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Abstract—Satellite connections are critical for continuous net-
work connectivity when disasters strike and for remote hosts
that cannot use traditional wired, WiFi or mobile networking.
While Internet satellite bitrates have increased, latency can still
degrade TCP performance. Assessment of TCP over satellites
is lacking, typically done by simulation or emulation only, if
at all. This paper presents experiments comparing four TCP
congestion control algorithms – BBR, Cubic, Hybla and PCC
– on a commercial satellite network. Analysis of the results
shows similar steady-state bitrates for all, but with significant
differences in start up throughputs and round-trip times caused
by queuing of packets in flight. Power analysis combining
throughput and latency shows that overall, PCC is the most
powerful, due to relatively high throughputs and low, steady
round-trip times, while for small downloads Hybla is the most
powerful, due to fast throughput ramp-ups. BBR generally fares
similarly to Cubic in all cases.

I. INTRODUCTION

Satellite networks are an essential part of modern society,

providing ubiquitous network connectivity even in times of

disaster. The number of satellites in orbit is over 2100, a 67%

increase from 2014 to 2019 [1]. As few as three geosyn-

chronous (GSO) satellites can provide global coverage, in-

terconnecting widely distributed networks and providing “last

mile” connectivity to remote hosts. The idea of “always-on”

connectivity is particularly useful for redundancy, especially in

an emergency when traditional (i.e., wired) connections may

not be available. Recent research in satellite technology has

produced spot beam technology frequency reuse to increase

transmissions capacity more than 20x and the total capacity

of planned GEO satellites is over 5 Tb/s.

While throughput gains for satellite Internet are promising,

satellite latencies can be a challenge. GSO satellites orbit

about 22k miles above the earth, which means about 300

milliseconds of latency to bounce a signal up and down,

a hurdle for TCP-based protocols that rely upon round-trip

time communication to advance their data windows. The

physics involved for round-trip time Internet communication

between terrestrial hosts using a satellite accounts for about

550 milliseconds of latency at a minimum [2]. To combat

these latencies that can limit TCP throughput, many satellite

operators use middle-boxes (also known as “performance

enhancing proxies” or PEPs) to short-circuit the round-trip

time communication to the satellite (see Figure 1). Unfortu-

nately, encrypted connections that use TCP (such as TLS) or

alternative protocols such as QUIC, can render these satellite

PEPs ineffective.

Fig. 1. TCP over a satellite with a performance enhancing proxy. [2].

TCP congestion control algorithms play a critical role in

enhancing or restricting throughput in the presence of network

loss and latency. TCP Cubic [3] is the default TCP con-

gestion control algorithm in Linux and Microsoft Windows,

but BBR [4] has been widely deployed by Google on Linux

servers and is a congestion control option available in the

QUIC transport protocol, as well [5]. A better understanding of

TCP congestion control algorithm performance over satellite

networks without PEPs is needed in order assess challenges

and opportunities that satellites have to better support TCP

and QUIC moving forward.

However, while TCP and BBR measurements have been

done over wireless networks [6], there are few published

studies measuring network performance over actual satellite

networks [7], with most studies either using just simulation [8]

or emulation with satellite parameters [9], [10], [11], [12].

This paper presents results from experiments that mea-

sure the performance of TCP over a commercial Internet

satellite network. We compare four algorithms with differ-

ent approaches to congestion control: default AIMD-based

(Cubic [3]), bandwidth estimation-based (BBR [4]), utility

function-based (PCC [12]), and satellite-optimized for startup

(Hybla [13]). The network testbed and experiments are done

over the Internet, but designed to be as comparable across runs

as possible by interlacing runs of each protocol serially to min-

imize temporal differences and by doing 80 bulk downloads

for each protocol to provide for a large sample. In addition, a



custom ping application provides several days worth of round-

trip time and lost packet data to get a baseline on a “quiet”

satellite network.

