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ABSTRACT
Computer game player performance can degrade with delays
from both the local system and network. Analytic models and
simulations have the potential to enable exploration of player
performance with delay as an alternative to time-intensive
user studies. This paper presents an analytic model for the
distributions of elapsed times for players doing a common
game action – selecting a moving target with a mouse with
delay – derived from results from prior user studies. We
develop and validate our model, then demonstrate the use
of our model via simulation, exploring player performance
in games with different configurations and delays.
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1 INTRODUCTION
Computer games require timely responses to player actions
in order to provide an immersive interactive experience. Un-
fortunately, computer input hardware and software always
have some delay from when a player inputs a game com-
mand until the result is processed and rendered on the screen.
Delays on the local computer system are still at least 20
milliseconds and can range much higher, to about 250 mil-
liseconds for some platforms and game systems [11]. Games
played over a network, such as multi-player game systems
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or cloud-based games, have additional delays from the net-
work processing as game data has to be transmitted to and
from a server. Both local delays and network delays impact
the player, degrading both player performance and player
Quality of Experience (QoE) as total delay increases [3–5].

Research that studies delay and games typically involves
user studies with participants playing a game with controlled
amounts of delay. While these studies can be effective for
ascertaining player performance for specific games [1, 2],
and specific game actions [15], they are time-intensive, re-
quiring months of time and often can only gather data over
the limited range of game and system configurations tested.
Moreover, some societal conditions (e.g., social distancing)
can make organizing and executing traditional user studies
impossible.

As an alternative approach, analytic models of player per-
formance and simulations of computer games can provide
for a broad exploration of the impact of delay on game condi-
tions without costly user studies. However, such an approach
can only be effective if it accurately represents player per-
formance. Data from studies that isolate “atoms” of game
actions have the potential to provide the foundation for ac-
curate analytic models of player performance, and resultant
simulations that use them can help explain and predict the
effects of delay for a wide-range of games and delay condi-
tions. This paper makes just such a contribution – an analytic
model, with demonstrated use in simulation.
We use data gathered from two previous users studies

that measured user performance for an atomic game action –
selecting a moving target with a mouse. Users played a game
that had them select targets that moved around the screen
with different speeds and with different amounts of added
delay. The studies recorded the elapsed time to select the
target, coupled with a player-provided self-rating of skill.
We use the data from these studies in multivariate, mul-

tiple regression to derive models of the expected elapsed
times for selecting a moving target with a mouse, and the
distribution of the elapsed times. Used together, the models
provide an accurate representation of target selection times
over a range of delays and target speeds and two levels of
player skill. We demonstrate the use of the models in ana-
lytic models of player performance and simulations of basic
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shooting games to predict the impact of delay for several
game and system configurations.
The rest of this paper is organized as follows: Section 2

presents work related to this paper; Section 3 describes the
datasets and the procedure; Section 4 details the derivation
of our models; Section 5 evaluates game performance using
analytic models and simulation; Section 7 mentions some
limitations of our approach; and Section 6 summarizes our
conclusions and presents possible future work.

2 RELATEDWORK
This section describes work related to the problem of model-
ing distribution times for the time needed to select moving
targets with delay.

Models of User Input
Fitts’ law is a seminal work in human-computer interaction
and ergonomics that describes the time to select a stationary
target based on the target distance and target width [6]. Fitts’
law has been shown to be applicable to a variety of conditions
(e.g., many different task settings [14]) and input devices (e.g.,
manual control devices as well as eye gaze [26]); it has also
been extended to two dimensions [18], making it suitable
for modeling target selection with a pointing device [23];
however, Fitts’ aw by itself accounts for neither moving
targets nor delay.
Jagacinski et al. [12], Hajri et al. [8], and Hoffmann [9]

extended Fitts’ law to moving targets, adding target speed to
the model. Hoffman [10] revised Fitts’ law to consider delay
and Jota et al. [13] studied the impact of delay on target
selection and dragging with touch devices,

Mackenzie and Ware [19] measured selection time and er-
ror rates when selecting stationary targets with delay. They
found a pronounced multiplicative effect between delay and
Fitts’ Index of Difficulty (ID) [6] and proposed modification
to Fitts’ law that incorporates delay by including an addi-
tional term, (𝑐 · 𝐿𝐴𝐺), that is a weighting of delay plus the
ID. Teather et al. [25] measured selection time for stationary
targets of different sizes and delay and jitter, and confirmed
similar findings to MacKenzie and Ware [19] for Fitts’ law
computations for ID. Friston et al. [7] confirmed earlier re-
sults of Fitts’ law for low delay systesm and compared their
model to those in both MacKenzie andWare [19] and Teather
et al. [25].

