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ABSTRACT

The growth in networking and cloud services provides
opportunities to host multimedia on remote servers, but
also brings challenges to developers who must deal with
added delays that degrade interactivity. Latency com-
pensation techniques are developed to reduce the impact
of latency on players. Analytic models and simulations
have the potential to enable exploration of the space
of player game performance with delay using fewer re-
sources than time-intensive user studies. However, in or-
der to be effective, such models and simulations need ac-
curate representations of user performance for core game
actions. This paper presents an analytic model for the
distributions of player elapsed times for a common game
task – selecting a moving target with a mouse with de-
lay – derived from results from prior user studies. We
demonstrate use of our model in simulation, exploring
player performance in games with several different la-
tency compensation techniques, configurations and de-
lays.

1. INTRODUCTION

Computer games require timely responses to player ac-
tions in order to provide an immersive interactive ex-
perience. Unfortunately, computer input hardware and
software always has some delay from when a player in-
puts a game command until the result is processed and
rendered on the screen. Delays on the local computer
system are still at least 20 milliseconds and can range
much higher, to about 250 milliseconds for some plat-
forms and game systems [18]. Games played over a net-
work, such as multi-player game systems or cloud-based
games, have additional delays from the network process-
ing as game data has to be transmitted to and from a
server. There have been many studies of latency and
games [7, 9–11, 13, 16, 17, 19, 24, 25, 27] that show that
both local delays and network delays impact the player,
degrading both player performance and player Quality of
Experience (QoE) as total delay increases [4, 5, 8].
Some of the limitations of latency are fundamental,

but progress can be made through the deployment of
latency compensation techniques [3]. Latency compen-
sation techniques attempt to mitigate the effects of net-
work delay. The techniques trade-off consistency for bet-
ter responsiveness. For example, for intense shooting
games, techniques that improve responsiveness, like time
warp, are used. For some slower RTS games, techniques
that improve consistency, like bucket synchronization,

are used. There are many existing compensation tech-
niques which are deployed on the client, the server, or
both. Since the server-side techniques play a dominant
role in online gaming, we focus on two server-side tech-
niques - time warp and bucket synchronization.

To evaluate latency compensation techniques, we build
models from previous user studies [10]. The users studies
measured user performance for an atomic game action –
selecting a moving target with a mouse. Users played a
game that had them select targets that moved around the
screen with different speeds and with different amounts
of added delay. The studies recorded the elapsed time to
select the target and the number of clicks, coupled with
a player-provided self-rating of skill.

We use the data from these studies in multivariate,
multiple regression to derive novel models of the expected
elapsed times for selecting a moving target with a mouse,
and the distribution of the elapsed times. Used together,
the models provide an accurate representation of target
selection times over a range of delays and target speeds
and two levels of player skill. We demonstrate the use
of the models in analytic models of player performance
and simulations of basic shooting games to predict the
impact of delay and compensation techniques for several
game and system configurations.

We propose a novel representation of the consistency-
responsiveness space to evaluate latency compensation
techniques across game configurations. One axis is incon-
sistency measured by the differences in the game world
across players, and the other axis is unresponsiveness
measured by the input delay. We can use our model and
simulations to quantify the responsiveness and inconsis-
tency for a given game and system configuration. The
closer the compensation places the configuration to the
left bottom corner, the better the QoE.

The rest of this paper is organized as follows: Sec-
tion 2 introduces latency compensation techniques. Sec-
tion 3 describes the methodology exploring gaming and
latency spaces. Section 4 presents prior user study data.
Section 5 pre-processes data before modeling. Section 6
depicts the process of finding and building the most par-
simonious model. Section 7 depicts how player skills are
clustered, and the process of building models with skill
as a parameter. Section 8 includes multiple simulations
on games, delay, and compensation techniques. Section 9
proposes a novel model to measure compensation tech-
niques. Section 10 summarizes and concludes. And Sec-
tion 11 provides future work.



FIG. 1. Compensation techniques

2. LATENCY COMPENSATION TECHNIQUES

Latency compensation techniques are designed to miti-
gate the negative effects of network delay. We classify ex-
isting techniques by where they are applied in the client-
server architecture. Figure 1 includes thirteen existing
compensation techniques. The green are deployed on
client, the blue are deployed on server and the orange
are deployed on both client and server.

A. Client-side techniques

With bots simulation [15], the client stores data on op-
ponents. When high latency is detected, bots replace real
players to play the game, and actual states are synchro-
nized later. This technique is only suitable for multiple
player games with a few players. This technique claims
it can conceal jitter seamlessly, but can cause informa-
tion exposure because of states sharing, which can lead
to cheating. Moreover, It requires extensive computation
and extra memory for the client. If the latency persists,
players compete against the bots not humans , which is
not most of players’ purpose for playing multiple player
games.
Local-lag [23] delays the execution of local commands

long enough that the commands have time to propagate
to all remote sites and can then be executed simultane-
ously at all locations. For example, if a player presses
the “W” key to move forward, the avatar does not move
until after the delay period, providing time for the in-
put to be sent over the network to remote game clients.
Programming local lag requires mechanisms for delaying
inputs and for estimating message delivery time between
the different nodes. Delayed input algorithms improve
consistency, at the cost of slower response to player ac-
tions.

B. Server-side techniques

With bucket synchronization [14], the game server puts
all actions over a period in a buffer. When all actions
in the bucket are to be processed, the server updates

states for all players. This technique equalises latency
between players, and is useful in games requiring high
consistency but low latency sensitivity, like RTS games.
Players share the same view of the game world. It’s not
effective in games with many players, since players with
high latency can degrade the gaming experience of other
players.

With remote-lag [3], each client applies a constant lag
to the actions of other players and the server arbitrates
hit decisions based on the state of the shooter’s client
at the time the shot was made. This means that the
shooter can aim directly at the target. For example, in
the Half-Life first person shooter game, remote players’
avatars are lagged by a constant 100ms. It increases in-
consistency (since the remote state updates are not ap-
plied immediately), but makes the degree of consistency
predictable, something to which players may be able to
adapt.

Local perception filters [28] continually adjust the
amount of delay applied to non-player controlled enti-
ties depending on their positions. The nearer the en-
tity to local players, the closer the entity to the current
state. Players can directly interact with entities close to
them. However, this technique is complicated to imple-
ment. Besides, high delay jitter may cause entities to
move back and forth. These filters cannot be applied
to direct interactions between players (like melee) and
can cause inconsistency in that the players have different
views of the game world.

With time-warp [23], when the server gets a player ac-
tion, the server rolls the state back to the time when
the action occurred on client, and resolves the game ac-
tion. Players can directly act on their visible game world.
There is no need for the client to extrapolate game states.
However, time warp is known to cause ‘shot around cor-
ner’ problems. In a shooter, a player with lower latency
who has hidden behind a cover or a corner could be rolled
out of the cover. The game world is not consistent be-
tween the players. Also, the server may need large stor-
age and processing for the game states corresponding to
the timestamps.

Outatime [6] combines input prediction with a Markov
model on the server, and game world correction with view
interpolation and bandwidth compression by sharing in-
formation. However, extensive calculations are needed at
the server.