Analysis of the results shows the satellite link has con-

sistent baseline round-trip times of about 600 milliseconds,

but infrequently has round-trip times of several seconds. Loss

events are similarly infrequent (less than 0.05%) and short-

lived. For the TCP algorithms, all four congestion control

algorithms have similar overall median throughputs. BBR

achieves the maximum link capacity more often than Cubic,

Hybla or PCC. However, during the start-up phase, Hybla has

the highest throughput followed by PCC, BBR and Cubic, in

that order – faster start-up means faster completion for short-

lived downloads, such as Web pages. Overall, Hybla has the

highest average throughput, owing to its higher throughput

during start-up. PCC has the lowest overall round-trip time,

and Hybla the highest, consistently 50% higher than PCC.

BBR and Cubic round-trip times are similar and between those

of PCC and Hybla. However, BBR, Cubic and PCC (to a

lesser extent), have periods of high retransmission rates owing

to their over-saturation of the bottleneck queue, while Hybla

mostly avoids this. Power analysis that combines throughput

and delay shows PCC is generally the most powerful, followed

by Hybla with Cubic and BBR equally the least powerful.

The rest of this report is organized as follows: Section II

describes research related to this work, Section III describes

our testbed and experimental methodology, Section IV an-

alyzes our experiment data, and Section V summarizes our

conclusions and suggests possible future work.

II. RELATED WORK

This section describes work related to our paper, including

TCP congestion control (Section II-A), comparisons of TCP

congestion control algorithms (Section II-B), and TCP perfor-

mance over satellite networks (Section II-C).

A. TCP Congestion Control (CC)

There have been numerous proposals for improvements to

TCP’s congestion control algorithm since it’s inception. This

section highlights a few of the papers most relevant to our

work, presented in chronological order.

Caini and Firrinielli [13] propose TCP Hybla to overcome

the limitations traditional TCP flows have when running over

high-latency links (e.g., a Satellite). TCP Hybla modifies the

standard congestion window increase with: a) an extension

to the “additive increase”; b) adoption of the SACK option

and timestamps, which help in the presence of loss, and c)

using packet spacing to reduce transmission burstiness. The

slow start (SS) and congestion avoidance (CA) algorithms for

Hybla are:

SS : cwnd = cwnd + 2
ρ
− 1 (1)

CA : cwnd = cwnd+
ρ2

cwnd
(2)

ρ = RTT/RTT0 (3)

where RTT0 is typically fixed at a “wired” round-trip time

of 0.025 seconds. Hybla is available for Linux as of kernel

2.6.11 (in 2005).

Ha et al. [3] develop TCP Cubic as in incremental improve-

ment to earlier congestion control algorithms. Cubic is less

aggressive than previous TCP congestion control algorithms

in most steady-state cases, but can probe for more bandwidth

quickly when needed. Cubic’s window size is dependent only

on the last congestion event, providing for more fairness to

flows that share a bottleneck but have different round-trip

times. TCP Cubic has been the default in Linux as of kernel

2.6.19 (in 2007), Windows 10.1709 Fall Creators Update (in

2017), and Windows Server 2016 1709 update (in 2017).

Cardwell et al. [4] develop TCP Bottleneck Bandwidth and

Round-trip time (BBR) as a Cubic alternative. BBR uses the

maximum bandwidth and minimum round-trip time observed

over a recent time window to build a model of the network and

set the congestion window size (up to twice the bandwidth-

delay product). BBR has been deployed by Google servers

since at least 2017 and is available for Linux TCP since Linux

kernel 4.9 (end of 2016).

Dong et al. [12] propose TCP PCC that continuously

observes performance based on measurements in the form of

mini “experiments”. Different actions taken these experiments

are compared using a utility function, adopting the rate that

has the best performance. The authors compare PCC against

other TCP congestion control algorithms, including Cubic and

Hybla, and emulate a satellite network based on parameters

from a satellite Internet system. PCC is not generally avail-

able for Linux, but we were able to obtain a Linux-based

implementation from Compira Labs.1

B. Comparison of CC Algorithms

Cao et al. [14] analyze measurement results of BBR and

Cubic over a range of different network conditions. They

produce heat maps and a decision tree that identifies conditions

which show performance benefits from BBR over using Cubic.