Pavlovych and Gutwin [20] measured accuracy and time
in tracking and selecting fixed-sized targets that moved using
Lissajous curves. Delay was only added to the the mouse
click and not to the mouse movement. They found significant
main effects for delay on the number of clicks and selection
errors with a significant interaction between delay and target
speed. Ivkovic et al. [11] measured selection time for fixed-
sized, stationary targets and accuracy in tracking for two

sizes of targets. They found significant main effects for delay
on completion time and tracking and significant effects for
task difficulty. The impact of delay on tracking was greater
at lower target speeds than at higher target speeds. Long
and Gutwin [16] measured selection time for different sized,
moving targets. They found significant main effects for delay
on selection time and accuracy and that the effects of delay
are exacerbated by fast target speeds.

The models proposed provide for expected elapsed times
and, in some cases, errors but do not model the distribution
of elapsed times. The latter is needed for, as in the case of our
work, simulations where player response times are selected
from a range of possible values based on a model.

Game Actions
An overlapping area are approaches to studying the effects
of delay on individual (aka atomic) game actions.

Claypool and Claypool [5] presented a general framework
describing delay and game actions that includes precision –
the accuracy required to complete the action successfully,
and deadline – the time required to achieve the final outcome
of the action. While helpful for explaining the effects of
delay on games, the precision-deadline framework does not
quantify the many possible parameters that make up game
actions (e.g., dodge frequency).
Raaen and Eg [22] conducted experiments with a simple

button and dial interface, letting users adjust delay based on
their perceptions. They found users are capable of perceiving
even low amounts of delay (around 66 milliseconds).
Long and Gutwin [15] studied the effects of delay on in-

tercepting a moving target. They found target speed directly
affects the impact of delay, with fast targets affected by de-
lays as low as 50 ms but slower targets resilient to delays as
high as 150 ms.
Pavloyvych and Stuerzlinger [21] and Pavloyvych and

Gutwin [20] studied target selection and following for ob-
jects moving along Lissajous curves (smooth curves, with
varying turns within the curve). They found tracking errors
increase quickly for delays over 110 ms but the effects of
target velocity on errors is close to linear.

In general, while these approaches have helped understand
delay and fundamental game actions, they generally have
not applied a model to the data gathered or if they have, as in
the case of Long and Gutwin [15] the models are for average
values and not distributions.

3 DATASETS
We use two sets of data obtained from prior user studies:1 Set-
A and Set-B. Each data set was obtained from users playing
a game with controlled amounts of delay where the game

1Citations not provided to preserve anonymity during review.
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focused on a single player’s action – selecting a moving
target with a mouse. Selecting a moving target is an action
common to many PC game genres. Some examples include:
1) top-down shooters (e.g., Nuclear Throne, Vlambeer, 2015)
where the player aims a projectile at opponents by moving
the mouse to the intended target; 2) first person shooters
(FPS) (e.g., Call of Duty, Activision, 2003) where players use
the mouse to pan the game world to align a reticle over a
moving opponent and shoot; and 3) multiplayer online battle
arenas (MOBAs) (e.g., League of Legends, Riot Games, 2009)
where players move a skill shot indicator with a mouse to
target a moving opponent with a spell.

Game

Figure 1: Puck Hunt. Users click on a moving target (the
puck) with the mouse cursor (a red ball). The game adds de-
lay to the mouse input and varies the target speed between
rounds.

Both data sets are obtained from users playing a custom
game called Puck Hunt that allows for the study of a moving
target selection with controlled amounts of delay. In Puck
Hunt, depicted in Figure 1, the user proceeds through a series
of short rounds, where each round has a large black ball, the
puck/target, that moves with kinematics, bouncing off the
edges of the screen. The user moves the mouse to control
the small red ball (a.k.a., the cursor) and attempts to select
the target by moving the ball over the target and clicking the
mouse button. Once the user has successfully selected the
target, the target disappears and a notification pops up telling
the user to prepare for the next round. Thereupon pressing
any key, a new round starts, with the target at a new starting
location with a new orientation and speed. The user is scored
via a timer that counts up from zero at the beginning of each
round, stopping when the target is selected. The target is a
constant 28 mm.
In dataset Set-A, users select targets with three different

speeds (150, 300 and 450 pixels/s) under 11 different delays
(100, 125, 150, 175, 200, 225, 250, 275, 300, 400, and 500 ms),
with each combination of delay and speed encountered 5
times.

