter. However, BBR also computes
the BDP (based on sub-computations of R,,;, and By, ) and allows the TCP congestion
window to grow to a multiple of the BDP BBR then compares the number of bytes in flight
to the BDP.

BBR applies the above behavior (estimate round-trip time and bottleneck bandwidth,
pace packets, and have only a BDP-multiple inflight) at all times, allowing a shared code-base
for all implementation aspects. However, BBR does go through 4 distinct phases that govern
adjustments to the pacing rate and congestion window in order to quickly reach steady state
conditions and to probe for any network changes to bottleneck bandwidth and/or round-trip
time. BBR'’s state transition diagram is shown in Figure 1.

4Actually, a segment, but packet is used synonymously in this document.
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Figure 1: BBR State Transition Diagram

In general:

1.

A BBR flow starts in the STARTUP state, and ramps up its sending rate quickly. It

sets the pacing rate and the congestion window to the BDP x 2, roughly doubling

in(2)’
the bitrate each round-trip time.

. When a BBR flow estimates the network pipe is full (the maximum bandwidth has

not increased by more than 25% for the past 3 round-trip times), it enters the DRAIN
state to drain the built-up queue. While in DRAIN, BBR reduces the pacing rate to
In(2

Binaz X T)v but keeps the congestion window high. BBR keeps draining long enough

to remove the built-up queue, then enters PROBE_BW.

In steady state, a BBR flow primarily uses the PROBE_BW state, sending at the
bottleneck rate, but repeatedly probing and attempting to fully utilize and additional
network bandwidth, all while maintaining a small, bounded queue. PROBE_BW does
this by cycling through a series of 8 gain values:

[1.25,0.75,1,1,1,1, 1, 1]

where the gain values are applied as multiples to the bottleneck rate. Each cycle phase
lasts for one round-trip time. For example, when the gain is 1.25, BBR deliberately
sends 25% more packets than the BDP for one-round trip time. If B,,,, increases prior
to this phase, the BDP and thus overall sending rate increases correspondingly, but if
B is unchanged, the gain of 0.75 in the subsequent phase drains any queue build
up caused by the previous higher gain.

If BBR has not received an RTT sample that matches or decreases the minimum
round-trip time (R,,;, ) for 10 seconds, then it briefly enters the PROBE_RTT state
to quickly greatly reduce the packets inflight (by 98%) to re-probe the path’s two-
way propagation delay. The BBR flow stops probing after one round-trip time or 200
milliseconds, whichever is greater.

. When a BBR flow exits the PROBE_RTT state, if the full bandwidth estimate of the

pipe has been reached, then it enters PROBE_BW:; otherwise, it enters STARTUP to
try to re-fill the pipe.
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Figure 2: Overview of BBR’ Control Flow

3 BBR’

BBR’ (pronounced BBR-prime) is an implementation of BBR for ns-3.

This section (and all results in Section 4 and Section 5) are current as of BBR’ version
1.6.

The most recent changes to the BBR’ code are described in Section ?77?.

3.1 Overview

For a visual overview of BBR’, Figure 2 depicts the control flow for BBR’ in relation
to other components in ns-3 with which BBR’ interacts. The large colored boxes, TCP,
APP and BBR’ represent major components. TCP corresponds to TcpSocketBase and
TcpSocketState objects in ns-3, BBR’ to TcpBbr and the BBR’ state objects, and APP to
any throughput-intensive application layer object (e.g., BulkSendApplication).

Each time TCP receive an ACK, it (Dcalls BBR’s PktsAcked () which computes and up-
dates the congestion window, stores the RTT estimate (for computing R,,;, ), computes and
stores the estimated BW (for computing B, ), @sets the pacing rate via SetPacingRate (),
and (3)sets the TCP congestion window via tcb->m_cWnd.

When an ns-3 virtual device is ready to enqueue a packet, a DataSend () callback @is
made to the App. The App then (H)calls Send () one or more times to give packets to TCP
for transmission.

TCP’s SendDataPacket () (Benqueues the packet for sending, returning to the App with
an indication that packet is on the way.

The packet is actually transmitted based on the pacing rate where TCP sets an ns-3 timer
that (Dtriggers PacePackets () at the pacing interval. PacePackets() first (8)invokes BBR’
Send() which records information needed to estimate the BW (in PktsAcked()). Then,
PacePackets() (Q)sends the next packet in the queue via SendDatapacketReal (), resetting
the timer to achieve paced sending.

In terms of code, BBR’ sits at the same software layer as other TCP congestion control
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“flavors”, such as TCP NewReno, TCP Westwood, TCP Vegas, and TCP BIC. This allows
BBR’ flows to use the same TCP code as do all other ns-3 TCP versions — they all share
the same TCP state machine, which allows for establishing connections through a three-
way handshake, retransmissions upon 3 duplicated acknowledgments, flow control through
acknowledgments, and connection termination. Moreover, BBR’ flows can interface with
lower layers, such as the IP layer, without requiring special code.

Where the TCP flavors, such as BBR’, primarily differ is after a connection is established
and the congestion control mechanism takes effect. As of version 3.26, ns-3 separates the TCP
base class (TcpSocketBase) from the TCP congestion control class (TcpCongestionOps).”
This allows the base class to maintain important TCP variables (e.g., the window of data
segments) while the sub-classes of TcpCongestionOps can specify their individual responses
to congestion (i.e., their congestion control algorithms). All operations that are delegated
to congestion control are contained in the class TcpCongestionOps. This class mimics the
Linux tcp_congestion_ ops structure, defining the methods shown in Listing 1.

Listing 1: TepCongestionOps Methods

// Gel name of congestion control algorithm
virtual std::string GetName() const;

virtual uint32_t GetSsThresh(Ptr<const TcpSocketState> tcb,
uint32_t bytesInFlight);

// Change window during congestion avoidance .
virtual void IncreaseWindow(Ptr<TcpSocketState> tcb,
uint32_t segmentsAcked);

// Copy congestion control algorithm across socket (book—keeping).
virtual Ptr<TcpCongestionOps> Fork();

// Called every time ACK is received (optional).
virtual void PktsAcked(Ptr<TcpSocketState> tcb,
uint32_t segmentsAcked, const Time& rtt);

// Called before changing congestion state (mimics Linuz, optional).
virtual void CongestionStateSet (Ptr<TcpSocketState> tcb,
const TcpSocketState::TcpCongState_t newState);

3.2 BBR’ Class Definition

For syntax convention, BBR’ variables use snake_case (e.g., rtt_window), BBR’ methods use
camelCase (e.g., changeState() ), and BBR’ attributes are prefixed with m_ (e.g., m_state).
BBR’ also defines the namespace bbr used for BBR’-specific data structures and con-
stants.
BBR’ defines the protocol states as an enum in a separate namespace, as shown in List-
ing 2. STARTUP_STATE, DRAIN_STATE, PROBE_BW _STATE, and PROBE_RTT_STATE
correspond to the respective BBR states (see Section 2).

5This modularity is similar to that in Linux.
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Listing 2: BBR’ Protocol States

namespace bbr {

enum bbr_state {
UNDEFINED_STATE=-1,
STARTUP_STATE,
DRAIN_STATE,
PROBE_BW_STATE,
PROBE_RTT_STATE,

s

BBR’s major parameters are defined via the constants shown in Listing 3. The parameters
are fairly self-explanatory based on the BBR specification (see Section 2).

Listing 3: BBR’ Constants

namespace bbr {
const Time INIT_RTT = Time (10000000); // Nanoseconds (.010 sec).

const double INIT_BW = 6.0; // Mb/s.
const int RTT_WINDOW_TIME = 10; // In seconds.
const int BW_WINDOW_TIME = 10; // In RTTs.
const int MIN_CWND = 4; // In packets.
const float PACING_FACTOR = 1.0; // For pacing tuning.
// PROBEBW state :
// Gain rate when BW probing: [1.25, 0.75, 1, 1, 1, 1, 1, 1]
const float STEADY_FACTOR = 1.0; // Steady rate adjustment .
const float PROBE_FACTOR = 0.25; // Add when probe.
const float DRAIN_FACTOR = 0.25; // Decrease when drain.
// STARTUP state :
const float STARTUP_THRESHOLD = 1.25; // Threshold to exit STARTUP.
const float STARTUP_GAIN = 2.89; // Roughly 2/In(2).
// To enter PROBERTT state:
const float RTT_NOCHANGE_LIMIT = 10; // In seconds.
}

BBR’ defines the structure in Listing 4 for the book-keeping used in estimating the
receiver delivery rate (bottleneck bandwidth) at the sender. The BBR’ class definition
records a packet_struct for each packet sent and received. BBR’ computes the bottleneck
bandwidth in PktsAcked() (see Section 3.4) and stores the result in a struct bw_struct.
See Section 3.3 for details on the bandwidth estimation algorithm.