Change game parameters [26] changes the game pa-
rameters according to precision-deadline model proposed
by Claypool and Claypool [8], and adjusts difficulty lev-
els. Players with high latency can perform similar to
players with low latency. However, it does not work
in games with a world view shared by multiple players.
Players still act on their predicted game state, but it may
affect game fairness.

Change parameters of avatar [18] changes parameters
of a player’s avatar, like size, velocity, or parameters in
the aim assistant function. This technique can mitigate
the effects of latency. However, it only works in games
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with an avatar. Players still have to act on their predicted
game state, but it may affect game fairness.

C. Client and Server techniques

Time warp with appeal mechanism is a refinement of
time warp proposed [20] to avoid ‘shot around corner’.
Once players get shot, they can appeal the shot. If the
client approves the appeal and denies the shot, the au-
thoritative server makes a final decision. This technique
can mitigate the ‘shot around the corner’ problem of time
warp. However, the client involvement in the decision can
lead to cheating. Also this technique is only useful for
shooting games, and maybe ineffective for high latency
situations.
Threshold [20] is a refinement to existing lag compen-

sation techniques adding a threshold for applying com-
pensation, which is normally 250 ms. It can be combined
with many other compensation techniques. It is useful in
games where the original compensation technique brings
negative effects to lower latency players. For example,
time warp is known to cause ‘shot around corner’ prob-
lems for lower latency players. Thresholds have been
applied in FPS games like Overwatch [20], effectively re-
ducing the negative effect of compensation techniques on
lower latency players. However, players with high la-
tency over 250ms are not compensated and may not able
to play the game.
Dead-reckoning [2] predicts changes to remote states

before those changes are propagated over the network.
The client extrapolates the current state of an object by
its velocity and direction. If the predicted position is
wrong, there could be 3 ways of correction: 1. No correc-
tion, 2. Immediate correction - the object is moved to the
correct position immediately, 3. Smooth correction, the
object is moved to the correct position smoothly. This
technique is suitable for games with stable target veloc-
ity and direction, but may not perform well in some fast
action games where players move unpredictably.

3. METHODOLOGY

There are two primary ways exploring the effects of
latency on players – user study and simulation. A user
study obtains real user data, and the data can be used
to build models for the base of many simulations. Sim-
ulation allows for thorough exploration of a wide range
of latencies, which is unrealistic for user studies. Sim-
ulation can also help decide an area of focus for a full
user study. Hence, my approach is to build models with
data from the existing user studies, then run simulations
of latency compensation techniques and games based on
the models.
Our methodology is:

1. Select prior user study data (Section 4)

2. Pre-process data before modeling (Section 5)

3. Find and build the most parsimonious model for
the selection time distribution using the data (Sec-
tion 6)

4. Cluster player skill, and refine model with player
skill as a term (Section 7)

5. Build simulations and analytic models of games, de-
lay, and compensation techniques using the models
(Section 8)

4. DATASETS

We use two sets of data, Set-A and Set-B, obtained
from prior user studies [10]. Each data set was obtained
from users playing a game with controlled amounts of de-
lay where the game focused on a single player’s action –
selecting a moving target with a mouse. Selecting a mov-
ing target is an action common to many PC game genres.
Some examples include: 1) top-down shooters (e.g., Nu-
clear Throne, Vlambeer, 2015) where the player aims a
projectile at opponents by moving the mouse to the in-
tended target; 2) first person shooters (FPS) (e.g., Call
of Duty, Activision, 2003) where players use the mouse to
pan the game world to align a reticle over a moving oppo-
nent and shoot; and 3) multiplayer online battle arenas
(MOBAs) (e.g., League of Legends, Riot Games, 2009)
where players move a skill shot indicator with a mouse
to target a moving opponent with a spell.

A. Game

FIG. 2. Puck Hunt. Users click on a moving target (the puck)
with the mouse cursor (a red ball). The game adds delay to
the mouse input and varies the target speed between rounds.

Both data sets are obtained from users playing a cus-
tom game called Puck Hunt that allows for the study of
a moving target selection with controlled amounts of de-
lay. In Puck Hunt, depicted in Figure 2, the user proceeds
through a series of short rounds, where each round has a
large black ball, the puck/target, that moves with kine-
matics, bouncing off the edges of the screen. The user
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moves the mouse to control the small red ball (a.k.a., the
cursor) and attempts to select the target by moving the
ball over the target and clicking the mouse button. Once
the user has successfully selected the target, the target
disappears and a notification pops up telling the user to
prepare for the next round. Thereupon pressing any key,
a new round starts, with the target at a new starting
location with a new orientation and speed. The user is
scored via a timer that counts up from zero at the begin-
ning of each round, stopping when the target is selected.
The target is a constant 28 mm.
In dataset Set-A, users select targets with three differ-

ent speeds (150, 300 and 450 pixels/s) under 11 different
delays (100, 125, 150, 175, 200, 225, 250, 275, 300, 400,
and 500 ms), with each combination of delay and speed
encountered 5 times.
In dataset Set-B, users select targets with three differ-

ent speeds (550, 1100 and 1550 pixels/s) under 11 differ-
ent delays (20, 45, 70, 95, 120, 145, 160, 195, 220, 320,
and 420 ms), with each combination of delay and speed
encountered 5 times.
For both Set-A and Set-B, users played Puck Hunt

with a mouse.
Objective measures of performance recorded are the

elapsed time to select the target and the number of clicks
required to do so.

B. Procedure

All user studies were conducted in dedicated computer
labs with LCD monitors and computer hardware more
than adequate to support the games.
For each study, participants first completed informed

consent and demographic questionnaire forms before
starting the game. The demographic questionnaire in-
clude the question “rate yourself as a computer gamer”
with responses given on a 5 point scale (1 - low to 5 -
high). The self-rating question was mandatory. The de-
mographic questionnaire also included a gender question
with options for “male”, “female”, “other” and “prefer
not to say” – only one user did not specify either male
or female.

TABLE 1. Summary of dataset variables

Dataset Usrs Gender Rounds Conditions

Set-A 51 43 ♂, 8 ♀ 167 3 speeds, 11 delays

Set-B 32 23 ♂, 8 ♀, 1 ? 167 3 speeds, 11 delays

Combined 83 66 ♂, 16 ♀, 1 ? 167 6 speeds, 22 delays

Table 1 summarizes the major dataset variables, with
the bottom row, “Combined”, showing the users, gender
and rounds of both datasets combined into one.
Table 2 shows the breakdown of self-rated skills for

each dataset, with the mean and standard deviation re-
ported by x̄ and s in the last two columns, respectively.

The bottom row shows the breakdown of both datasets
combined into one. The datasets have a slight skew to-
wards higher skills (mean skill slightly above 3 and mode
4 for each) but there are players of all skill levels in both
sets.

TABLE 2. Dataset breakdown of self-rated skills

Self-rated skill

Dataset 1 2 3 4 5 x̄ s

Set-A 1 3 5 24 18 4.1 0.9

Set-B 4 2 9 8 9 3.5 1.3

Combined 5 5 14 32 27 3.9 1.1

5. PREPROCESSING AND

STANDARDIZATION

Before modeling, the user study data needs to be pre-
processed and standardized.