In dataset Set-B, users select targets with three different
speeds (550, 1100 and 1550 pixels/s) under 11 different delays
(20, 45, 70, 95, 120, 145, 160, 195, 220, 320, and 420 ms), with
each combination of delay and speed encountered 5 times.

For both Set-A and Set-B, users played Puck Hunt with a
mouse.

Objectivemeasures of performance recorded are the elapsed
time to select the target and the number of clicks required
to do so.

Procedure
All user studies were conducted in dedicated computer labs
with computer hardware more than adequate to support the
games and had LCD monitors.

For each study, participants first completed informed con-
sent and demographic questionnaire forms before starting
the game. The demographic questionnaire include the ques-
tion “rate yourself as a computer gamer” with responses
given on a 5 point scale (1 - low to 5 - high). The self-rating
question was mandatory. The demographic questionnaire
also included a gender question with options for “male”, “fe-
male”, “other” and “prefer not to say” – only one user did
not specify either male or female.

Table 1: Summary of dataset variables

Dataset Usrs Gender Rounds Conditions
Set-A 51 43 ♂, 8 ♀ 167 3 speeds, 11 delays
Set-B 32 23 ♂, 8 ♀, 1 ? 167 3 speeds, 11 delays

Combined 83 66 ♂, 16 ♀, 1 ? 334 6 speeds, 22 delays

Table 1 summarizes the major dataset variables, with the
bottom row, “Combined”, showing the users, gender and
rounds of both datasets combined into one.

Table 2 shows the breakdown of self-rated skills for each
dataset, with the mean and standard deviation reported by
𝑥 and 𝑠 in the last two columns, respectively. The bottom
row shows the breakdown of both datasets combined into
one. The datasets have a slight skew towards higher skills
(mean skill slightly above 3 and mode 4 for each) but there
are players of all skill levels in both sets.

4 MODELING SELECTION TIME
This section describes our methods used to process and ana-
lyze the user study data to derive models for the distribution
of elapsed times to select moving targets with delay.

Preprocessing
In Puck Hunt, if the user’s time to select the target surpasses
30 seconds, the round ends, and the elapsed time for that
round is recorded as a 30. These 30 second values are not
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Table 2: Dataset breakdown of self-rated skills

Self-rated skill
Dataset 1 2 3 4 5 𝑥 s
Set-A 1 3 5 24 18 4.1 0.9
Set-B 4 2 9 8 9 3.5 1.3

Combined 5 5 14 32 27 3.9 1.1

the elapsed times that would have been recorded if the trial
continued, and so artificially impact any model of selection
time that includes them. Thus, we look to replace values of
exactly 30 seconds with estimates of the larger values they
likely would have had if the round had continued (and the
user had kept trying) until the target was selected.
In total, the game has 33 different combinations of speed

and delay, called difficulty levels. For most difficulty levels,
there are no elapsed times of 30 seconds. However, the higher
difficulty levels (speeds above 500 px/s, and delay above 120
ms) have one or more 30 second values.

Table 3: Elapsed times above 30 seconds

Speed Delay (ms)
(px/s) 145 170 195 220 320 420

550 0 0 0 0 1 5
- - - - (0.4%) (2.0%)

1100 2 1 3 2 18 56
(0.8%) (0.4%) (1.2%) (0.8%) (7.1%) (22.0%)

1550 3 3 8 12 70 109
(1.2%) (1.2%) (3.1%) (4.7%) (27.5%) (42.8%)

Table 3 includes the number and percent of trials with
elapsed times recorded as 30 seconds for high difficulty levels.
All difficulties not in the table (i.e., easier levels) have no
values recorded as 30. For the numbers with a normal font,
only above 1% (or fewer) of the times are a 30, so we leave
them as is.
For the difficulty levels in italics and bold, we estimate

the elapsed times as if they were not artificially constrained,
and generate synthetic points. Figure 2 depicts CDFs of the
empirical data, along with previously derived models2 at
several example difficulty levels to illustrate our methods of
generating elapsed times larger than 30. The x-axis is the
elapsed time and the y-axis is the cumulative distribution.
The solid lines are CDFs of empirical data, and the dashed
lines with the same color are the corresponding models listed
in Table 4. For the 4 difficulty levels with bold numbers in

2Citation not provided to preserve anonymity during review.