Listing 4: BBR’ Bandwidth Estimation Structure

namespace bbr {
// Structure for tracking TCP window for estimating BW.
struct packet_struct {

SequenceNumber32 acked; // Last sequence number acked.
SequenceNumber32 sent; // Next sequence number sent.
Time time; // Time sent.

int delivered; // Delivered bytes.

};
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// Structure for storing BW estimates.
struct bw_struct {

Time time; // Time stored.
int round; // Virtual time stored.
double bw_est; // Bandwidth estimate .

};

The main BBR’ class definition shown in Figure 5, is, as described above, derived from
the ns-3 class TcpCongestionOps.

The attributes from Lines 3-20 are primarily to manage the protocol state and the
bandwidth and round-trip time windows over time. The attributes mmin_rtt_change and
m_bytes_in_flight are used to determine when to enter PROBE_RTT and exit PROBE_RT'T,
respectively. The attribute m_packet_conservation, is used to modulate the congestion
window during Fast Recovery. The attributes m_in retrans_seq and m_retrans_seq are
used to ignore retransmission sequences when doing bandwidth estimations. The attributes
m_round, m_delivered, and m_next_round delivered are used for computing packet-timed
RTTs (versus wall-clock RTTs).

The friend class declarations from Lines 23-28 are to support the state machine and
states that control the protocol behavior. See Section 3.8 for details.

The constructor TcpBbr () initializes parameters, mostly setting the round-trip time and
bandwidth windows to zero length and the protocol state to STARTUP_STATE. Other param-
eters (e.g., m_pacing gain), are all zeroed.

The method Fork() is only for ns-3 internal functionality, mechanically making a copy
of the Object. Similarly, the ns-3 base class TcpCongestionOps requires definition of the
methods IncreaseWindow() and GetSsThresh(), but these methods perform no meaningful
functionality in BBR’ since the congestion window is manually controlled when sending (see
Section 3.5).

The methods PktsAcked (), Send () and CongestionStateSet () have the primary congestion-

response duties, and are described in Section 3.4, Section 3.5, and Section 3.6, respectively.
The private methods getRTT (), getBW(), cullRTTwindow (), cullBWwindow (), getBDP ()
and updateTargetCwnd (), provide support for PktsAcked() and Send() (see Section 3.7).
The private method checkProbeRTT () checks if BBR’ should transition to the PROBE_RTT
state.

Listing 5: BBR’ Class Definition (TcpBbr)
class TcpBbr : public TcpCongestionOps {

protected; // Attributes.

double m_pacing_gain; // Scale estimated BDP for pacing .
double m_cwnd_gain; // Scale estimated BDP for cwnd.

int m_round; // For recording wvirtual RTT time.
int m_delivered; // For computing virtual RTT rounds.
int m_next_round_delivered; // For computing virtual RTT rounds.

std::map<Time, Time> m_rtt_window;// For computing min RTT.
std::vector<bbr::bw_struct> m_bw_window; // For computing maz BW.
std::vector<bbr::packet_struct> m_pkt_window; // For est BW frm ACKs.




uint32_t m_bytes_in_flight; // Bytes in flight (in socket base).

Time m_min_rtt_change; // Last time min RTT changed.
Time m_packet_conservation; // Time to stop modulation .
bool m_in_retrans_seq; // True if in retrans seq.
SequenceNumber32 m_retrans_seq; // Retrans seq end.
BbrStateMachine m_machine; // State machine.
BbrStartupState m_state_startup; // STARTUP state.
BbrDrainState m_state_drain; // DRAIN state .

BbrProbeBWState m_state_probe_bw;// PROBEBW state .
BbrProbeRTTState m_state_probe_rtt; // PROBERTT state.

public: // Friends.
friend class BbrState;
friend class BbrStartupState;
friend class BbrDrainState;
friend class BbrProbeBWState;
friend class BbrProbeRTTState;
friend class BbrStateMachine;

public: // Methods.
// Default constructor.
TcpBbr () ;

// On receiving ack:

// — update congestion window

// — store RTT

// — compute and store estimated BW

// — compute and set pacing rate

virtual void PktsAcked(Ptr<TcpSocketState> tcb, uint32_t packets_acked,
const Time& rtt);

// Before sending packet :

// — Record information to estimate BW

virtual void Send (Ptr<TcpSocketBase> tsb, Ptr<TcpSocketState> tcb,
SequenceNumber32 seq, bool isRetrans);

// Copy BBR’ congestion control across socket.
Ptr<TcpCongestionOps> Fork();

// BBR’ ignores calls to increase window.
void IncreaseWindow(Ptr<TcpSocketState> tcb, uint32_t segmentsAcked);

// BBR’ does mnot use ssthresh , so ignored.
uint32_t GetSsThresh(Ptr<const TcpSocketState> tcb,
uint32_t bytesInFlight);

private: // Methods.
double getBDP() const; // Return bandwidth—delay product (in Mbits).

Time getRTT() comnst; // Return RTT (min of window, in seconds).
double getBW() const; // Return bandwidth (max of window, in Mb/s).
void cullBWwindow() ; // Remove old BW estimates (10+ RTTs).

void cullRTTwindow() ; // Remove old RTT estimates (10+ sec).

void updateTargetCwnd();// Compute target TCP cwnd.
bool checkProbeRTT() ; // Check if should enter PROBERTT state
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3.3 Bandwidth Estimation

In order to obtain an estimate of the bottleneck bandwidth, BBR’ infers the receiver’s
delivery rate at the sender using an algorithm based on Cheng et al. [CCYJ17b]. Broadly,
the BBR’ bandwidth estimation algorithm works as follows:

e When sending a packet, BBR’ (and TCP, in general) has a window of not-yet acknowl-
edged packets [1...n], with W, representing the latest packet successfully acknowledged
and Wy the next packet to be sent. i.e., A window like: W, [W,41.. Ws_1] Wi,

e For each packet W, BBR’ sends, BBR’ records Wy, W, and the current time, storing
this information in a 3-tuple, one for each outstanding packet.

e When an acknowledgment for a packet arrives, BBR’ computes how many bytes have
been successfully delivered at the receiver since the packet was sent as well as the
elapsed time (in seconds) since it was sent.

e This, in turn, is used to estimate the bandwidth at time t’:

by = ot (1)

where the units are bytes per second.

e Note, since TCP has ambiguous ACKs during retransmissions, BBR’ skips bandwidth
estimates for retransmitted sequence ranges (see Section 4.2 of Cheng et al. [CCYJ17b]).

3.4 PktsAcked()

Bbr: :PktsAcked() does the main “work” in BBR’, computing parameters necessary for
congestion control.

In general, when a TCP BBR’ session receives a TCP ACK, ns-3 calls Bbr: :PktsAcked (),
providing an estimate of the round-trip time in the parameter rtt a pointer to the TCP
transmission control block (tcb). BBR’ updates the congestion window, taking care if in
Fast Recovery or RTO. The RTT is stored (used for computing R,,;, ). The bandwidth is
estimated (used for computing By, ). And the pacing rate is computed and set in the TCP
transmission control.

Listing 6 depicts the BBR’ implementation of Bbr: :PcktsAcked(). Note, for this code
listing and all subsequent listings, some non-essential functionality has been removed (e.g.,
logging functions and some error checking) to improve readability. See the associated git
repository for the complete code [Clal§].

Lines 12-28 show the congestion window modifications. If in Fast Recovery, BBR’ ensures
packet conservation on the first round of recovery, and sends at no more than twice the

10
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current delivery rate on later rounds while still in recovery. If not in Fast Recovery, BBR’
computes the target congestion window (roughly, the BDP - see Listing 12).

Lines 34-37, check if the new RT'T estimate coming in is less than the previous minimum.
If so, it notes the time. This impacts when BBR’ might enter the PROBE_RTT state (see
Section 3.8).

Line 40 stores the round-trip time estimate in a window (a vector m_rtt_window ), which,
based on the BBR specification [CCYJ17al, stores the past 10 seconds worth of round-trip
time estimates.

In Line 43, if this is the first RTT received by the BBR’ session, the state machine is
updated to schedule an ns-3 timer (see Section 3.8 for details on update()).

Lines 47-52 compute the virtual (non-wall-clock) time tracked by the round (m_round)
giving a count of “packet-timed” round-trips, as per the BBR specification [CCYJ17a).
Packet-timed round trips are computed by recording state as a “sentinel” when a packet
goes out, and then when it is ACKed, that provides a round-trip time (round).