A. Preprocessing

In Puck Hunt, if the user’s time to select the target
surpasses 30 seconds, the round ends, and the elapsed
time for that round is recorded as a 30. These 30 second
values are not the elapsed times that would have been
recorded if the trial continued, and so artificially impact
any model of selection time that includes them. Thus,
we look to replace values of exactly 30 seconds with esti-
mates of the larger values they likely would have had if
the round had continued (and the user had kept trying)
until the target was selected.
In total, the game has 66 different combinations of

speed and delay, called difficulty levels. For most dif-
ficulty levels, there are no elapsed times of 30 seconds.
However, the higher difficulty levels (speeds above 500
px/s, and delay above 120 ms) have one or more 30 sec-
ond values.

TABLE 3. Elapsed times above 30 seconds

Speed Delay (ms)
(px/s) 145 170 195 220 320 420

550
0 0 0 0 1 5
- - - - (0.4%) (2.0%)

1100
2 1 3 2 18 56

(0.8%) (0.4%) (1.2%) (0.8%) (7.1%) (22.0%)

1550
3 3 8 12 70 109

(1.2%) (1.2%) (3.1%) (4.7%) (27.5%) (42.8%)

Table 3 includes the number and percent of trials with
elapsed times recorded as 30 seconds for high difficulty
levels. All difficulties not in the table (i.e., easier levels)
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FIG. 3. Example above 30 data

have no values recorded as 30. For the numbers with a
normal font, only about 1% (or fewer) of the times are a
30, so we leave them as is.

TABLE 4. Analytic models for CDFs for speed & delay com-
binations not including failures.

Speed Delay Equation R2 Mean

550 420 0.39 · ln(x)− 0.11 0.96 6.2

1100 320 0.34 · ln(x)− 0.09 0.98 8.2

1100 420 0.27 · ln(x)− 0.20 0.94 23.1

1550 195 0.29 · ln(x) + 0.05 1.00 7.4

1550 220 0.30 · ln(x)− 0.07 0.97 10.3

1550 320 0.25 · ln(x)− 0.17 0.94 30.0

1550 420 0.21 · ln(x)− 0.22 0.93 66.8

For the difficulty levels in italics and bold, we esti-
mate the elapsed times as if they were not artificially
constrained, and generate synthetic points. Figure 3 de-
picts CDFs of the empirical data, along with previously
derived models at several example difficulty levels to il-
lustrate our methods of generating elapsed times larger
than 30. The x-axis is the elapsed time and the y-axis is
the cumulative distribution. The solid lines are CDFs of
the empirical data, and the dashed lines with the same
color are the corresponding models listed in Table 4. For
the 4 difficulty levels with bold numbers in Table 3, we
replace the original data with randomly generated points
above 30 seconds using the models. For the 3 difficulty
levels in italics, the corresponding CDF model does not
surpass 30 seconds. For these difficulty levels, we model
the tail of the distribution as a linear regression using
the last 5 data points, and extend the CDF to 1 on the
y-axis. We replace the original data with points evenly
distributed on those extension lines.

FIG. 4. Probability density distribution of elapsed time

B. Standardization

Before modeling, we standardized the mean and speed
by subtracting the means and dividing by the standard
deviations in Table 5.

TABLE 5. Values used for standardization

Factor Mean Std Dev

Delay (D) 206 ms 122

Speed (S) 683 px/s 488

6. MODELING

This section describes our methods used to process and
analyze the user study data to derive models for the dis-
tribution of elapsed times to select moving targets with
delay.
Figure 4 shows the probability distribution of all

elapsed times from the user studies. The x-axis is the
elapsed time and the y-axis is the probability density.
The blue region is the distribution of all elapsed times,
and appears log-normal, which makes sense since human
actions are impacted by many individual factors that,
when put together, have an exponential distribution.

A. Gamma distribution fitting

The gamma distribution is a two-parameter family of
continuous probability distributions. Some gamma dis-
tributions can be visually similar to the right-skewed dis-
tribution of the elapsed time of all the data. Figure 5
shows how the gamma function fits for the elapsed time.
The x-axis is the elapsed time in seconds, and the y-axis
is the probability density. The blue shape is the proba-
bility distribution of all elapsed times. The red shape is
generated from the gamma function fitted for the elapsed
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FIG. 5. Modeled data with gamma distribution and empirical
data

FIG. 6. Probability distribution of elapsed time

time. The red shape does not fit the blue shape well due
to the long tail of elapsed time, with R2 at 0.39 and
RMSE at 0.04. This suggests that a gamma distribution
is not the right model for the data.

B. Normal fitting

1. Transformation

Prior literature points out that human response time
are right skewed and log-normal [12][21] . Ma et al.
[22] fit human response time with a generalized inverse
gamma (GIGa) function that belongs to a family of dis-
tributions. They argue that the family, which includes
log-normal, is the most appropriate for modeling human
reaction times. Action time is an important factor of
moving target selection. Thus we take the logarithm of
the elapsed time to obtain a probability distribution in
the green region. It appears less right skewed than the
empirical data as indicated in Figure 6.
Figure 7 depicts how normal distribution fits for nat-

ural log of elapsed time. The x-axis is elapsed time and

FIG. 7. Probability distribution of elapsed time

the y-axis is probability density. The green region is the
distribution of the natural log of the elapsed time, and
red region is the distribution of normal fit of the natural
log of the elapsed time. The normal distribution fits bet-
ter than the gamma function, with R2 at 0.76 and RMSE
at 0.09. However, it is still not the ideal model that can
be used for simulation.
The low R2 of normal fit, and the significant skewness

of the natural log of the elapsed time are likely caused by
the combination of many low difficulties and a few high
difficulties.

2. Skewness measurement

We measure the skewness of the elapsed time distribu-
tion. If skewness of a distribution is less than -1 or greater
than 1, the distribution is highly skewed. If skewness is
between -1 and -0.5 or between 0.5 and 1, the distribu-
tion is moderately skewed. If skewness is between -0.5
and 0.5, the distribution is approximately symmetric [1].
The skewness of the natural log of the elapsed time equals
to 1.45 indicates that distribution of ln(elapsed time) (the
green shape in Figure 6) is significant highly skewed.
However, when the data is divided into groups for each

difficulty, the data is mostly symmetric. Skewnesses of
Set-A difficulties are included in Table 6. The skewness
for most difficulties are between 0 and 0.6, which indi-
cates that most difficulties in Set-A have approximately
symmetric or at most moderately skewed distributions.
Skewnesses of Set-B difficulties are included in Table 7.
The skewness for most difficulties are between -0.2 and
0.5, which indicates that most difficulties in Set-B dataset
have approximately symmetric distributions.