They find it is the relative difference between the bottleneck

buffer size and bandwidth-delay product that dictates when

BBR performs well. Our work extends this work by providing

detailed evaluation of Cubic and BBR in a satellite configu-

ration, with round-trip times significantly beyond those tested

by Cao et al.

Ware et al. [15] model how BBR interacts with loss-based

congestion control protocols (e.g., TCP Cubic). Their validated

model shows BBR becomes window-limited by its in-flight

cap which then determines BBR’s bandwidth consumption.

Their models allow for prediction of BBR’s throughput when

competing with Cubic with less than a 10% error.

Turkovic et al. [16] study the interactions between con-

gestion control algorithms. They measure performance in a

network testbed using a “representative” algorithm from three

main groups of TCP congestion control – loss-based (TCP

Cubic), delay based (TCP Vegas [17]) and hybrid (TCP BBR)

1https://www.compiralabs.com/



– using 2 flows with combinations of protocols competing

with each other. They also do some evaluation of QUIC [18]

as an alternative transport protocol to TCP. They observed

bandwidth fairness issues, except for Vegas and BBR, and

found BBR is sensitive to even small changes in round-trip

time.

C. TCP over Satellite Networks

Obata et al. [7] evaluate TCP performance over actual (not

emulated, as is typical) satellite networks. Specifically, they

compare a satellite-oriented TCP congestion control algorithm

(STAR) with TCP NewReno and TCP Hybla. Experiments

with the Wideband InterNetworking Engineering test and

Demonstration Satellite (WINDS) system show throughputs

around 26 Mb/s and round-trip times around 860 milliseconds.

Both TCP STAR and TCP Hybla had better throughputs over

the satellite links than TCP NewReno.

Wang et al. [10] provide a preliminary performance evalu-

ation of QUIC with BBR on a network testbed that emulates

a satellite network (capacities 1 Mb/s and 10 Mb/s, RTTs

200, 400 and 1000 ms, and packet loss rates up to 20%).

Their results confirm QUIC with BBR has some throughput

improvements compared with TCP Cubic for their emulated

satellite network.

Utsumi et al. [9] develop an analytic model for TCP Hybla

for steady-state throughput and latency over satellite links.

They verify the accuracy of their model with simulated and

emulated satellite links (capacity 8 Mb/s, RTT 550 ms, and

packet loss rates up to 2%). Their analysis shows substantial

improvements to throughput over that of TCP Reno for loss

rates above 0.0001%

Our work extends the above with comparative performance

for four TCP congestion control algorithms on an actual,

commercial satellite Internet network.

III. METHODOLOGY

In order to evaluate TCP congestion control over satellite

links, we use the following methodology: setup a testbed

(Section III-A), measure network baseline loss and round-trip

times (Section III-B), bulk-download data using each conges-

tion control algorithm serially (Section III-C), and analyze the

results (Section IV).

A. Testbed

We setup a satellite link and configure our clients and

servers so as to allow for repeated tests. Our setup is design to

enable comparative performance measurements by keeping all

conditions the same across runs as much as possible, except

for the change in TCP congestion control algorithm.

Our testbed is depicted in Figure 2. The client is a Linux PC

with an Intel i7-1065G7 CPU @ 1.30GHz and 32 GB RAM.

There are four servers, each with a different TCP congestion

control algorithm: Cubic, BBR, Hybla and PCC. Each server

has an Intel Ken E312xx CPUs @ 2.5 GHz and 32 GB RAM.

The servers and client all run Ubuntu 18.04.4 LTS, Linux

kernel version 4.15.0. The servers connect to the WPI LAN

Fig. 2. Satellite measurement testbed.

via Gb/s Ethernet. The WPI campus network is connected to

the Internet via several 10 Gb/s links, all throttled to 1 Gb/s.

The client connects to a Viasat satellite terminal (with a

modem and router) via a Gb/s Ethernet connection.

The terminal communicates through a Ka-band outdoor

antenna (RF amplifier, up/down converter, reflector and feed)

through the Viasat 2 satellite2 to the larger Ka-band gateway

antenna. The terminal supports adaptive coding and modula-

tion using 16-APK, 8 PSK, and QPSK (forward) at 10 to 52

MSym/s and 8PSK, QPSK and BPSK (return) at 0.625 to 20

MSym/s.