Lines 60-62 check if the incoming ACK is less than the first (and the smallest, since
the list is sorted) in the bandwidth estimation window (m_est window). This primarily
happens during a retransmission sequence, but can also happen if the TcpSocketBase method
SendPendingData() is invoked without going through the BBR’ Send () method that records
the latest ACK information for the outgoing packet (see Section 3.5). When this happens,
BBR’ is unable to determine a bandwidth estimate so it is ignored (see Section 3.9.2 for
details on pacing).

Lines 65-75 find the matching ACK in the bandwidth estimation window and then remove
all entries up to and including this one.

Lines 77-82, if not in a retransmission sequence, compute the estimated delivery rate at
the receiver based on the time elapsed between sending a packet and it’s ACK and the amount
of data acknowledged in the interim. See Section 3.3 for a description of the algorithm.

BBR’ stores the bandwidth estimate (bw_est) in a window (m_bw_window, a map that
records the time-bandwidth pair), which, based on the BBR specification [CCYJ17a|, in-
cludes 10 round-trip times worth of estimates.

Lastly, BBR’ computes the pacing rate, adjusted by the gain (Line 92), and then sets
the pacing rate (Line 93) in the TCP socket state (see Section 3.9.2 for details).

Listing 6: TcpBbr::PktsAcked()

// On receiving ack:

// — update congestion window

// — store RTT

// — compute and store estimated BW

// — compute and set pacing rate

void TcpBbr::PktsAcked(Ptr<TcpSocketState> tcb, uint32_t packets_acked,
const Time &rtt) {

nrrrrrysyiss
// UPDATE TCP CONGESTION WINDOW

// If in Fast Recovery, target cwnd was set in CongestionStateSet ().
if (tcb->m_congState == TcpSocketState::CA_RECOVERY) {
// If in first RTT of Fast Recovery, modulate cwnd.

11
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if (m_packet_conservation > Simulator::Now()) {
if ((m_bytes_in_flight + bytes_delivered) > m_cwnd)
m_cwnd = m_bytes_in_flight + packets_acked * 1500;
}
} else {
// Not in Fast Recovery, so re—compute target cwnd.
updateTargetCwnd () ;
}

// If growing cwnd, do so conservatively.
if (tcb -> m_cWnd < m_cwnd)
tcb -> m_cWnd = tcb -> m_cWnd + bytes_delivered;

else
// If shrinking cwnd, adjust immediately.
tcb -> m_cWnd = m_cwnd;

L1111
// STORE RTT

// See if changed minimum (track to decide when to PROBERTT).
Time now = Simulator::Now();
Time min_rtt = getRTT();
if (rtt < getRTT())
m_min_rtt_change = now;

// Add current RTT to window.
m_rtt_window.push_back(rtt);

// Upon first RTT, call update() to initialize timer.
if (m_rtt_window.size() == 1)
m_machine.update () ;

// Update packet—timed RTT.

m_delivered += tcb->m_segmentSize;

auto packet = m_pkt_window.begin();

if (packet.delivered >= m_next_round_delivered) {
m_next_round_delivered = m_delivered;
m_round++;

}

A A IV a4
// ESTIMATE BW.

SequenceNumber32 ack = tcb->m_lastAckedSeq; // W.s
now = Simulator::Now(); /) W_t’

// I1f ACK earlier than first , unknown when sent so ignore.
auto first = m_bw_window.begin()->sent;
if (ack < first)

return; // Nothing more to do.

// Find newest ACK in window, <= current. Note, window is sorted.

bw_struct packet;

for (auto it = m_bw_window.begin(); it != m_bw_window.end(); it++)
if (it->sent <= ack) // W_a
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68 packet = *xit;
69
70| // Remove all ACKs <= current from window.

71 for (unsigned int i=0; i < m_pkt_window.size(); )

72 if (m_pkt_window[i].sent <= packet.sent)
73 m_pkt_window.erase(m_pkt_window.begin() + i);
| else

7
75 i++;
7

7 // Estimate BW: bw = (W.s — W.a) / (Wt~ — W_t)

78 if (!m_in_retrans_seq) {

79 double bw_est = (ack - packet.acked) /

80 (now.GetSeconds () - packet.time.GetSeconds());
81 bw_est *= 8; // Convert to b/s.

82 bw_est /= 1000000; // Convert to Mb/s.

83

84 // Add current <Time,BW> to window.

85 m_bw_window[now] = bw_est;

86 }

Y A a4
so| // COMPUTE AND SET PACING RATE.

90
91 // Set pacing rate (in Mb/s), adjusted by gain.
92 double pacing_rate = getBW() * m_pacing_gain;
93 tsb -> SetPacingRate(pacing_rate);

oa| ¥

3.5 Send()

In general, before a TCP BBR’ session sends a packet, ns-3 calls Bbr::Send(). Send()
basically stores information about the outgoing sequence and latest ACK so it can be used
to compute the BW estimate in PktsAcked().

Listing 7 shows the BBR’ implementation of Bbr: :Send ().

Line 6 records the number of bytes in flight which is used in STARTUP to decide when
to exit that state.

Lines 9-1st:bbr-snd-retrans-b do book-keeping to note the start of a retransmission se-
quence.

Lines 14-21, if not in a retransmission sequence, BBR’ does some book-keeping to update
the bandwidth estimation data (see Section 3.3 for details on the algorithm).

Listing 7: TcpBbr::Send()

// — Record information to estimate BW
void TcpBbr::Send(Ptr<TcpSocketBase> tsb, Ptr<TcpSocketState> tcb,
SequenceNumber32 seq, bool isRetrans) {

\
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5 // Get the bytes in flight (needed for STARTUP).
6 m_bytes_in_flight = tsb -> BytesInFlight();

~

13




00 ~ [=2) t

10

11

12

// If retransmission , start sequence.
if (isRetrans) {
m_in_retrans_seq = true;
m_retrans_seq = seq;

}

// If not in retrans sequence, record info for BW est.
if (!m_in_retrans_seq) {
// Gel last sequence number acked.
bbr::packet_struct p;
p.acked = tcb -> m_lastAckedSeq;

p.-sent = tcb -> m_nextTxSequence;
p.-delivered = m_delivered;
m_pkt_window.push_back(p);

3.6 CongestionStateSet()

The CongestionStateSet () method, in general, performs calculations specific to congestion
control algorithm as the protocol changes states. Ns-3 manages the states: CA_OPEN (nor-
mal), CA_DISORDER (normal, but has seen some SACKs or dupACKs), CA_RECOVERY
(in Fast Recovery) and CA_LOSS (in RTO).

BBR’s CongestionStateSet () method is shown in Listing 8.

When modifying the congestion window, BBR’ sets the member attribute m_cwnd, actu-
ally changing the TCP congestion window in PktsAcked() (see Section 3.4).

When entering Fast Recovery (CA_LRECOVERY) or an RTO (CA_LOSS), BBR’ saves
the current congestion window as the last known “good” value into m_prior_cwnd. When
BBR’ later exits either state, it restores the congestion window to this value.

During an RTO (entering CA_LOSS), BBR’ minimizes the congestion window to 1.

When entering Fast Recovery (CA_RECOVERY), BBR’ reduces the congestion window
to exactly the number of bytes in flight, and modulates the congestion window to not grow
too quickly for one round-trip time (controlled by m_packet_conservation).

Listing 8: TcpBbr::CongestionStateSet()

// Events/calculations specific to BBR’ congestion state.
void TcpBbr::CongestionStateSet(Ptr<TcpSocketState> tcb,
const TcpSocketState::TcpCongState_t new_state) {

auto old_state = tcb->m_congState;

// Enter RTO —> minimal cwnd.

if (new_state == TcpSocketState::CA_LOSS) {
m_prior_cwnd = m_cwnd;
m_cwnd = 1;

}

// Enter Fast Recovery —> save cwnd, modulate for 1 RTT.
if (new_state == TcpSocketState::CA_RECOVERY) {
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14 m_prior_cwnd = m_cwnd;
15 m_cwnd = m_bytes_in_flight + 1;

16 m_packet_conservation = Simulator::Now() + getRTT();

17 }

18

w| // Exzit RTO or Fast Recovery ——> restore cwnd.

20 if ((old_state == TcpSocketState::CA_RECOVERY ||

21 old_state == TcpSocketState::CA_LOSS) &&

22 (new_state != TcpSocketState::CA_RECOVERY &&

2 new_state != TcpSocketState::CA_LOSS)) {

24 m_packet_conservation = Simulator::Now(); // Stop packet conservation

if (m_prior_cwnd > m_cwnd)
6 m_cwnd = m_prior_cwnd;

3.7 Support Methods

BBR’ has several methods to support PktsAcked() and Send().