3. Kolmogorov-Smirnov test (K-S) and Shapiro-Wilk test
(S-W)

In statistics, the Kolmogorov–Smirnov(K-S) test is a
nonparametric test of the equality of continuous, one-
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TABLE 6. Skewness of Set-A difficulties

delays
Speed 20 45 70 95 120 145 170 195 220 320 420
550 0.35 0.25 0.66 0.35 0.59 0.31 0.54 0.20 0.51 0.56 0.39
1100 0.58 0.41 0.29 0.42 0.52 0.62 0.58 0.46 0.27 0.17 -0.84
1550 0.31 0.24 0.37 0.03 0.27 0.24 0.14 -0.01 -0.36 -0.88 -1.36

TABLE 7. Skewness of Set-B difficulties

delays
Speed 100 125 150 175 200 225 250 275 300 400 500
150 0.12 0.06 -0.02 0.08 0.22 -0.16 0.30 -0.03 0.43 -0.08 0.02
300 0.52 0.31 0.03 0.01 -0.18 0.52 0.37 -1.30 0.21 0.40 0.42
450 0.24 0.95 0.55 0.12 0.01 0.35 0.54 0.22 1.33 -1.50 -0.02

dimensional probability distributions that can be used
to compare a sample with a reference probability distri-
bution [30]. If the resulting p value is less than 0.05,
it indicates that there is significant difference between
sample distribution and reference probability. Otherwise
there is no statistically significant difference between the
two distributions. The Shapiro–Wilk(S-W) test tests the
null hypothesis that a sample x1, ..., xn came from a
normally distributed population. If the test is not sig-
nificant, this indicates the data are normal. Both of the
tests can be used to test normality. It has been suggested
that if the sample size is less than 50, S-W test is more
persuasive than the K-S test. Otherwise, the K-S test
is more suitable. When the sample size is greater than
1500, the S-W test is not reasonable anymore. For each
difficulty in Set-A, there are 255 trails. For each difficulty
in Set-B, there are 160 trails. Thus, we use the K-S test
to test normality. (For completeness, the results of the
S-W tests are included in the appendix).
All elapsed time are transformed and standardized for

each difficulty. We then conduct K-S tests on the result-
ing data values. The results of the K-S tests for most
difficulties in both datasets are not significant, indicat-
ing that the distributions of the natural log of the elapsed
times for most difficulty levels are approximate normal.
Results of the K-S test of the Set-A difficulties are

included in Table 8. Results of the K-S test of the Set-B
difficulties are included in Table 9.
For most difficulties levels, the distribution of the nat-

ural log of the elapsed time is approximately symmetric
or at most moderately skewed indicated by the skewness
value, and there is no significant difference with a nor-
mal distribution indicated by K-S test results. Hence this
suggests that the probability distributions of the natural
log of the elapsed time at most difficulty levels can be
approximated by a normal distribution.

4. Example difficulty fitting

To better illustrate how the models fit for data at spe-
cific difficulties, we pick one difficulty (speed=150, de-

FIG. 8. PDF for elapsed time and natural log of elapsed time
with speed= 150, delay=150

lay= 150) and fit models on the data.
Figure 8 depicts the probability density distribution

of elapsed time and the probability density distribution
of the natural log of elapsed time, both with speed at
150 px/s and delay 150 ms. The x-axis is the elapsed
time in seconds and the y-axis is the probability density.
The blue shape is the probability density distribution of
elapsed time, and the green shape is the probability den-
sity distribution of the natural log of elapsed time. The
skewness of the green shape is smaller than the skewness
of the green shape in Figure 5.
Figure 9 depicts a gamma distribution fit for the

elapsed time with speed at 150 px/s and delay at 150
ms. The x-axis is the elapsed time in seconds at the dif-
ficulty, and the y-axis is the probability density at the
difficulty. The blue shape is the probability density dis-
tribution of all elapsed times at the difficulty. The red
shape is the gamma function fitted for the elapsed time.
The gamma distribution fits the empirical data well with
R2 at 0.97 and RMSE at 0.04.
Figure 7 depicts a normal distribution fit for the nat-

ural log of the elapsed time with speed at 150 px/s and
delay at 150 ms. The x-axis is elapsed time and the
y-axis is probability density. The green region is the dis-
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TABLE 8. K-S test of Set-A difficulties

delays
Speed 20 45 70 95 120 145 170 195 220 320 420
550 0.59 0.82 0.13 0.59 0.07 0.78 0.34 0.47 0.78 0.21 0.07
1100 0.16 0.43 0.69 0.29 0.27 0.29 0.07 0.29 0.84 0.44 <0.001
1550 0.40 0.95 0.16 0.97 0.46 0.76 0.84 0.19 0.32 <0.001 <0.001

TABLE 9. K-S test of Set-B difficulties

delays
Speed 100 125 150 175 200 225 250 275 300 400 500
150 0.56 0.17 0.96 0.70 0.60 0.82 0.68 0.68 0.52 0.58 0.69
300 0.25 0.56 0.80 0.74 0.68 0.07 0.67 0.27 0.84 0.23 0.33
450 0.51 0.20 0.34 0.78 0.94 0.34 0.13 0.62 0.03 0.26 0.94

FIG. 9. Gamma fit for elapsed time with speed= 150, delay=
150

FIG. 10. Normal fit for the natural log of elapsed time with
speed= 150, delay= 150

tribution of the natural log of the elapsed time at the
difficulty, and red region is the distribution of normal fit
of the natural log of the elapsed time at the difficulty.
The normal distribution fits the data well with R2 at
0.98 and RMSE at 0.04, which is a little bit better than
the gamma distribution.

FIG. 11. Boxplot of R2 for all difficulties

Figure 11 is the boxplot for the R2 value of the normal
fit for the 66 difficulties in dataset Set-A and Set-B. The
mean of the R2 is 0.95 and median is 0.97. 75% of the R2

values are above 0.93 with only few outliers at high diffi-
culty. This figure indicates that the normal distribution
fits well for the natural log of elapsed time with almost
all difficulties.

The values of R2 and RMSE for all difficulties are in-
cluded in the appendix.

5. Modeling results

Inspired by the analysis above, we use multivariate,
multiple regression to model the mean and standard de-
viation of the natural logarithm of the elapsed time for
each difficulty level. This will allow us to generate distri-
butions of elapsed times for a given difficulty level, mak-
ing it usable for analytically modeling and for simulating
game performance.

There are many possible models that fit the elapsed
time data. We compare different regression models by
using the coefficient of determination (R2) as a measure-
ment of how well observed outcomes are replicated by the
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model. In doing such a comparison, it might be tempting
to choose the model with the maximum R2, but this can
over-fit the model to the data (i.e., the R2 value can be
increased by adding more terms). However, the adjusted
R2 modifies the R2 based on the number of predictors in
the model, increasing if the new term improves the model
more than would be expected by chance and decreasing it
otherwise. Overall, we want a parsimonious model – one
that provides the desired prediction with as few terms as
possible.

Table 10 summarizes the models explored. For the
equations, the k parameters (e.g., k1) are constants, e is
the base of the natural logarithm (2.7182), d is the stan-
dardized delay and s is the standardized speed, where
d = D−206

122 and s = S−683
488 .

While model 10 has the highest R2 for both mean and
standard deviation, it is only slightly higher than model 8
while having significantly more terms (9 versus 4). Thus,
we propose predicting mean and standard deviation for
the natural log of the elapsed time:

mean(ln T ) = k1 + k2d+ k3s+ k4ds

stddev(ln T ) = k5 + k6d+ k7s+ k8ds
(1)

where d and s are standardized from the delay (D) and
target speed (S), respectively: k1 through k8 are con-
stants derived from data gathered through the user stud-
ies.