Figure 2: Example above 30 data

Table 4: Analytic models for CDFs for speed & delay combi-
nations not including failures.

Speed Delay Equation 𝑅2 Mean (ms)
550 420 0.39 · 𝑙𝑛(𝑥) − 0.11 0.96 6.2
1100 320 0.34 · 𝑙𝑛(𝑥) − 0.09 0.98 8.2
1100 420 0.27 · 𝑙𝑛(𝑥) − 0.20 0.94 23.1
1550 195 0.29 · 𝑙𝑛(𝑥) + 0.05 1.00 7.4
1550 220 0.30 · 𝑙𝑛(𝑥) − 0.07 0.97 10.3
1550 320 0.25 · 𝑙𝑛(𝑥) − 0.17 0.94 30.0
1550 420 0.21 · 𝑙𝑛(𝑥) − 0.22 0.93 66.8

Table 3, we replace the original data with randomly gener-
ated points above 30 seconds using the models. For the 3
difficulty levels in italics, the corresponding CDF model does
not surpass 30 seconds. For these difficulty levels, we model
the tail of the distribution as a linear regression using the
last 5 data points, and extend the CDF to 1 on the y-axis. We
replace the original data with points evenly distributed on
those extension lines.

Standardization
Before modeling, we standardized the mean and speed by
subtracting the means and dividing by the standard devia-
tions in Table 5.

Table 5: Values used for standardization

Factor Mean Std Dev
Delay (D) 206 ms 122
Speed (S) 683 px/s 488
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Figure 3: Probability distribution of elapsed time

Normalization
Figure 3 shows the probability distribution of all elapsed
times from the user studies. The x-axis is the elapsed time and
the y-axis is the probability. The blue region, the distribution
of all elapsed times, appears log-normal, which makes sense
since human actions are impacted by many individual factors
that, when put together, have an exponential distribution.We
take the logarithm of the elapsed time to obtain a probability
distribution in the green region that appears normal. The
probability distribution of elapsed time at each difficulty level
follows this pattern, too.

Modeling
We use multivariate, multiple regression to model the mean
and standard deviation of the natural logarithm of the elapsed
time. This will allow us to generate distributions of elapsed
times for a given difficulty level, making it usable both for
analytically modeling and for simulating game performance.
There are many possible models that fit the elapsed time

data. We compare different regression models by using the
coefficient of determination (𝑅2) as a measurement of how
well observed outcomes are replicated by the model. In doing
such a comparison, it might be tempting to choose the model
with the maximum 𝑅2, but this can over-fit the model to
the data (i.e., the 𝑅2 value can be increased by adding more
terms). However, the adjusted𝑅2 modifies the𝑅2 based on the
number of predictors in the model, increasing if the new term
improves the model more than would be expected by chance
and decreasing it otherwise. Overall, wewant a parsimonious
model – one that provides the desired prediction with as few
terms as possible.
Table 6 summarizes the models explored. For the equa-

tions, the 𝑘 parameters (e.g., 𝑘1) are constants, 𝑒 is the base

Figure 4: PDF of modeled data and empirical data

of the natural logarithm (2.7182), 𝑑 is the standardized de-
lay and 𝑠 is the standardized speed, where 𝑑 = 𝐷−206

122 and
𝑠 = 𝑆−683

488 .
While model 10 has the highest 𝑅2 for both mean and

standard deviation, it is only slightly higher than model 8
while having significantly more terms (9 versus 4). Thus, we
propose predicting mean and standard deviation for the log
of the elapsed time:

𝑚𝑒𝑎𝑛(𝑙𝑛 𝑇 ) = 𝑘1 + 𝑘2𝑑 + 𝑘3𝑠 + 𝑘4𝑑𝑠

𝑠𝑡𝑑𝑑𝑒𝑣 (𝑙𝑛 𝑇 ) = 𝑘5 + 𝑘6𝑑 + 𝑘7𝑠 + 𝑘8𝑑𝑠
(1)

where d and s are standardized from the delay (D) and target
speed (S), respectively: 𝑘1 through 𝑘8 are constants derived
from data gathered through the user studies.
Using our standardized user study data in Table 5 yields

an adjusted 𝑅2 for mean and standard deviation both at 0.96.
The final model for the mean and standard deviation of the
natural log of elapsed time is:

𝑚𝑒𝑎𝑛(𝑙𝑛 𝑇 ) = 0.685 + 0.506𝑑 + 0.605𝑠 + 0.196𝑑𝑠
𝑠𝑡𝑑𝑑𝑒𝑣 (𝑙𝑛 𝑇 ) = 0.567 + 0.126𝑑 + 0.225𝑠 + 0.029𝑑𝑠 (2)

With the models predicting mean and standard deviation
for ln T, given speed and delay, the normal distribution with
the predicted mean and standard deviation can be used to
generate a distribution of logarithmic elapsed times, taking
the exponent to get the elapsed time. Figure 4 shows the
model generated data compared to the actual data. The x-
axis is the elapsed time in seconds, and the y-axis is the
cumulative distribution. The blue shape is the probability
distribution of the elapsed time for the empirical data, and
the red shape is generated from the normal distribution using
the modeled mean and standard deviation from Equation 2.
Our model has excellent fit for the data with 𝑅2 at 0.99 and
RMSE at 0.03.
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Table 6: Models predicting mean and standard deviation of selection time of a moving target with delay (𝑑) and speed (𝑠)

Model Mean 𝑅2 Std Dev 𝑅2

1. 𝑘1 + 𝑘2𝑠 0.41 0.67
2. 𝑘1 + 𝑘2𝑒

𝑠 0.39 0.61
3. 𝑘1 + 𝑘2𝑑 0.23 0.07
4. 𝑘1 + 𝑘2𝑑 + 𝑘3𝑠 0.89 0.94
5. 𝑘1 + 𝑘2𝑒

𝑑 0.18 0.07
6. 𝑘1 + 𝑘2𝑒

𝑑 + 𝑘3𝑒
𝑠 0.68 0.79

7. 𝑘1 + 𝑘2𝑑 + 𝑘3𝑑
2 + 𝑘4𝑠 + 𝑘5𝑠

2 0.88 0.94
8. k1 + k2d + k3s + k4ds 0.96 0.96
9. 𝑘1 + 𝑘2𝑒

𝑑 + 𝑘3𝑒
𝑠 + 𝑘4𝑒

𝑑𝑒𝑠 0.84 0.83
10. 𝑘1 + 𝑘2𝑑 + 𝑘3𝑑

2 + 𝑘4𝑠 + 𝑘5𝑠
2 + 𝑘6𝑑𝑠 + 𝑘7𝑑

2𝑠 + 𝑘8𝑑𝑠
2 + 𝑘9𝑑

2𝑠2 0.97 0.96

Figure 5: Example CDF data and models. Top: speed 1550
px/s and delay 70 ms. Bottom: speed 550 px/s and delay 170
ms

Figure 5 shows example CDFs of our model and data for
speed at 1550 px/s and delay 70ms (top) and speed 550 px/s
and delay 170 ms (bottom). The blue dots are the empirical
elapsed times from the user study data and the dashed black
lines the corresponding models at the respective difficulty.
In all cases, the model fits the data well, with 𝑅2 both at 0.98
and RMSE both at 0.04.

Figure 6: Combined skill groups

Player Skills
In the user studies, players rate their skills as computer
gamers from 1 (low) to 5 (high). The mean self-rating was
about 3.9, showing a slight skew to having “high ability”.
Based on our user sample, we divided users into low skill
(24 users with self-rating 1-3) and high skill (59 users with
self-rating 4-5).

The performance of each user is the average of their results
across all trials in their user study (Set-A or Set-B). Since the
games and tested conditions are slightly different between
the two user studies, user results from one study cannot
be directly compared (or combined) with the results from
another. Hence, we normalize the data for each user study
based on the average performance of all users in the same
dataset. For example, since the average elapsed time to select
a target across all users and all trials for the Set-B dataset is
1.6 seconds, each individual user in the Set-B dataset has their
average elapsed time divided by 1.6. Users with normalized
values below 1 are better than average and values above 1
are worse than average – e.g., a normalized score of 0.9 is
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10% better than the average while a 2.0 is twice as bad as the
average.
Figure 6 shows boxplots of normalized elapsed time on