Listing 9 shows getBDP () that computes and returns the bandwidth-delay product (BDP).
In most cases, the BDP computation is simply the maximum observed bandwidth multiplied
by the minimum observed round-trip time. However, in the case of the first call to compute
the BDP (see Section 3.5), there is not yet an estimate for round-trip time nor the band-
width, so each is given a small, preset value (see Section 4.2.1 of [CCYJ17a]). All subsequent
calls use the round-trip times and bandwidth estimates obtained after the first ACK.

Listing 9: TcpBbr::getBDP()

// Return bandwidth—delay product (in Mbits).
double TcpBbr::getBDP() const {

N

Time rtt = getRTT();
if (rtt.IsNegative())
rtt = bbr::INIT_RTT;

71 double bw = getBW();
8 if (bw < O)
9 bw = bbr::INIT_BW;

11 return (double) (rtt.GetSeconds() * bw);

Listing 10 shows getRTT() that computes and returns the round-trip time. In most
cases, the round-trip time is computed as the minimum value in the round-trip time estimate
window (m_rtt_window). The exception is when there are no round-trip time estimates yet,
and then -1.0 is returned.

Listing 10: TcpBbr::getRTTY()

ol // Return round—trip time (minimum of window, in seconds).
1| // Return —1 if no RTT estimates yet.
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Time TcpBbr::getRTT() const {
Time min_rtt = Time::Max();

if (m_rtt_window.size() == 0)
min_rtt = Time(-1.0); // If no RTT estimates yet.
else
// Find minimum RTT in window.
for (auto it = m_rtt_window.begin(); it != m_rtt_window.end(); it++)
min_rtt = std::min(min_rtt, *it);

return min_rtt;

Listing 11 shows getBW () that computes and returns the bandwidth (BW). In most cases,
the BW is computed as the maximum value in the BW estimate window (m_bw_window). The
exception is when there are no BW estimates yet and -1.0 is returned.

Listing 11: TcpBbr::getBW()

// Return bandwidth (mazimum of window, in Mb/s).
// Return —1 if no BW estimates yet.
double TcpBbr::getBW() const {
double max_bw = 0;
if (m_bw_window.size() == 0)
max_bw = -1.0; // If no BW estimates yet.
else
// Find max BW in window.
for (auto it = m_bw_window.begin(); it != m_bw_window.end(); it++)
max_bw = std::max(max_bw, it->second) ;
return max_bw;
}

Listing 12 shows updateTargetCwnd() that computes the target congestion window
(called by PktsAcked(), see Section 3.4). Basically, the target congestion window (m_cwnd)
is set to the BDP, modified by the congestion window gain (m_cwnd_gain). A final check
makes sure the congestion window is not too small.

Listing 12: TcpBbr::updateTargetCwnd()

// Compute target TCP cwnd (m-cwnd) based on BDP and gain .
void TcpBbr::updateTargetCwnd () {

double bdp = getBDP ();

m_cwnd = bdp * m_cwnd_gain;

m_cwnd = (m_cwnd * 1000000 / 8); // Mbits to bytes.

// Make sure cwnd not too small (roughly, 4 packets).

if ((m_cwnd / 1500) < bbr::MIN_CWND)

m_cwnd = bbr::MIN_CWND * 1500; // In bytes.

}

Listing 13 shows checkProbeRTT () that determines if BBR’ should enter the PROBE_RTT
state. Basically, if currently in the PROBE_BW state and the minimum RTT has not
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changed in RTT_NOCHANGE_LIMIT second (default is 10), this method returns true. See Sec-
tion 3.8 for how this method is used in state transitions.

Listing 13: TcpBbr::checkProbeRTT()

ol // Return true if should enter PROBERTT state
| bool TcpBbr::checkProbeRTT() {

// If in PROBEBW and min RTT hasn’t changed in 10 seconds.

4 Time now = Simulator::Now();

5 if (m_machine.getStateType() == bbr::PROBE_BW &&

6 (now.GetSeconds() - m_min_rtt_change.GetSeconds()) >
7 RTT_NOCHANGE_LIMIT) {

8 m_min_rtt_change = now;

9 return true;

10 T

12 return false;

3.8 BBR’ States

BBR’ transitions through the BBR states as specified in Section 2, with the slight excep-
tion of transitions to and from the PROBE_RTT state. BBR’ only transitions to/from the
PROBE_BW state, whereas BBR may transition to the PROBE_BW state at any time and
may also return to the STARTUP state under some conditions (see Future work in Section 7).

A state machine class, BbrStateMachine, drives BBR’ through state transitions and
executions, shown in Listing 14.

Listing 14: BbrStateMachine.h
)| class BbrStateMachine : public Object {

N =

public:
3 static Typeld GetTypeId(); // Gel type id.
4 std::string GetName() const; // Get name of object.
5/  BbrStateMachine () ; // Default constructor.

6 BbrStateMachine (TcpBbr *owner); // Constructor with BBR’ owner.
bbr_state getStateType() const; // Gel type of current state.

s  void changeState(BbrState *p_new_state); // Change state.

of void update(); // Update by executing current state.
10
11| private:

12| BbrState *m_state; // Current state.

13|  TcpBbr *m_owner; // BBR’ flow that owns machine.
14 ¥

~

The state machine update () method, shown in Listing 15, is invoked every RT'T. First,
BBR’ checks if it should enter the PROBE_RT'T state, as detailed in Listing 13. Then, the
current state is executed, followed by book-keeping to update (cull) the round-trip time and
bandwidth windows. Lastly, BBR’ schedules the next update () method call, typically once
per RTT (or when the first ACK arrives, providing the first RTT).
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Listing 15: BbrStateMachine::update()

// Update by executing current state.
void BbrStateMachine::update () {

// Check if should enter PROBERTT.
if (m_owner -> checkProbeRTT())
changeState (&m_owner -> m_state_probe_rtt);

// Ezecute current state.
m_state -> execute();

// Cull RTT window.
m_owner -> cullRTTwindow() ;

// Cull BW window.

m_owner -> cullBWwindow() ;

// Schedule next event (if we can).
Time rtt = m_owner -> getRTT();
if ('rtt.IsNegative())
Simulator::Schedule(rtt, &BbrStateMachine::update, this);
// else update() called in PktsAcked() upon getting first ACK.

The state machine changeState () method, shown in Listing 16, calls exit () on the old
state, changes the state (m_state), and calls enter () on the new state.

Listing 16: BbrStateMachine::changeState()

// Change current state to new state.
void BbrStateMachine::changeState(BbrState *new_state) {

m_state -> exit(); // Ezit old state.
m_state = new_state; // Change lo new state.
m_state -> enter(); // Enter new state.

}

The state machine drives classes derived from the base BbrState class shown in Listing 17.

Listing 17: BbrState.h
class BbrState : public Object {

public:
static Typeld GetTypeId(); // Get type id.
virtual std::string GetName() const; // Gel name of object.
BbrState () ; // Default constructor.
BbrState(TcpBbr *owner); // Constructor with BBR’ owner.
virtual “BbrState(); // Destructor.
virtual bbr_state getType() comnst=0; // Get state tlype.
virtual void enter(); // When state first entered.
virtual void execute()=0; // When state updated.
virtual void exit (); // When state exited.
protected:
TcpBbr *m_owner; // BBR’ flow that owns state.
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BBR’ derives a separate class for each state type: BbrStartupState, BbrDrainState,
BbrProbeBWState, and BbrProbeRTTState. For brevity, those class definitions are not shown
here.

BBR’ STARTUP is intended to act much like TCP slowstart, quickly ramping up to
the bottleneck bitrate. It does this by setting the gain rate so as to approximately double
the bandwidth each round-trip time.

Listing 18 depicts the actions BBR’ takes when entering the STARTUP state, which is

to set the gain rates to ﬁ, as per the BBR specification [CCYJ17a].

Listing 18: BbrStartupState::enter()

// Invoked when state first entered.
void BbrStartupState::enter () {
// Set gains to 2/Iln(2).
3 m_owner -> m_pacing_gain = bbr::STARTUP_GAIN;
1 m_owner -> m_cwnd_gain = bbr::STARTUP_GAIN;

N

s}

When operating in STARTUP (BbrStartupState::execute()), shown in Listing 19,
BBR’ checks if 3+ consecutive bandwidth estimates have increased by less than 25%. If so,
BBR’ exits the STARTUP state by setting the next state to be the DRAIN state. Otherwise,
BBR’ remains in the STARTUP state.

Listing 19: BbrStartupState::execute()

// Invoked when state updated.
void BbrStartupState::execute() {

= o

// Get current BW (new).
| double new_bw = m_owner -> getBW();

of // Still growing?
7 if (new_bw > m_full_bw * bbr::STARTUP_THRESHOLD) {

8 m_full_bw = new_bw;
9 m_full_bw_count = 0;
10 return;

11 }

13 // If 3+ rounds w/out much growth, STARTUP ——> DRAIN.