Using our standardized user study data in Table 5
yields an adjusted R2 for mean and standard deviation
both at 0.96. The final model for the mean and standard
deviation of the natural log of elapsed time is:

mean(ln T ) = 0.685 + 0.506d+ 0.605s+ 0.196ds

stddev(ln T ) = 0.567 + 0.126d+ 0.225s+ 0.029ds
(2)

With the models predicting mean and standard devia-
tion for the natural log of the elapsed time, given speed
and delay, the normal distribution with the predicted
mean and standard deviation can be used to generate
a distribution of logarithmic elapsed times, taking the
exponent to get the elapsed time. Figure 12 shows the
model generated data compared to the actual data. The
x-axis is the elapsed time in seconds, and the y-axis is
the cumulative distribution. The blue shape is the prob-
ability distribution of the elapsed time for the empirical
data, and the red shape is generated from the normal
distribution using the modeled mean and standard devi-
ation from Equation 2. Our model has an excellent fit
for the data with R2 at 0.99 and RMSE at 0.03.

Figure 13 shows example CDFs of our model and data
for speed at 1550 px/s and delay 70 ms (top) and speed
550 px/s and delay 170 ms (bottom). The blue lines are
the empirical elapsed times from the user study data and
the dashed black lines are the corresponding models at
the respective difficulty. In all cases, the model fits the

FIG. 12. PDF of modeled data and empirical data

FIG. 13. Example CDF data and models. Top: speed 1550
px/s and delay 70 ms. Bottom: speed 550 px/s and delay 170
ms

data well, with R2 both at 0.98 and RMSE both at 0.04.

7. MODEL WITH PLAYER SKILL

Player skill can be an important factor for analyti-
cal models and simulations for games. This section de-
scribes our methods to derive models for the distribution
of elapsed times with player skill as a parameter.

9



TABLE 10. Models predicting mean and standard deviation of selection time of a moving target with delay (d) and speed (s)

Model Mean R2 Std Dev R2

1. k1 + k2s 0.41 0.67
2. k1 + k2e

s 0.39 0.61
3. k1 + k2d 0.23 0.07
4. k1 + k2d+ k3s 0.89 0.94
5. k1 + k2e

d 0.18 0.07
6. k1 + k2e

d + k3e
s 0.68 0.79

7. k1 + k2d+ k3d
2 + k4s+ k5s

2 0.88 0.94
8. k1 + k2d+ k3s+ k4ds 0.96 0.96
9. k1 + k2e

d + k3e
s + k4e

des 0.84 0.83
10. k1 + k2d+ k3d

2 + k4s+ k5s
2 + k6ds+ k7d

2s+ k8ds
2 + k9d

2s2 0.97 0.96

FIG. 14. Combined skill groups

A. Player skill

In the user studies, players rated their skills as com-
puter gamers from 1 (low) to 5 (high). The mean self-
rating was about 3.9, showing a slight skew to having
“high ability”. Based on our user sample, we divided
users into low skill (24 users with self-rating 1-3) and
high skill (59 users with self-rating 4-5).
The performance of each user is the average of their re-

sults across all trials in their user study (Set-A or Set-B).
Since the games and tested conditions are slightly differ-
ent between the two user studies, user results from one
study cannot be directly compared (or combined) with
the results from another. Hence, we normalize the data
for each user study based on the average performance of
all users in the same dataset. For example, since the av-
erage elapsed time to select a target across all users and
all trials for the Set-B dataset is 1.6 seconds, each indi-
vidual user in the Set-B dataset has their average elapsed
time divided by 1.6. Users with normalized values below
1 are better than average and values above 1 are worse
than average – e.g., a normalized score of 0.9 is 10% bet-
ter than the average while a 2.0 is twice as bad as the
average.
Figure 14 shows boxplots of normalized elapsed time

on the y-axis for users clustered by skill group on the

x-axis. Each box depicts quartiles and median with the
mean shown with a ‘+’. Points higher or lower than 1.4 ×
the inter-quartile range are outliers, depicted by the dots.
The whiskers span from the minimum non-outlier to the
maximum non-outlier. The x-axis “n=” labels indicate
the number of participants in each skill group.
From the figure, the mean and median of normalized

elapsed times decrease (improve) with self-rated skill.
The spread also indicates that some individuals with
lower self-ratings perform better than users with higher
self-ratings.
Since the elapsed time data was observed to be skewed

right, comparisons of the two skill groups was done using
a Mann-Whitney U test – a non-parametric test of the
null hypothesis that it is equally likely that a randomly
selected value from one group will be greater than or
less than a randomly selected value from a second group.
Effectively, this tests whether two independent self-rated
skill group samples come from populations having the
same distribution.

TABLE 11. Mann-Whitney U test for elapsed time by self-
rated skill

Users Median

low high low high U p value

24 59 1.22 0.91 321 <.001

Table 11 gives the results of the Mann-Whitney U
tests. The “Users” and “Median” columns show the num-
ber of corresponding participants and median normalized
elapsed times for the respective skill groups. The “U”
and “p value” columns depict the test results. The test
indicates that the difference in median elapsed of low skill
compared to high skill is significant.

B. Modeling

We derive models for ln T parameterized by skill as we
did for all users before, again finding the form of model
8 in Table 10 to be the most parsimonious.
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TABLE 12. Models of moving target selection time with delay

Skill Model Adjusted R2

All
mean(ln T ) = 0.685 + 0.506d+ 0.605s+ 0.196ds 0.96
stddev(ln.T ) = 0.567 + 0.126d+ 0.225s+ 0.029ds 0.96

Low
mean(ln T ) = 0.850 + 0.560d+ 0.672s+ 0.212ds 0.96
stddev(ln.T ) = 0.589 + 0.118d+ 0.253s+ 0.009ds 0.88

High
mean(ln T ) = 0.605 + 0.468d+ 0.625s+ 0.208ds 0.95
stddev(ln T ) = 0.539 + 0.109d+ 0.227s+ 0.041ds 0.96

FIG. 15. Example CDF for speed 1100 px/s and delay 320
ms. Top: low skill. Bottom: high skill

The final models for the mean and standard deviation
of the natural log of the elapsed time parameterized by
player skill are shown in Table 12.

Figure 15 shows example CDF models for a 1100 px/s
target and delay 320ms for a low skill player (top) and
a high skill player (bottom). For both graphs, the x-
axis is the elapsed time and the y-axis is the cumulative
distribution. The blue dots are the empirical elapsed
times and the black dashed lines are the corresponding
models. Our model fits both sets of data well, with R2

at 0.93, RMSE at 0.08 for the low skill player, and R2 at
0.99, RMSE at 0.02 for the high skill player.

FIG. 16. Performance versus delay for target selection (Ana-
lytic model)

8. ANALYTIC MODELS AND SIMULATIONS

As a demonstration of the models use and to evaluate
several specific game configurations, we use our model as
the basis for analytically modeling and simulating player
performance. This allows us to explore the impact of la-
tency compensation techniques and system configuration
on game performance over a range of delays.

A. Performance versus Delay- Selection

We begin by modeling player performance of selection
versus latency. Using our model, selection time perfor-

mance with delay is modeled analytically by T (0)
T (n) , where

T(n) is the mean of elapsed time with delay at an aver-
age target speed at 450 px/s, calculated with our model.
Figure 16 demonstrates how player performance decays
with delay. The x-axis is delay in milliseconds, with a “0”
representing the ideal case, and the y-axis is the normal-
ized performance with a “1” representing performance in
the best case (0 delay). The red line shows how player
performance selecting a 450 px/s target decays with an
increase in delay. The light blue region above and be-
low the red line is within one standard deviation of the
mean. The graph depicts that player performance and
the standard deviation of player performance decreases
with delay. Player performance is always poor regardless

11



FIG. 17. Performance versus delay for selection and reaction
(Analytic model)

of player skill and game difficulty when delay is high.
When delay is low, player performance varies due to dif-
ference in gaming skill and individual performance.