the y-axis for users clustered by skill group on the x-axis.
Each box depicts quartiles and median with the mean shown
with a ‘+’. Points higher or lower than 1.4 × the inter-quartile
range are outliers, depicted by the dots. The whiskers span
from the minimum non-outlier to the maximum non-outlier.
The x-axis “n=” labels indicate the number of participants in
each skill group.
From the figure, the mean and median of normalized

elapsed times decrease (improve) with self-rated skill. The
spread also indicates that some individuals with lower self-
ratings perform better than users with higher self-ratings.
Since the elapsed time data was observed to be skewed

right, comparisons of the two skill groups was done using
a Mann-Whitney U test – a non-parametric test of the null
hypothesis that it is equally likely that a randomly selected
value from one group will be greater than or less than a
randomly selected value from a second group. Effectively,
this tests whether two independent self-rated skill group
samples come from populations having the same distribution.

Table 7: Mann-Whitney U test for elapsed time by self-rated
skill

Users Median
low high low high U p value
24 59 1.22 0.91 321 <.001

Table 7 gives the results of the Mann-Whitney U tests.
The “Users” and “Median” columns show the number of
corresponding participants and median normalized elapsed
times for the respective skill groups. The “U” and “p value”
columns depict the test results. The test indicates that the
difference in median elapsed of low skill compared to high
skill is significant.

Modeling with Player Skills
We derive models for ln T parameterized by skill as we did
for all users before, again finding the form of model 8 in
Table 6 to be the most parsimonious.

The final models for the mean and standard deviation of
ln T parameterized by player skill are shown in Table 8.

Figure 7 shows example CDF models for a 1100 px/s target
and delay 320ms for a a low skill player (top) and a high skill
player (bottom). For both graphs, the x-axis is the elapsed
time and the y-axis is the cumulative distribution. The blue
dots are the empirical elapsed times and the black dashed
lines are the corresponding models. Our model fits both sets

Figure 7: Example CDF for speed 1100 px/s and delay 320ms.
Top: low skill. Bottom: high skill

of data well, with 𝑅2 at 0.93, RMSE at 0.08 for the low skill
player, and 𝑅2 at 0.99, RMSE at 0.02 for the high skill player.

Validation

Figure 8: Training. Train the model with 80% of the data.

To validate the modeling approach, we randomly take 20%
of data from each difficulty level(combination of target speed
and delay) for validation, and train a model with the remain-
ing 80% of data. Figure fig:train depicts how the resulting
model fits the training data. The model fits the training data
well with 𝑅2 at 0.99 and RMSE at 0.03. Figure fig:validate
depicts how the trained model fits the validation data. The
model fits the validation data well with 𝑅2 high at 0.99, and
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Table 8: Models of moving target selection time with delay

Skill Model Adjusted 𝑅2

All 𝑚𝑒𝑎𝑛(𝑙𝑛 𝑇 ) = 0.685 + 0.506𝑑 + 0.605𝑠 + 0.196𝑑𝑠 0.96
𝑠𝑡𝑑𝑑𝑒𝑣 (𝑙𝑛.𝑇 ) = 0.567 + 0.126𝑑 + 0.225𝑠 + 0.029𝑑𝑠 0.96

Low 𝑚𝑒𝑎𝑛(𝑙𝑛 𝑇 ) = 0.850 + 0.560𝑑 + 0.672𝑠 + 0.212𝑑𝑠 0.96
𝑠𝑡𝑑𝑑𝑒𝑣 (𝑙𝑛.𝑇 ) = 0.589 + 0.118𝑑 + 0.253𝑠 + 0.009𝑑𝑠 0.88

High 𝑚𝑒𝑎𝑛(𝑙𝑛 𝑇 ) = 0.605 + 0.468𝑑 + 0.625𝑠 + 0.208𝑑𝑠 0.95
𝑠𝑡𝑑𝑑𝑒𝑣 (𝑙𝑛 𝑇 ) = 0.539 + 0.109𝑑 + 0.227𝑠 + 0.041𝑑𝑠 0.96

Figure 9: Validation. Validate trained model with 20% of the
data.

RMSE low at 0.02. The modeling approach is validated as
an effective and accurate approach to generate models that
represent the distribution of moving target selection time.
To make most of the data and to get better models, we use
the models trained by all of the data as the analytic models
for moving target selection.