14 m_full_bw_count++;

15 if (m_full_bw_count >= 3)

16 m_owner -> m_machine.changeState(&m_owner -> m_state_drain);

BBR’ DRAIN is intended to drain the excess queue that was built up during the
STARTUP state as the sending rate was increased beyond the bottleneck rate.

Listing 20 depicts the actions BBR’ takes when entering the DRAIN state, which is
to set the pacing gain rate (m_pacing gain) to @ while maintaining a high cwnd gain

(m_cwnd_gain), as per the BBR specification [CCYJ17a].
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Next, since BBR’ will have over-shot the bandwidth target, BBR’ obtains the lower
target number of inflight bytes. It uses this to determine when to exit the DRAIN state
when executing.

Listing 20: BbrDrainState::enter()

// Invoked when state first entered.
void BbrDrainState::enter () {

// Set gain to 1/[2/In(2)].
m_owner -> m_pacing_gain = 1 / bbr::STARTUP_GAIN;
m_owner -> m_cwnd_gain = bbr::STARTUP_GAIN;

// Gelt BDP for target inflight limit.

double bdp = m_owner -> getBDP();

bdp = bdp * 1000000 / 8; // Convert to bytes.
m_inflight_limit = (uint32_t) bdp;
m_round_count = 0;

}

When operating in DRAIN (BbrDrainState: :execute()), shown in Listing 21, BBR’
checks if DRAIN should exit based on two conditions. The primary condition is to exit
when the number of bytes in flight is less than the limit (computed when DRAIN started).
A secondary condition is after 5 rounds (RTTs). While the BBR’ specification [CCYJ17a]
indicates any built up queue should be drained in one round (RTT), the 1 / STARTUP_GAIN
drain rate means up to 5 RTTs®) are likely required.

Upon exiting, BBR’ enters the PROBE_BW state.

Listing 21: BbrDrainState::execute()

// Invoked when state wupdated.
void BbrDrainState::execute() {

m_round_count++;
// Ezit when byte—in—flight wunder limit OR 5 rounds, whichever is first
if (m_owner -> m_bytes_in_flight < m_inflight_limit ||

m_round_count == 5)
m_owner -> m_machine.changeState(&m_owner -> m_state_probe_bw);

BBR’ PROBE_BW periodically (once every 8 RT'Ts) increases the data rate to see if
the delivery rate (BW) has increased.

Listing 22 depicts the actions BBR’ takes when entering the PROBE_BW state — namely,
to pick a random, non-“low” phase for the gain cycles. As described in the BBR specifica-
tion [CCYJ17a], this randomization is to avoid having BBR flows that enter PROBE_BW
simultaneously all having a the same “high” gain. Based on the phase, the m_pacing gain
is set accordingly, followed by the m_cwnd_gain.

Listing 22: BbrProbeBWState::enter()

—289__ is about 4.5

6The time to drain the overshoot, (13'4)
2.89
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ol // Invoked when state first entered.

1| void BbrProbeBWState::enter () {

2| // Pick random cycle phase (except “low”) to start to avoid
3 // flows that enter PROBEBW at same time all being “high”.
4 do {

5 m_gain_cycle = rand() % 8;

6 Y} while (m_gain_cycle == 1); // Phase 1 is 7low” cycle.

8 // Set pacing gain according to cycle.

of if (m_gain_cycle == 0) // Phase 0 is "high” cycle.

10 m_owner -> m_pacing_gain = bbr::STEADY_FACTOR + bbr::PROBE_FACTOR;
11 else

12 m_owner -> m_pacing_gain = bbr::STEADY_FACTOR;

13 m_owner -> m_cwnd_gain = 2 * bbr::STEADY_FACTOR;

14 }

When operating in PROBE_BW (BbrProbeBWState: :execute()), shown in Listing 23,
as per the BBR specification [CCYJ17a], BBR’ cycles through m_gain rates, looking for
potential bandwidth changes. The increase (“high”) probes for more bandwidth followed
immediately by a decrease (“low”) to drain off any queue occupancy incurred if there was
no increase and then 6 periods of steady state (“stdy”).

Listing 23: BbrProbeBWState::execute()

// Invoked when state

m_owner -> m_gain
5 else if (m_gain_cycle
m_owner -> m_gain
else
m_owner -> m_gain

// Move to next cycle,
m_gain_cycle++;

updated .

il void BbrProbeBWState::execute() {

2 // Set gain rate: [high, low, stdy, stdy, stdy, stdy, stdy, stdy]
3 if (m_gain_cycle == 0)

1

bbr:: STEADY_FACTOR + bbr::PROBE_FACTOR;
1
bbr:: STEADY_FACTOR - bbr::DRAIN_FACTOR;

bbr:: STEADY_FACTOR;

wrapping .

if (m_gain_cycle > 7)
m_gain_cycle = 0;

BBR’ PROBE_RTT is intended to: 1) check for a new minimum RTT that perhaps
cannot be seen by the sender at the BDP rates, and 2) provide fairness for simultaneous
BBR’ flows that arrive later.

Listing 24 depicts the actions BBR’ takes when entering the PROBE_RTT state. Specif-
ically, BBR’ sets the pacing gain (m_pacing gain) and cwnd gain (m_cwnd gain) to a steady
value (the actual sending rate is set in Send() — see Listing 7). Then, BBR’ computes how
long to remain in PROBE_RTT, either one RTT or 0.2 seconds, whichever is larger.

Listing 24: BbrProbeRTTState::enter()

of // Invoked when state first entered.
il void BbrProbeRTTState::enter () {
// Set gain (Send() will minimize window);

2
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m_owner -> m_pacing_gain = bbr::STEADY_FACTOR;
1 m_owner -> m_cwnd_gain = bbr::STEADY_FACTOR;

of // Schedule when exzit: mazx (0.2 seconds, min RTT).
71 Time rtt = m_owner -> getRTT();
8 if (rtt.GetSeconds() > 0.2)

9 m_probe_rtt_time = rtt;

10 else

11 m_probe_rtt_time = Time (0.2 * 1000000000) ;

12 m_probe_rtt_time = m_probe_rtt_time + Simulator::Now();

13 }

When operating in PROBE_RTT (BbrProbeRTTState: : execute () ), shown in Listing 25,
BBR’ merely checks whether enough time has elapsed (comparing the current time to
m_probe_rtt_time). If so, BBR’ changes state back to the PROBE_BW state.

Listing 25: BbrProbeRTTState::execute()

// Invoked when state wupdated.
void BbrProbeRTTState::execute() {

[

// 1f enough time elapsed, PROBERTT —> PROBEBW.

Time now = Simulator::Now();

5 if (now > m_probe_rtt_time)

6 m_owner -> m_machine.changeState(&m_owner -> m_state_probe_bw);

~
(-

3.9 NS-3 Code Modifications

While BBR’ was designed to avoid modifications to the existing ns-3 code base as much as
possible, some slight modifications are required to support the unique features required by
BBR. In total, the changes require a total of about 75 new lines of code to three different
files. This section describes the required changes, with patches available for ns-3.27 available
in the associated git repository [Clal8].

3.9.1 Send Support

In order to support controlling the cwnd and pacing rate via BBR’ Send (), the TcpCongestionOps

class needs a slight modification. Specifically, an empty virtual method is added to the class
definition:

Listing 26: Addition to TepCongestionOps in tep-congestion-ops.h (line 125)

0 // Enable congestion control—specific Send() functionality

// (invoked in TecpSocketBase:: SendDataPacketReal ()).

virtual void Send(Ptr<TcpSocketBase> tsb, Ptr<TcpSocketState> tcb,
SequenceNumber32 seq, bool isRetrans)

N =

{ /x Emptyx/

and a call to Send() added at the top of TcpSocketBase::SendDataPacketReal() (see
Section 3.9.2):
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Listing 27: Addition to TcpCongestionOps in tcp-socket-base.cc

0

// Hook for congestion control—specific Send() method.
// (Added for BBR’ support.)
m_congestionControl->Send(this, m_tcb, seq, isRetransmission);

1

2

Together, this code hook invokes a Send () method each time a TCP socket sends data, with
BBR’ (and any other TCP flavor that provides a custom Send () method) invoking a custom

Send () that performs appropriate congestion actions before sending (see Listing 7).

An unrelated change is needed to make the TcpSocketBase method BytesInFlight ()

public so that BBR’ can use it in the DRAIN state:

Listing 28: Modification to TcpSocketBase in tep-socket-base.h (line 824)

o/ public:
1 virtual uint32_t BytesInFlight (void) const;

3.9.2 Pacing Support

Packet pacing, indicated as a “must” in the BBR specification [CCYJ17a], requires a some-
what more substantial change to the ns-3 code. In general, packet pacing to support BBR’
in ns-3 is implemented by hijacking the the normal TCP send and, instead of sending the
packet, putting that packet in a queue. Packets are then removed from this queue and sent
with a fixed time-gap (i.e., paced), with the inter-packet time computed from the pacing

rate and controlled by an ns-3 timer.