B. Performance versus Delay– Selection and

Reaction

We then build analytic models comparing the impact
of delay on performance for target selection compared
to reaction actions where a player responds immediately
(e.g., by a key press or mouse click) to an event in the
game. Selection time performance is calculated the same
way as with the last model. Reaction time actions are
similarly modeled, but using the mathematical response
time derivation by Ma et al. [22].
Figure 17 depicts the effects of delay on player perfor-

mance for both actions. The x-axis is delay, in millisec-
onds, and the y-axis is player performance. The blue
line shows how player performance selecting a 450 px/s
target decays with an increase in delay. The orange line
shows how player reaction time performance decays with
an increase in delay. From the figure, both actions de-
grade by about 25% at a modest delay of 100 ms. The
blue line has a steeper decreasing trend than the orange
line, indicating that delay has more impact on selection
actions than on reaction actions.

C. High display frame rate

We next simulate the potential benefits high framerate
displays have on game play. We assume a configuration
with a total delay of 55 ms and a 120 Hz display, and
then evaluate the impact on performance for alternate
setups using the same shooting game used above with
target speeds of 300 px/s.
Figure 18 depicts the results. The blue line simulates

an average skill player, the darkest green dashed line de-
picts perform if a 60 Hz display were used instead, and

FIG. 18. Frame rate and delay (Analytic model)

the lightest green dashed line if a 240 Hz display were
used instead.

TABLE 13. Display frame rate and elapsed time

Delay(ms) Hz Elapsed Time(s) ∆ w/Hz ∆ w/Delay

25

60 0.722 -2.70%

120 0.703 — 9.41%

240 0.693 1.42%

55

60 0.797 -2.71%

120 0.776 — —

240 0.765 1.42%

85

60 0.880 -2.80%

120 0.856 — -10.31%

240 0.845 1.29%

Table 13 quantifies the results. Column #1 includes
three total base delays, each with 120 Hz display. Col-
umn #2 shows the display frame rates simulated (60 Hz,
120 Hz, and 240 Hz). Column #3 has the simulated
elapsed time at each base delay and Hz display. Column
#4 provides the change in performance for the different
displays from the base delay. And column #5 provides
the change in performance for a 30 ms change in the base
delay.

From the table and figure, the performance difference
to downgrade to the 60 Hz display is between -2.8% and
-2.7%, and the performance difference for an upgrade to
the 240 Hz display is between 1.29% and 1.42%. Thus,
an upgrade from 60Hz to 120Hz improves player per-
formance more than an upgrade from 120Hz to 240Hz.
The performance difference from changing the base delay
from 55ms to 25ms is 9.41%, and from 55ms to 85ms is
-10.31%. In total, this suggests that base delay and net-
work delay impacts player performance more than does
the display frame rate. This confirms user study results
measured by Spjut et al. [29].
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FIG. 19. Win rate versus delay for different skill players (Sim-
ulation)

FIG. 20. Win rate versus delay for different target speeds
(Simulation)

D. Win Rate versus Delay- Skill

We simulate a shooter game where two players try to
select (shoot) a target before their opponent. Both play-
ers have an equal base delay, but one player has extra
network delay to evaluate the effects of unequal amounts
of delay on matches with players of equal skill. We sim-
ulate 100k iterations of the game for each combination
of added delay and player skill. Figure 19 depicts the
results. The x-axis is the delay difference for the two
players, and the y-axis is the win rate of the player with
lower delay. The blue line is for games with two low
skill players, while the orange line is for games with two
high skill players. From the figure, even modest delay
differences of 100 ms makes it about 50% harder for the
delayed player to win. The blue line increases faster than
the orange line, indicating delay impacts the games with
higher skill players less.

Listing 1. variables
✞ ☎

0

1 base - local delay
2 speed - speed of the target
3 w1 - Player1 victories
4 w2 - Player2 victories
5 t1 - Player1 selection time
6 t2 - Player2 selection time
7 d1 - Player1 round trip delay to server
8 d2 - Player2 round trip delay to server
✝ ✆

Listing 2. Game simulation without compensation
✞ ☎

0

1 // Determine player se lect ion times .
2 t1 = model (speed , base + d1)
3 t2 = model (speed , base + d2)
4

5 // Player that se l ec t s f i r s t wins .
6 if (t1 < t2) then
7 w1 += 1
8 else
9 w2 += 1

10 end if
✝ ✆

E. Win Rate versus Delay- Target Speed

Figure 20 depicts how delay impacts win rate with dif-
ferent target speeds. This simulation is the same as be-
fore, but both players are of average skill and the target
speed varies. The x-axis is the delay difference for the
two players, and the y-axis is the win rate of the player
with lower delay. The blue line is games with slow target
speeds of 150 px/s, while the orange line is games with
fast target speeds of 1150 px/s. The orange line increases
faster than the blue line, indicating delay impacts player
performance more for higher target speeds (i.e. harder
games).
Listing 1 includes variables that will be using in selec-

tion simulation. Listing 2 depicts the selection simula-
tion without compensation techniques. We then simulate
bucket synchronization and time warp on the selection
game.

F. Simulation for Bucket Synchronization

1. Performance

Listing 3 depicts how bucket synchronization is sim-
ulated in selection. Figure 21 depicts how players’ per-
formances change after applying bucket synchronization.
The graph on the top depicts the condition without com-
pensation. The x-axis is delay in milliseconds and the y-
axis is player performance. The blue line describes how
player performance decays with delay, and it contains the
same data as the simulation on performance for selection
above. The red rectangle represents player 1 with delay
at 100 ms, and performance at around 0.7. The blue
star represents player 2 with delay at 400 ms, and per-
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Listing 3. Bucket synchronization
✞ ☎

0

1 // Compute bucket latency .
2 b1 = max(d2 - d1 , 0)
3 b2 = max(d1 - d2 , 0)
4

5 // Determine player se lect ion times with bucket .
6 t1 = model (speed , base + d1 + b1)
7 t2 = model (speed , base + d2 + b2)
8

9 // Player that se l ec t s f i r s t , wins .
10 if (t1 < t2) then
11 w1 += 1
12 else
13 w2 += 1
14 end if
✝ ✆

FIG. 21. Performance versus delay (Analytic model)
Top: without compensation. Bottom: After using Bucket
synchronization

formance at around 0.3. The graph on the bottom is the
condition after applying bucket synchronization. The x-
axis, the y-axis, and the blue line are the same as the
graph on top. With bucket synchronization, both play-
ers would experience the maximum delay of player 1 and
player 2, which is 400 ms. Thus, they would have the
same performance at around 0.3.

FIG. 22. Win rate versus delay difference for bucket synchro-
nization (Simulation)

2. Win rate

Next, we simulate a game where there are two players
playing a selection game, and the player with the shortest
time to select wins. The two players have equal latency
in the beginning, and we add extra latency to one player.
First, we simulate the game without any compensation
technique, and then we simulate the game with bucket
synchronization.