5 EVALUATION
As a demonstration of the models use and to evaluate several
specific game configurations, we use our model as the basis
for analytically modeling player performance and for some
game simulations. This allows us to explore the impact of
game and system configuration on game performance over
a range of delays.

Player Performance versus Delay
We begin by comparing the impact of delay on performance
for target selection compared to reaction actions where a
player responds immediately (e.g., by a key press or mouse
click) to an event in the game. Using our model, selection
time performance with delay is modeled analytically by 𝑇 (0)

𝑇 (𝑛) ,
where T(n) is the mean of elapsed time with delay at an
average target speed at 450 px/s, calculated with our model.
Reaction time actions are similarly modeled, but using the
mathematical response time derivation by Ma et al. [17].
Figure 10 depicts the effects of delay on player perfor-

mance for both actions. The x-axis is delay, in milliseconds,
with a “0” representing the ideal case, and the y-axis the nor-
malized performance with a “1” representing performance
in the best case (0 delay). The blue line shows how player

Figure 10: Player performance versus delay

Figure 11: Win rate versus delay for different skill players

performance selecting a 450 px/s target decays with an in-
crease in delay. The orange line shows how player reaction
time performance decays with an increase in delay. From the
figure, both actions have degraded by about 25% at a modest
delay of 100 ms. The blue line has a steeper decreasing trend
than the orange line, indicating that delay has more impact
on selection actions than on reaction actions.



A Model for Target Selection Time TR’20, July 2020, WPI, Worcester, MA, USA

Figure 12: Win rate versus delay for difference target speeds

Win Rate versus Delay – Skill
We simulate a shooter game where two players try to select
(shoot) a target before their opponent. Both players have an
equal base delay, but one player has extra network delay to
evaluate the effects of unequal amounts of delay on matches
with players of equal skill. We simulate 100k iterations of
the game for each combination of added delay and player
skill. Figure 11 depicts the results. The x-axis is the delay
difference for the two players, and the y-axis is the win rate
of the player with lower delay. The blue line is games with
two low skill players, while the orange line is games with
two high skill players. From the figure, even modest delay
differences of 100 ms makes it about 50% harder for the
delayed player to win. The blue line increases faster than the
orange line, indicating delay impacts the games with higher
skill players less.

Win Rate versus Delay – Target Speed
Figure 12 depicts how delay impacts win rate with different
target speeds. This simulation is the same as before, but both
players are of average skill and the target speed varies. The
x-axis is the delay difference for the two players, and the
y-axis is the win rate of the player with lower delay. The
blue line is games with slow target speeds of 150 px/s, while
the orange line is games with fast target speeds of 1150 px/s.
The orange line increases faster than the blue line, indicating
delay impacts player performance more for higher target
speeds (i.e. harder games).

High Framerate Displays
We next simulate the potential benefits high framerates dis-
plays have on gameplay. We assume a configuration with a
total delay of 55 ms and a 120 Hz display, and then evaluate
the impact on performance for alternate setups using the

Figure 13: Frame rate and delay

same shooting game used above with target speeds of 300
px/s.
Figure 13 depicts the results. The blue line simulates an

average skill player, the darkest green dashed line depicts
perform if a 60 Hz display were used instead, and the lightest
green dashed line if a 240 Hz display were used instead.

Table 9: Display frame rate

Delay(ms) Hz Elapsed Time(s) Δ w/Hz Δ w/Delay

25
60 0.722 -2.70%
120 0.703 — 9.41%
240 0.693 1.42%

55
60 0.797 -2.71%
120 0.776 — —
240 0.765 1.42%

85
60 0.880 -2.80%
120 0.856 — -10.31%
240 0.845 1.29%

Table 9 quantifies the results. Column #1 includes three
total base delays, each with 120 Hz display. Column #2 shows
the display frame rates simulated (60 Hz, 120 Hz, and 240
Hz). Column #3 has the simulated elapsed time at each base
delay and Hz display. Column #4 provides the change in
performance for the different displays from the base delay.
And column #5 provides the change in performance for a 30
ms change in the base delay.

From the table and figure, the performance difference for
a downgrade to the 60 Hz display is between -2.8% and -
2.7%, and the performance difference for an upgrade to the
240 Hz is between 1.29% and 1.42%. Thus, an upgrade form
60Hz to 120Hz improves player performance more than an
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upgrade from 120Hz to 240Hz. The performance difference
from changing the base delay from 55ms to 25ms is 9.41%,
and from 55ms to 85ms is -10.31%. In total, this suggests that
base delay and network delay impacts player performance
more than does the display frame rate. This confirms user
study results measured by Spjut et al. [24].