The connected Viasat service plan provides a peak data rate

of 144 Mb/s.

The gateway does per-client queue management for traffic

destined for the client, where the queue can grow up to 36

MBytes allowing the maximum queuing delay of about 2

seconds at the peak data rate. Queue lengths are controlled

by Active Queue Management (AQM) that starts to randomly

drop incoming packets when the queue grows over a half of

the limit (i.e., 18 MBytes).

Wireshark captures all packet header data on each server

and the client.

The performance enhancing proxy (PEP) that Viasat deploys

by default is disabled for all experiments.

B. Baseline

For the network baseline, we run UDP Ping3 consecutively

for 1 week from a server to the client. UDP Ping sends one

20-byte packet every 200 milliseconds (5 packets/s) round-trip

from the server to the client and back, recording the round-trip

time for each packet returned and the number of packets lost.

C. Downloads

We compare the performance of the four congestion control

algorithms: Cubic, BBR (version 1), Hybla and PCC [19].

The four servers are configured to provide for bulk-downloads

2https://en.wikipedia.org/wiki/ViaSat-2
3http://perform.wpi.edu/downloads/#udp



via iperf34 (v3.3.1), each server hosting one of our four

congestion control algorithms.

Cubic, BBR and Hybla are used without further configu-

ration. PCC is configured to use the Vivache-Latency utility

function [20].

For all hosts, the default TCP buffer settings are changed on

both the server and client so that flows are not flow-controlled

and instead are governed by TCP’s congestion window. These

included setting tcp_mem, tcp_wmem and tcp_rmem to 60

MBytes.

The client initiates a connection to one server via iperf,

downloading 1 GByte of data, then proceeding to the next

server. After cycling through each server, the client pauses

for 1 minute. The process repeats a total of 80 times – thus,

providing 80 network traces of a 1 GByte download for each

protocol over the satellite link. Since each cycle takes about

15 minutes, the throughput tests run for about a day total. We

analyze results from a weekday in July 2020.

IV. ANALYSIS

This section first presents network baseline metrics without

any active TCP flows, followed by TCP download perfor-

mance: overall, during steady state, and at start-up. To com-

pare the TCP congestion control performance, we consider

the metrics of throughput, delay (round-trip time) and loss

(retransmissions) [21].

A. Network Baseline
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Fig. 3. Baseline round-trip times.

4https://software.es.net/iperf/

We start by analyzing the network baseline loss and round-

trip times, obtained on a “quiet” satellite link to our client –

i.e., without any of our active bulk-downloads.

Figure 3 depicts analysis of about 2.5 days of round-trip

times for the satellite network, obtained from UDP Ping

measurements from our server to the client and back. Figure 3a

show the round-trip times over that time period, with one

data point every 200 milliseconds, and Figure 3b shows

the complementary cumulative distribution of the same data.

Table I provides summary statistics.

From the graphs and table, the vast majority (99%) of

the round-trip times are between 560 and 625 milliseconds.

However, the round-trip times have a heavy-tailed tendency,

evidenced by the round-trip times extending from 625 ms to

1500 ms in Figure 3b and again from 1700 ms to 2200 ms on

the bottom right. These high values show multi-second round-

trip times can be observed on a satellite network even without

any self-induced queuing. From the graph, there are no visual

time of day patterns to the round-trip times.

TABLE I
BASELINE ROUND-TRIP TIME SUMMARY STATISTICS.

mean 597.5 ms

std dev 16.9 ms

median 597 ms

min 564 ms

max 2174 ms

In the same time period, only 604 packets are lost, or about

0.05%. Most of these (77%) are single-packet losses, with

44 multi-packet loss events, the largest 11 packets (about 2.2

seconds). There is no apparent correlation between these losses

and the round-trip times (i.e., the losses do not seem to occur

during the highest round-trip times observed). Note, these loss

rates are considerably lower than the WINDS satellite loss of

0.7%, reported by Obata et al. [7].