Figure 22 depicts how players win rates change after
applying bucket synchronization. The x-axis is delay dif-
ference of two players, and the y-axis is win rate of lower
delay player. The blue line represents how the lower la-
tency player win rate increases with delay difference when
the players are not compensated. The orange line rep-
resents the condition when bucket synchronization is ap-
plied. Without compensation, when the delay difference
is high, the lower latency player would almost always win.
After applying bucket synchronization, the two players
would have the same chance to win since they experience
the same amount of delay.

G. Simulation for Time Warp

1. Performance

Listing 4 depicts how time warp is simulated in selec-
tion. Figure 23 depicts how time warp improves player
performance for selection. The graph on the top depicts
the condition without compensation. It is the same graph
as the top graph in Figure 21. The graph on the bottom
is the condition after applying time warp. The x-axis,
the-y axis, and the blue line are the same with the graph
on top. Both players would experience no extra delay
from the network, and thus have performance at 1.
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Listing 4. Time warp
✞ ☎

0

1 // Compute time warp latency .
2 b1 = -d1
3 b2 = -d2
4

5 // Determine player se lect ion times with time warp .
6 t1 = model (speed , base + d1 + b1)
7 = model(speed , base)
8 t2 = model (speed , base + d2 + b2)
9 = model(speed , base)

10

11 // Player that se l ec t s f i r s t , wins .
12 if (t1 < t2) then
13 w1 += 1
14 else
15 w2 += 1
16 end if
✝ ✆

FIG. 23. Performance versus delay (Analytic model)
Top: without compensation. Bottom: After using time warp

2. Win rate

In this simulation, the game is still the same as the win
rate of bucket synchronization, but we are applying time
warp instead of bucket synchronization.
Figure 24 depicts how players’ win rates change after

applying time warp. The x-axis is the delay difference
between the two players, and the y-axis is the win rate
of the lower delay player. The blue line depicts the lower
latency player win rate increase with the delay differ-
ence when the players are not compensated. The orange

FIG. 24. Win rate versus delay difference for time warp (Sim-
ulation)

FIG. 25. Rate of shot around corner (Simulation)

line represents the condition when time warp is applied.
Without compensation, when the delay difference is high,
the lower latency player would always win. After ap-
plying time warp, the two players would have the same
chance to win.

3. Shot around corner

Shot around corner is known to be a problem caused by
time warp, where a player gets shot when in a position of
cover. This simulation explores the probability of ‘shot
around corner’ and delay. We simulate a game where
there are two players playing a target selection game with
the same amount of delay under 3 different target speeds.
The player with the shorter time to select the target wins
the trial. If a player hits a target before getting informed
of losing, it is recorded as a ‘shot around corner’.
Listing 5 depicts how ‘shot around corner’ defined by

pseudocode. In a two players selection game, if a player
selects the target before being informed of losing, the
player gets ‘shot around corner’. Figure 25 depicts how
the rate of ‘shot around corner’ increases with delay.
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Listing 5. ‘shot around corner’ simulation
✞ ☎

0

1 //Determine player se lect ion times with time warp .
2 t1 = model(speed , base)
3 t2 = model(speed , base)
4

5 //Determine when the player se lect ion event arrives at
server

6 s1 = t1 arrives at server
7 = t1 + d1/2
8 s2 = t2 arrives at server
9 = t2 + d2/2

10

11 //Determine when the player se lect ion event arrives at
the other c l i ent

12 c1 = Player1 gets player2 selection event
13 = s2 + d1 / 2
14 c2 = Player2 gets player1 selection event
15 = s1 + d2 / 2
16

17

18

19 // Player that se l ec t s f i r s t wins .
20 if t1 < t2 then
21 player1 wins
22 else if t2 <t1
23 player2 wins
24

25 //Determine i f ‘ shot around corner ’ happens to the
players

26 sac1 = Player 1 is shot around the corner
27 sac2 = Player 2 is shot around the corner
28

29 if player1 wins and t2 <c2
30 sac2
31 if player2 wins and t1 <c1
32 sac1
✝ ✆

The x-axis is delay and the y-axis is probability of ‘shot
around corner’. Three colors denote three different tar-
get speeds. Overall, for a higher network latency there is
a higher probability of ‘shot around corner’. The prob-
ability of ‘shot around corner’ increases faster with low
target speeds.

9. UNRESPONSIVENESS-INCONSISTENCY

MODEL

There is a trade-off between consistency and respon-
siveness with most latency compensation techniques.
Inconsistency causes players to see the world differently

[19]. It is the degree of mismatch between different users’
views of the virtual world. In multiplayer games, incon-
sistencies arise due to a combination of network latency
and the use of prediction by the client to determine the
local game state.
To avoid inconsistencies, it would be desirable to syn-

chronize the game states. However, this synchronization
can lead to another unwanted latency-related artifact,
increased response time. Response time or responsive-
ness is the time difference between when an operation is
issued and when it is executed. In many situations, min-
imizing of response time and avoiding inconsistencies are
conflicting goals.
We depict the space of consistency and responsiveness

FIG. 26. The ‘Responsiveness and Consistency’ space

FIG. 27. The ‘Responsiveness and Consistency’ space
The red dots are bucket synchronization examples, and blue
dots are time warp examples.

in Figure 26. The x-axis is inconsistency and the y-axis is
unresponsiveness. The upper rightmost blue dot denotes
no compensation. Without using compensation tech-
niques, players would experience high unresponsiveness
and high inconsistency. The other blue dots denote some
existing latency compensation techniques. The shorter
the distance to the bottom left corner, better the perfor-
mance of the compensation technique.

We use our model to simulate the location of
game configuration and compensation techniques in the
consistency-responsiveness space. Figure 27 shows the
model with time warp at three difference scenarios, and
bucket synchronization at two different scenarios. The
x-axis is the normalized inconsistency, measured by the
game states differences between clients. For time warp, it
can be measured by the normalized rate of ‘shot around
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corner’. For bucket synchronization, the inconsistency
is always 0 because the techniques enable the players to
share the same view of the game world. The y-axis is
the normalized unresponsiveness, measured by the nor-
malized delay perceived by players. For time warp, the
unresponsiveness is always 0 because the server rolls play-
ers’ state back hence they can act at the game state on
their screen. The red dots are bucket synchronization
examples, and blue dots are time warp examples. Circles
are simulations at scenario 1 (target speed= 100 px/s,
and players’ network delay of 100 ms and 200 ms), tri-
angles are simulations at scenario 2 (target speed= 300
px/s, and players’ network delays of 200 ms and 400 ms),
and inverted triangles are simulations at scenario 3 (tar-
get speed= 450 px/s, and players’ network delays of 100
ms and 400 ms). All scenarios have a local delay of 50
ms. This figure depicts that time warp compensates un-
responsiveness well, while bucket synchronization com-
pensates inconsistency well.