The pacing rate itself (once computed by BBR’) is stored as an attribute of the TCP
transmission control block (TCB), where basic information is passed between the socket and
the congestion control algorithm. In ns-3, the TCB is contained in the TcpSocketState

class with methods to get and set it.

Listing 29: Addition to TepSocketState in tep-socket-base.h (line 195)

ol protected:

1 double m_pacing_rate; // Pacing rate (in Mb/s).

2

3| public:

1/  void SetPacingRate (double pacing_rate); // Get rate (in Mb/s).
double GetPacingRate () const; // Set rate (in Mb/s).

A structure is created to store the packets queued for pacing:

Listing 30: Addition of pacing structure in tcp-socket-base.h (line 191)

// Structure for tracking packets to send for pacing.
struct tcp_pacing_struct {

N

SequenceNumber32 seq; // Sequence location in TCP buffer.
30 uint32_t maxSize; // Bytes to eztract.
| Dbool withAck; // Include ACK or not.

50}

The SendDataPacket () method is hijacked by first creating the method that does the

actual (“real”) sending:
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Listing 31: Addition to TcpSocketBase in tcp-socket-base.h (line 665)

0 uint32_t SendDataPacketReal (SequenceNumber32 seq, uint32_t maxSize,
1 bool withAck);

A std: :queue is used to store the hijacked packets and an attribute for the next scheduled
SendDataPacketReal () call, stored in an ns-3 event (m_pacing event):

Listing 32: Addition to TcpSocketBase in tep-socket-base.h (line 1087)

o] protected:
1 EventId m_pacing_event; // Pacing event.
2 std::queue<tcp_pacing_struct> m_pacing_packets; // Pacing packets.

The functionality for SendDataPacket () is then replaced with code that stores the packet
rather than sending it:

Listing 33: Addition to TcpSocketBase in tcp-socket-base.cc (line 2671)

ol // If pacing, queue until time to send else send now.

1luint32_t TcpSocketBase::SendDataPacket (SequenceNumber32 seq,

2 uint32_t maxSize, bool withAck) {
3

1

if (m_pacing_rate == 0.0)
return SendDataPacketReal(seq, maxSize, withAck);

of // Store packet.
7 tcp_pacing_struct packet{seq, maxSize, withAck};
8 m_pacing_packets.push(packet);

10 // If no pending event, immediately schedule .

11 if (m_pacing_event.IsExpired())

12 m_pacing_event = Simulator::ScheduleNow(&TcpSocketBase::PacePackets,
this) ;

13
14 // Return size that would have been sent so app knows il ’s scheduled.

15 Ptr<Packet> p = m_txBuffer->CopyFromSequence(maxSize, seq);
16 uint32_t sz = p->GetSize(); // Size of packet

17 return sz;

18] +

Whereas SendDataPacketReal () actually sends the packet after it is pulled off the queue,
effectively doing the work of the original TCP SendDataPacket () method:

Listing 34: Addition to TcepSocketBase in tep-socket-base.ce (line 2741)

ol // Really send the data packet.

1| // Eztract at most mazSize bytes from the TzBuffer al sequence seq,
of // add the TCP header , and send to TcpLjProtocol.

3luint32_t TcpSocketBase::SendDataPacketReal (SequenceNumber32 seq,

4 uint32_t maxSize, bool withAck) {

6 m_congestionControl->Send(this, m_tcb);

s // Rest of the method is the same as SendDataPacket ...

The actual pacing of packets is done by a PacePackets() method that is repeatedly
triggered with an ns-3 timer every inter-packet interval, sending a packet:
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Listing 35: Addition to TcpSocketBase in tcp-socket-base.h (line 1087)

private:
// Send next packet in queue and set timer for subsequent send.
void PacePackets();

Pacing, calling SendDataPacketReal (), is done in PacePackets() via:

Listing 36: PacePackets() addition to tcp-socket-base.cc (line 2800)

// Send next packet in queue and set timer for subsequent send.
void TcpSocketBase::PacePackets() {

// Get next packet to send.
tcp_pacing_struct packet = m_pacing_packets.front();
m_pacing_packets.pop();

// Send it.
SendDataPacketReal (packet.seq, packet.maxSize, packet.withAck);

// Gelt size for computing pacing interval.
double size = packet.maxSize;

// Schedule next send event.
if (m_pacing_rate > 0) {
size *= 8 / 1000000.0; // Conwvert to Mbits.
double delta = size / m_pacing_rate; // Convert to seconds.
delta *= 1000000000; // Convert to nanoseconds.
m_pacing_event = Simulator::Schedule(Time (delta),
&TcpSocketBase::PacePackets, this);

3.9.3 Alternate Configurations

Up to this point, there has been but one configuration for BBR’ presented. However, the
current code base (see the git repository [Clal8]) provides for alternate configurations for
pacing (Section 3.9.3) and the round-trip time used in culling the bandwidth window (Sec-
tion 3.9.3).

Pacing Configurations

BBR’ provides three possible configurations for pacing:

1. TCP_PACING. Packet pacing is done in TCP, as described in this document, and is
used by BBR’. This is the default configuration.

2. APP_PACING. Packet pacing is not done in TCP. BBR’ changes the pacing rate and
still expects packets to be paced, but in this configuration, the application layer
must do the pacing. The git repository [Clal8] application directory provides a
BulkSendApplication that implements application-level pacing.
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3. NO_PACING. Pacing is not done at all. In this configuration, BBR’ behavior changes
slightly. Instead of having a larger cwnd and having the pacing rate control the band-
width, there is effectively no pacing rate and the cwnd instead is used to control the
bandwidth. Thus, the cwnd is set to the BDP (with any needed gain adjustments) as
the sole way of controlling the rate.

Pacing configurations are controlled via PACING_CONFIG, defined in tcp-socket-base.h.
e.g.,

Listing 37: BBR’ Pacing Configurations in tcp-socket-base.h

| // TCP-PACING: Packet pacing is done in TCP (in socket—base.cc).

// APP_PACING: Packet pacing ts NOT done in TCP, only in application .
// NO_PACING: No packet pacing is done (BBR’ adjusts accordingly).
enum enum_pacing_config {TCP_PACING, APP_PACING, NO_PACING};

N

5| const enum_pacing_config PACING_CONFIG = NO_PACING;

Timing Configurations

BBR’ provides two possible configurations for the round-trip time used in culling the band-
width window.

1. PACKET_TIME. Bandwidth window culling is done with a count of “packet-timed”
round-trips, as described in this document, and is used by BBR’. This is the default
configuration.

2. WALLCLOCK_TIME. Bandwidth window culling is done using the wall-clock for tim-
ing. In this configuration, bandwidth estimates that are older than the minimum
round-trip time are removed from the bandwidth window.

Time configurations for bandwidth culling are controlled via TIMING_CONFIG, defined in
tcp-bbr.h. e.g.,

Listing 38: BBR’ Time Configurations in tcp-bbr.h

o // PACKET-TIME — Use packet—time RTT for culling BW window.
1| // WALLCLOCK_TIME — Use wall—clock RTT for culling BW window.
ol enum enum_time_config {WALLCLOCK_TIME, PACKET_TIME};

3
1

const enum_time_config TIME_CONFIG = PACKET_TIME;

3.9.4 Miscellaneous

BBR’ (and BBR) infers both round-trip time and bandwidth from the server side only —
no modifications are needed to the TCP client. However, for testing and evaluation, it may
be useful to record the actual delivery rate on the client. In effect, BBR’ is trying to infer
delivery rate on the sender through the delivery rate estimation algorithm [CCYJ17b], with
the actual delivery rate recorded on the receiver the “ground truth”. One way to record
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delivery data on the client in ns-3 is to add a hook to the code similar to that used for
BBR’ Send (). Specifically, make a slight modification to the TcpCongestionOps class with
an empty Recv():

Listing 39: Addition to TcpCongestionOps in tcp-congestion-ops.h
// Added for BBR’ support.

virtual void Recv (const TcpHeader &tcp_header, Time recv_time,
uint32_t size) { /x Empty %/ }

0

1

2

and add a call to Recv () at the top of TcpSocketBase: :ReceivedData():

Listing 40: Addition to TcpCongestionOps in tcp-socket-base.cc
// Added for BBR’ support.