6 CONCLUSION
With the growth in networking and cloud services, applica-
tions are increasingly hosted on servers, adding significant
delay between user input and rendered results. This is true
of computer games, where user input in response to game
events can be delayed by the local system and the network-
ing and processing by the server before rendered results are
displayed on the screen. Understanding the impact of delay
on game input can help build systems that better deal with
the avoidable delays.

While user studies are effective for measuring the effects
of delay on player performance, they are time intensive and,
by necessity, typically have a limited range of game param-
eters they can test. Analytic models and simulations that
mimic the behavior of players in games can complement
user studies, providing for a broader range of study. This
latter approach is most effective if the game modeled and
simulated incorporates observed user behavior. This work
leverages data gathered from two previous user studies to
build a model that can be used for just such an approach –
analytic models and simulations.

Eighty-three users playing 334 rounds of a game provided
data on the time to select a moving target, the target moving
with 6 different speeds and the mouse input subjected to
22 different amounts of delay. The resultant elapsed time
data on the time to select the targets appears log-normal. We
used multivariate, multiple regression to model the mean and
standard deviation of natural log of the elapsed time, with
additive linear terms for delay and speed and a multiplicative
interaction term. This use of delay and speed is critical for
accuracy of the models, as is the interaction term as there
is an interplay of high delay and high speed that impacts
elapsed times. The models can be used to generate a normal
distribution of logarithmic elapsed times, then expanded by
taking the exponential to get a distribution of elapsed times.
Furthermore, the same approach is used to model elapsed
time distributions based on self-rated user skill, which we
ascertained could be differentiated into two tiers: low (self-
rated skill 1-3) and high (self-rated skill 4-5). As proposed,
our models have an excellent fit (𝑅2 around 0.98 and low root
mean square error).

In addition to the main contribution of a model for the dis-
tribution of target selection times with delay, we demonstrate
use of the model by analytically modeling and simulating
player performance in a game that features target selection.

The analytic modeling and simulation results show that for
the evaluated game:

1 Even delays of only 100ms make it about 50% harder
to win.

2 High skill players are less affected by delay than low
skill players.

3 Delay affects players more for faster targets.
4 Improving delays by as little as 30ms can improve
player performance more than increasing frame above
60 Hz.

7 LIMITATIONS
The model is limited by the details recorded and varied by
the underlying user studies. As such, the model is only ac-
curate over the range of target speeds and delays tested.
For example, this means the model may not be accurate in
extrapolating results to very low delays, such as might be
encountered in future high end gaming systems, nor may it
well-represent extremely small or extremely slow targets.

While target selection is a common action in both 2D and
3D games, the user studies were for a 2D game only so the
model may not be accurate in 3D where perspective and
target size may change with camera placement.
The self-rated skill is a coarse measure of player experi-

ence and a more detailed, multi-question self-assessment
may provide for more accuracy in models of performance
versus skill.

The studies including 66 males, but only 16 females par-
ticipants and the vast majority are relatively young. Gamer
demographics are much more evenly split across gender and
more widely distributed by age.

While the models presented in this paper provide insights
into a meaningful and fundamental measure of performance
– the elapsed time to select – another important measure
of performance for selection is accuracy. Accuracy in the
datasets used in this work manifests itself in the number
of clicks needed to select the target – any number greater
than 1 is a “miss”. Future work could model accuracy in
a manner similar to the elapsed time models in this work.
These accuracy models could be combined with our elapsed
time models to simulate shooter games with ammunition,
wherein accuracy matters in terms of number of shots taken
or allowed.
The atomic action of moving target selection is only one

of many fundamental game actions that are affected by delay.
Future work could design and conduct user studies to gather
data on the effects of delay on other atomic actions. Data
from these studies could the modeled as in this paper, and
those models combined with our models of target selection
to simulate the effects of delay for a richer set of games. For
example, a user study that assessed the impact of delay on
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avatar navigation could provide data for models of the im-
pact of delay on player avatar movement. These navigation
models could be used in conjunction with our models of
target selection to simulate a wide range of shooter games,
allowing study of the effects of delay for the many commer-
cial shooter games that have not been evaluated, nor possibly
even built.
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