10. CONCLUSION

With the growth in networking and cloud services, ap-
plications are increasingly hosted on servers, adding sig-
nificant delay between user input and rendered results.
This is true of computer games, where user input in re-
sponse to game events can be delayed by the local system
and the networking and processing by the server before
rendered results are displayed on the screen. Latency
compensation techniques are designed to compensate the
negative effects latency brings to players. Understanding
the impact of delay and the compensation techniques on
game input can help build systems that better deal with
the delays.
While user studies can be accurate for assess games

and latency compensation techniques, they are time in-
tensive and, by necessity, typically have a limited range
of parameters they can test. Analytic models and simu-
lations that mimic the behavior of players and compen-
sation techniques in games can complement user studies,
providing for a broader range of study. This latter ap-
proach is most effective if the game modeled and sim-
ulated incorporates observed user behavior. Our work
leverages data gathered from two previous user studies
to build a model that can be used for just such an ap-
proach – analytic models and simulations.
Eighty-three users each playing 167 rounds of a game

provided data on the time to select a moving target, the
target moving with 6 different speeds and the mouse in-
put subjected to 22 different amounts of delay. For each
difficulty level, the resultant elapsed time data on the
time to select the targets appears log-normal. We used
multivariate, multiple regression to model the mean and
standard deviation of natural log of the elapsed time,
with additive linear terms for delay and speed and a
multiplicative interaction term. This use of delay and
speed is critical for accuracy of the models, as is the in-

teraction term as there is an interplay of high delay and
high speed that impacts elapsed times. The models can
be used to generate a normal distribution of logarithmic
elapsed times, then expanded by taking the exponential
to get a distribution of elapsed times. Furthermore, the
same approach is used to model elapsed time distribu-
tions based on self-rated user skill, which we ascertained
could be differentiated into two tiers: low (self-rated skill
1-3) and high (self-rated skill 4-5). As proposed, our
models have an excellent fit (R2 around 0.99 and low
root mean square error).

In addition to the contribution of a model for the dis-
tribution of target selection times with delay, we demon-
strate use of the model by analytically modeling and
simulating player performance and latency compensation
techniques in a game that features target selection. The
analytic modeling and simulation results show that for
the evaluated game:

1. When delay is low, player performance varies.
Player performance is similarly always poor with
high delay.

2. Even delays of only 100ms make it about 50%
harder to win.

3. High skill players are less affected by delay than
low skill players.

4. Delay affects players more for faster targets.

5. With bucket synchronization and time warp, play-
ers at the same skill level with different delay would
have the same chance to win.

6. With time warp, players can perform as if there
is no delay. With bucket synchronization, players
all perceive the same amount delay as the highest
delay player.

7. The rate of ‘shot around corner’ caused by time
warp increases with delay and target speed.

8. Improving delays by as little as 30 ms can improve
player performance more than increasing frame
above 60 Hz.

There is a trade-off between consistency and respon-
siveness with most latency compensation techniques. For
example, time warp compensates unresponsiveness well
and bucket synchronization compensates inconsistency
well. We propose a novel representation of the space of
the latency techniques based on normalized inconsistency
and normalized unresponsiveness. The closer a game con-
figuration with latency compensation techniques is to the
bottom left corner, the better the player quality of expe-
rience.
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11. FUTURE WORK

While the models presented in this paper provide in-
sights into a meaningful and fundamental measure of per-
formance – the elapsed time to select – another impor-
tant measure of performance for selection is accuracy.
Accuracy in the datasets used in this work manifests it-
self in the number of clicks needed to select the target
– any number greater than 1 is a “miss”. Future work
could model accuracy in a manner similar to the elapsed
time models in this work. These accuracy models could
be combined with our elapsed time models to simulate
shooter games with ammunition, wherein accuracy mat-
ters in terms of number of shots taken or allowed.

The atomic action of moving target selection is only
one of many fundamental game actions that are affected
by delay. Future work could design and conduct user
studies to gather data on the effects of delay on other

atomic actions. Data from these studies could the mod-
eled as in this paper, and those models combined with our
models of target selection to simulate the effects of de-
lay for a richer set of games. For example, a user study
that assessed the impact of delay on avatar navigation
could provide data for models of the impact of delay on
player avatar movement. These navigation models could
be used in conjunction with our models of target selection
to simulate a wide range of shooter games, allowing study
of the effects of delay for the many commercial shooter
games that have not been evaluated, nor possibly even
built.
The x-axis and y-axis in the consistency-responsiveness

model are normalized separately with different terms.
They could be normalized by the tolerance of players for
unresponsiveness and inconsistency, making them com-
parable. Future work could include a user study to de-
termine these limits of the player tolerance for unrespon-
siveness and inconsistency.
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Appendix A: Appendix

FIG. 28. QQ plot of log(Elapsed time)

FIG. 29. PDFs of original data, log data, and normal fit of
log data

FIG. 30. Coefficient of variation vs delay
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TABLE 14. S-W test of WPI difficulties

delays
Speed 100 125 150 175 200 225 250 275 300 400 500
150 0.16 0.00 0.59 0.37 0.15 0.28 0.03 0.13 0.01 0.15 0.08
300 0.00 0.07 0.80 0.64 0.49 0.01 0.05 <0.001 0.14 0.01 0.00
450 0.36 <0.001 0.00 0.34 0.67 0.24 0.00 0.33 <0.001 <0.001 0.01

TABLE 15. S-W test of Oslo difficulties

delays
Speed 20 45 70 95 120 145 170 195 220 320 420
550 0.04 0.33 <0.001 0.01 <0.001 0.17 0.00 0.08 0.01 0.00 0.00
1100 <0.001 0.01 0.10 0.00 <0.001 <0.001 <0.001 0.00 0.11 <0.001 <0.001
1550 0.05 0.36 0.00 0.29 0.01 0.05 0.01 <0.001 <0.001 <0.001 <0.001

TABLE 16. R2 of Set-B difficulties

delays
Speed 100 125 150 175 200 225 250 275 300 400 500
150 1.00 0.98 1.00 0.98 1.00 0.96 1.00 0.98 0.97 0.95 0.99
300 1.00 0.98 0.97 0.99 0.94 0.97 0.97 0.98 0.98 0.94 0.95
450 0.98 0.98 0.99 0.99 0.99 0.98 1.00 0.97 0.99 0.96 0.98

TABLE 17. RMSE of Set-B difficulties

delays
Speed 100 125 150 175 200 225 250 275 300 400 500
150 0.01 0.04 0.02 0.04 0.01 0.05 0.01 0.04 0.05 0.06 0.03
300 0.01 0.04 0.04 0.02 0.05 0.04 0.03 0.03 0.03 0.05 0.04
450 0.03 0.03 0.03 0.02 0.02 0.03 0.02 0.04 0.03 0.04 0.04

TABLE 18. R2 of Set-A difficulties

delays
Speed 20 45 70 95 120 145 170 195 220 320 420
550 0.95 0.98 0.95 0.96 0.93 0.97 0.97 0.94 0.93 0.88 0.63
1100 0.99 0.94 0.97 0.99 0.96 0.92 0.99 0.97 1.00 0.96 1.00
1550 0.98 0.93 0.93 0.99 0.89 0.83 0.92 0.92 0.53 0.97 0.42

TABLE 19. RMSE of Set-A difficulties

delays
Speed 20 45 70 95 120 145 170 195 220 320 420
550 0.04 0.04 0.04 0.05 0.04 0.04 0.03 0.06 0.04 0.07 0.12
1100 0.03 0.04 0.05 0.02 0.06 0.05 0.02 0.02 0.02 0.03 0.01
1550 0.02 0.07 0.04 0.02 0.04 0.10 0.04 0.06 0.14 0.03 0.21
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FIG. 31. stddev vs delay
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