Time t = Simulator::Now();
m_congestionControl->Recv(tcpHeader, t, p->GetSize());

0

1

2

Together, this code hook invokes a Recv () call each time a TCP socket receives data. Record-
ing timing and data received there can be used to obtain the actual delivery rate for off-line
analysis of performance.

4 Validation

In order to validate BBR’, we first observe BBR’ behavior under a basic bottleneck condition,
examining the behavior of key protocol attributes (See Section 4.1). Next, we compare
BBR’ performance results with BBR performance results published by the BBR originators,
N. Cardwell, Y. Cheng, C.S. Gunn, S.H. Yeganeh and V. Jacobson [CCG*16, CCGT17].
Three scenarios are examined: steady state where the bottleneck bandwidth is unchanging
(Section 4.2), steady state with an abrupt increase in the bottleneck bandwidth (Section 4.3),
and steady state with an abrupt decrease in the bottleneck bandwidth (Section 4.4).

4.1 Basic Bottleneck

A bulk-download over BBR’ was run over a single bottleneck (10 Mb/s, 22 ms RTT, queue
size 100 packets) for 12 seconds, with hooks to record round-trip time estimates, band-
width estimates, and protocol states. Traces were analyzed to measure the bottleneck queue
occupancy and throughput.

BBR’ went through it’s states (see Section 3.8) at the following times:

State Time (seconds)
STARTUP 0.000, 0.134
DRAIN 0.134, 0.200

PROBE_RTT [10.001, 10.205

[ )
[ )
PROBE_BW  [0.200,  10.001)
[ )
PROBE_BW  [10.205, 12.000]

As expected, given the relatively short round-time, BBR’ spends little time in the
STARTUP and DRAIN states (about 150 milliseconds total). Most of the time is spent
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in the PROBE_BW state (about 14.5 out of 15 seconds). Since the base RTT never changes,
BBR’ enters the PROBE_RTT state about 10 seconds in, stays there for 200 milliseconds,
and then returns to the PROBE_BW state.

Figure 3 depicts graphs of other key BBR’ variables. Each graph shows the simulation
time in seconds on the x-axis.

Graph (a) plots the estimated round-trip versus time. The round-trip time spikes initially
during STARTUP as BBR’ overshoots the bottleneck bandwidth and fills the bottleneck
queue, but after draining the queue build-up at about 150 milliseconds the round-trip has
returned to near the minimum of 0.022 seconds. BBR settles into the PROBE_BW state
where the small “spikes” in the round-trip times are due to the gain rate cycling in the
PROBE_BW phase.

Graph (b) shows that the minimum round-trip time, picked out by BBR’ over all round-
trip time estimates over the last 10 seconds, stays fixed near the minimum 0.022 seconds.

Graph (c) plots the estimated bandwidth versus time. The bandwidth estimates during
STARTUP and DRAIN vary between about 0.3 and 9.7 Mb/s, but bandwidth estimates
during PROBE_BW varies between 9.4 and 9.6 Mb/s. Graph (e) shows the accompanying
cumulative density function (CDF) of all the bandwidth estimates.

Graph (d) shows that the maximum bandwidth, picked out by BBR’ over all bandwidth
estimates over the past 10 round-trip times, stays fixed at about 9.7 Mb/s.

Graph (f) plots the bytes inflight versus time. BBR’ sends out bytes based on the
controlled cwnd, which in turn is based on the BDP. The BDP is computed as the maximum
bandwidth (from graph (d)) times the minimum round trip time (from graph (b)). During
STARTUP, the inflight bytes soar past the steady state rate, reduces during DRAIN, then
oscillates during PROBE_BW cycles. At time 10 seconds, the inflight bytes drop as BBR’
enters PROBE_RTT, draining any queue build up and looking for an RTT change.

Graph (g) plots the queue occupancy at the router versus time, depicted in blue since
this is computed from system logs and not by BBR’. The queue fluctuates with the pacing
rate in graph (f) since BBR’ puts additional packets in flight when probing for BW. Since the
congestion window is bound to twice the BDP, the queue fills to a relatively low maximum,
much lower than the queue capacity of 100.

Graph (h) plots the throughput (computed every 50 milliseconds) at the router versus
time, also shown in blue since this is computed from the system logs and not by BBR’. The
throughput quickly ramps up during STARTUP and DRAIN, before settling at a steady rate
of about 9.7 Mb/s from about 150 milliseconds until the end. The one exception is during
PROBE_RTT around 10 seconds in, where the throughput drops for about 200 milliseconds.

4.2 Steady State, No Bandwidth Change

Cardwell et al. published results depicting BBR steady-state behavior (i.e., in state PROBE_BW)
of a 700 ms of a 10 Mb/s BBR flow with a round-trip time of 40 ms, shown in Figure 2 of
[CCGT16] and Figure 4 of [CCGT17]. Figure 4 shows their graph on the left, with a graph
of the performance results for an equivalent BBR’ flow on the right. The BBR graphs were
annotated by the authors to illustrate protocol behavior.

Generally, the performance results for BBR and BBR’ look quite similar, with nearly
the same round-trip times, bandwidths and packets inflight. More specifically, both sets
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Figure 3: Basic BBR’ Protocol Behavior.
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Figure 4: Comparison of BBR (left, from [CCG*17]) with BBR’ (right). Graphs are round-
trip time in blue, inflight in green and delivery rate in red.

of graphs have the same vertical structures resulting from the cycling to determine if the
bottleneck bandwidth has increased. In both scenarios, the bottleneck capacity does not
change, so the increase in the data rate when the pacing gain is 1.25 results in a buildup of
the bottleneck queue and an increase in the round-trip time. The immediate following cycle
with a reduced pacing gain of 0.75 lowers the data rate and drains the queue, before returning
to a gain rate of 1.0 until the next increase. Since the RTT is about 40 milliseconds, these
vertical “spikes” are about 320 (8 x 40 = 320) milliseconds apart.

4.3 Bandwidth Increase

Cardwell et al. published results (Figure 3-top of [CCG*16] and Figure 5-top of [CCG117])
depicting a long-lived BBR 10 Mb/s, 40 ms RTT flow where there is a sudden doubling
of bottleneck capacity at time 20 seconds. Figure 5 shows their graph on the left, with a
graph of the performance results for an equivalent BBR’ scenario with the packets inflight
(middle) and round-trip time (right). Again, the BBR graphs were annotated by the authors
to illustrate protocol behavior.

From the graphs, BBR and BBR’ generally behave the same, detecting the change in
bandwidth at time 20 and quickly doubling the packets in flight to utilize the new found
capacity. For both BBR and BBR/’, the round-trip time stays low, near the channel minimum,
with only occasional increases during gain cycles.
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Figure 6: Comparison of BBR (left, from [CCGT17]) with BBR’ (middle and right). Lines
in green are packets inflight and lines in blue are round-trip time.

4.4 Bandwidth Decrease

Cardwell et al. published results (Figure 3-bottom of [CCG"16] and Figure 5-bottom of
[CCGT17]) of the same flow as in Figure 4.3 where there is a sudden decrease in bottleneck
capacity from 20 Mb/s back to 10 Mb/s at time 40 seconds. Figure 6 shows their graph
on the left, with a graph of the performance results for an equivalent BBR’ scenario with
the packets in flight (middle) and round-trip time (right). As before, the BBR graphs were
annotated by the authors to illustrate protocol behavior.

Again, BBR and BBR’ generally behave the same, with the abrupt decrease in bandwidth
resulting in a marked increase in the round-trip time. BBR and BBR’ both settle into the
new inflight rate after the high bandwidth readings are pushed out of the bandwidth window.
Then, BBR and BBR’ quickly drain the queue and settles down to a new BDP. Note, while
the round-trip time is about 40 milliseconds, BBR and BBR’ both use the packet-timed
round-trip time which tracks the current round-trip time (about 170 milliseconds). Thus, it
takes about 1.7 seconds for the 20 Mb/s maximum bandwidth estimate to time out of the
window and then bring down the resulting BDP.
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4.5 Summary

In summary, observations of BBR’ behavior in a basic, single-bottleneck with known pa-
rameters align as expected, giving some confidence in the implementation. Further visual
comparison of published BBR results with equivalent BBR’ results helps validate the BBR’
implementation in that BBR’ performs similarly to BBR. While the validation has only been
undertaken for the steady-state behavior in the PROBE_BW state, long-lived, throughput
intensive flows by far spend most of their time in this state.

5 Evaluation

This section evaluates BBR’ compared with CUBIC first for a basic wired connection with
the bottleneck at the router (Section 5.1) followed by a basic 4G LTE configuration with the
bottleneck at the eNodeB (Section 5.2).

5.1 Wired

The intent is to represent the canonical congestion scenario of a network constrained by an
interior bottleneck of a router between a client and a server. This typically means a server
connected by a high capacity, modest latency connection to a router near a client (e.g.,
a head-end to a residential PC). The router, in turn, has a lower capacity, lower latency
connection to the client. A throughput intensive flow runs down from the server to the
client.

The topology used is shown in Figure 7. The variables ds and d. represent the one-way
delay from the Server to the Router and from the Router to the Client, respectively. The
variables by and b, represent the bandwidth (capacity) from the Server to the Router and
from the Router to the Client, respectively.

For this evaluation, the network conditions are as follows:

Parameter Value

ds 10 milliseconds
d, 1 millisecond
bs 150 Mbits/s

be 20 Mb/s

packet size 1000 bytes
queue size 60 packets

As indicated in the table, packets are 1000 bytes and the router queue size is 60 packets,
which is about the bandwidth-delay product.
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The scenario is repeated twice — the first time with a single BBR’ flow doing a bulk
download from server to client and the second time replacing the BBR’ flow with a CUBIC
flow. Since ns-3 does not come with a built-in version of TCP CUBIC, the latest TCP
CUBIC (version 3.277) by Levasseur et al. [LCK14] is used.

Figure 8 depicts the results of both the BBR” and CUBIC runs plotted together, showing
the first 5 seconds. The horizontal axis for all graphs is the elapsed time in seconds.

The left graph shows the throughput, with both CUBIC and BBR’ quickly reaching the
maximum capacity of 20 Mb/s, BBR’ slightly earlier.

However, a major difference can be observed in the middle graph which shows queue
occupancy. Here, CUBIC quickly saturates the router queue and keeps the queue persistently
filled. BBR’, on the other hand, after initially saturating the queue, drains the queue to
nearly 0 and maintains low queue occupancy throughout. The small, periodic spikes in the
queue for BBR’ are due to the gain cycling in the PROBE_RTT state (see Section 3.8).

The effect of the router queue on round-trip time is observed in the right graph. CU-
BIC, by persistently filling the router queue, has a round-trip that is consistently about 20
milliseconds higher than that of BBR' .

5.2 4G LTE

For 4G LTE evaluation, a similar topology is used but the “last mile” is setup for LTE,
shown in Figure 9. The router is replaced by an eNodeB and a packet gateway (PGW),
the client with a UE, and the final wired link becomes a 4G LTE connection. The UE is
stationary, but positioned at different fixed distances from the eNodeB. The server to PGW
bandwidth and latency are as for the wired setup.

"http://perform.wpi.edu/downloads/#cubic
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Parameter Value

ds 10 milliseconds
bs 150 Mbits/s
packet size 1000 bytes
mode RLC AM

max tx buffer 512 Kbytes
resource blocks 50

HARQ enabled

UE to eNodeB distance varies

5.2.1 Medium Distance

For the first simulation, the UE is first placed 5 kilometers from the UE. The results are
depicted in Figure 10, with Figure 10a showing throughput and Figure 10b showing round-
trip time. For both graphs, the x-axis is the elapsed time in seconds. Unfortunately, the
corresponding eNodeB queue occupancy is not readily available but, based on Figure 8, can
be inferred from the round-trip time.

For throughput, both CUBIC and BBR’ perform about the same, with both protocols
at out about 11.5 Mb/s during steady-state. The mean throughput for CUBIC is 10.8 Mb/s
and the mean throughput for BBR’ is 11.0 Mb/s. This slightly lower CUBIC throughput
is due to BBR’ more quickly ramping up to the bottleneck bandwidth during STARTUP
versus CUBIC’s slowstart.

As in the wired network case (Section 5.1), there is a bigger difference in the round-
trip times. In the beginning, both BBR’ and CUBIC have a low round-trip time, about 30
milliseconds, which quickly increases for about 100 milliseconds as the flows startup during
slow start for CUBIC and STARTUP for BBR’. However, after about 1 second, BBR’ has
settled into it’s target low-queue, high-bandwidth condition with the round-trip times back to
initial, minimal values whereas the queue (and, hence, round-trip time) for CUBIC remains
high. Note, however, starting around 2 seconds, there is a slight rise in RTT for BBR’, as it
fills up the queue until capped by the congestion window limit (the cwnd gain is 2, meaning
the congestion window can grow to a maximum of twice the BDP) with an RTT of 0.05
seconds. This behavior is possibly due to By, (not shown) being slightly too high, but
detailed exploration is left as future work.

5.2.2 Versus Distance

In order to analyze performance over a range of 4G LTE conditions, additional simulations
were run with the UE at different distances from the eNodeB, ranging from extremely close
(0 meters) to extremely far (over 20 kilometers).® Each simulation consisted of a single,
5-second bulk download, with separate runs for both CUBIC and BBR’.

The results are depicted in Figure 10, with Figure 10a showing the average throughput
and Figure 10b showing the average round-trip time. For both graphs, the x-axis is the
distance in meters for the UE to the eNodeB.

8 At 22 kilometers, neither TCP protocol was able to get any packets delivered in 5 seconds.
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From the throughout graph (Figure 11a), both CUBIC and BBR’ achieve similar through-
puts. However, BBR’ gets slightly higher throughputs, particularly at close distances when
the wireless channel is better.

The round-trip time graph (Figure 11a, however, shows marked differences, with CUBIC
having higher round-trip times for all distances above 1000 meters. Moreover, CUBIC’s
round-trip time increases fairly consistently with an increase in distance as sending packets
from the saturated LTE queues takes longer as the channel conditions worsen. BBR’, how-
ever, maintains a relatively low average round-trip time that is about the same at all distances
since it keeps a relatively empty LTE queue regardless of the LTE channel conditions.

6 Conclusion

The evolution of networks demands continued improvements to TCP, the prominent protocol
on the Internet. Unfortunately, the predominant congestion control algorithm for TCP,
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CUBIC [HRXO08], saturates congested router queues, leading to dropped packets and higher
than necessary round-trip times. The new congestion control algorithm BBR [CCGT16,
CCG™17] promises to improve TCP performance compared to CUBIC by keeping exactly
one bandwidth-delay product of data in flight, maximizing receiver delivery rates while
minimizing bottleneck queue occupancies. Despite this potential and claimed success in
Google’s own networks, BBR has yet to be fully vetted, particularly through simulation in
ns-3, a popular, flexible simulator used for network research.

This paper presents BBR’, an implementation of BBR for ns-3. BBR’ integrates with
TCP in ns-3 as do other congestion control algorithms, such as New Reno, Westwood and
Vegas. This allows lower layers (e.g., IP) and higher layers (e.g., bulk-download applications)
to use TCP BBR’ as they would any other version of TCP, making it easy to deploy and
test. Preliminary validation of BBR’ shows the protocol behaves as per the BBR specifica-
tion [CCYJ17a] and performs similarly to previously published BBR results. Performance
evaluation comparing BBR’ with CUBIC shows that BBR’ achieves comparable, perhaps
slightly higher, throughputs, while keeping congested queue occupancy’s low thus having
lower round-trip times.

7 Future Work

While a promising start, there are several areas of extension for BBR’ in ns-3.

The current BBR’ implementation assumes the application always has data to send.
BBR has specifications that deal with flows that are application-limited which could be
incorporated (and validated and evaluated) into BBR’

As noted in Section 3.8, BBR’ only transitions to/from PROBE_RTT to PROBE_BW
while BBR has an additional transitions for PROBE_RTT. Future work could implement,
validate and test the additional PROBE_RTT transitions for BBR’ .

BBR’ estimates the bottleneck bandwidth by computing the estimated receiver delivery
rate based on Cheng et al. [CCYJ17b]. While the core BBR’ implementation appears to
work as expected, challenges that face the technique, such as packet reordering, packet loss,
and ack loss, could be built and tested in BBR’.

BBR includes a “send quantum” (Section 4.2.2) [CCYJ17a] which is used to amortize
per-packet host overheads involved in the sending process. Supposedly, this can be helpful
at low rates with small packets. BBR’ could incorporate and evaluate a send quantum
parameter.

While pacing is indicated as mandatory, preliminary tests with BBR’s alternate config-
uration, NO_PACING (see Section 3.9.3), suggest decent performance solely by controlling
rates with the congestion window. Further evaluation can find when and where pacing
benefits performance and where it does not.

Future work also includes BBR’ evaluation over a wider-range of network conditions,
including but not limited to capacities, topologies, protocols and application types. As
suggested in the Introduction, particular attention is needed for TCP over modern wireless
networks such as 4G LTE. Future work thus includes evaluation in additional 4G LTE
scenarios, such as congested eNodeB’s and UE mobility, with environments of mixed TCP
versions and applications. For the most impact, ideally this evaluation would come after
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ensuring BBR’ is stable and does, in fact, fully represent the real-world implementation of

BBR.
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