B. Representative Behavior

To compare the TCP congestion control protocols, we begin

by examining the performance over time of a single flow that

is representative of typical behavior for each protocol for our

satellite connection. We analyze the throughput, round-trip

time and retransmission rate, depicted in Figure 4, where each

value is computed per second from Wireshark traces on the

server and client.

TCP Cubic illustrates typical exponential growth in rates

during start up, but exits slow start relatively early, about 15

seconds in where throughput is far lower than the expected 100

Mb/s or more. Thus, it takes Cubic about 45 seconds to reach

a more expected steady state throughput of about 100 Mb/s.

During steady state (post 45 seconds) the AQM drops enough

packets to keep Cubic from persistently saturating the queue,

resulting in round-trip times of about 1 second. However,

several spikes in transmission rates yield corresponding spikes

in round-trip time above 3 seconds and retransmission rates

above 20 percent.



(a) CUBIC (b) BBR

(c) Hybla (d) PCC

Fig. 4. Stacked graph comparison. From top to bottom, the graphs are: throughput (Mb/s), round-trip time (milliseconds), and retransmission rate (percent).
For all graphs, the x-axis is time (in seconds) since the flow started.

TCP BBR ramps up to higher throughput more quickly than

Cubic, but this also causes high round-trip times and loss rates

around 20 seconds in as it over-saturates the bottleneck queue.

At steady state, BBR operates at a fairly steady 140 Mb/s,

with relatively low loss and RTTs about 750 milliseconds as

BBR keeps the queue below the AQM limit. However, there

are noticeable dips in throughput every 10 seconds when BBR

enters its PROBE RTT state. In addition, there are intermittent

round-trip time spikes and accompanying loss which occur

when BBR enters PROBE BW and increases its transmission

rate for 1 round-trip time.

TCP Hybla ramps up quickly, faster than does Cubic,

causing queuing at the bottleneck, evidenced by the high early

round-trip times. However, there is little loss. At steady state

Hybla achieves consistently high throughput, with a slight

growth in the round-trip time upon reaching about 140 Mb/s.

Thereupon, there is a slight upward trend to the round-trip

time until the queue limit is reached accompanied by some

retransmissions.

TCP PCC ramps up somewhat slower than Hybla but faster

than Cubic, causing some queuing and some loss, albeit less

than BBR. At steady state, throughput and round-trip times are

quite consistent, near the minimum round-trip time (around

600 milliseconds), and the expected maximum throughput

(about 140 Mb/s).

C. Overall

We next evaluate overall throughput, computed per second

over the entirety of each flow’s download. Figure 5 depicts

throughput boxplot distributions at different percentiles taken

across all flows and grouped by protocol. The top left is the

tenth percentile, the top right the 50% (or median), the bottom

left the ninetieth percentile and the bottom right the mean.

Each box depicts quartiles and median for the distribution.



Points higher or lower than 1.4 × the inter-quartile range are

outliers, depicted by the circles. The whiskers span from the

minimum non-outlier to the maximum non-outlier. Table II

provides the overall throughput summary statistics.

Fig. 5. Overall throughput distributions for 10%, 50%, 90% and mean.

TABLE II
OVERALL THROUGHPUT SUMMARY STATISTICS.

Protocol Mean (Mb/s) Std Dev

BBR 95.8 6.7

Cubic 91.0 9.5

Hybla 112.1 11.2

PCC 91.8 10.2

From the figure and table, Cubic, BBR and PCC all suffer

from low throughput distributions at the tenth percentile. This

is attributed to a slower start-up phase for both BBR and

CUBIC, and the RTT probing phase by BBR. In contrast,

Hybla has throughputs near 100 Mb/s even at the tenth

percentile.

BBR and Hybla have similar throughput distributions at the

median, but Cubic and PCC are still lower.

BBR has the highest throughput distributions at the ninetieth

percentile, Cubic and Hybla are similar, and PCC trails by

a bit. Both BBR and PCC have more variation in ninetieth

percentile throughputs, evidenced by the larger boxes.

For the overall mean, Cubic and PCC are the lowest, with

BBR a bit higher and Hybla the highest.

Since Cubic is the default TCP congestion control proto-

col for Linux and Windows servers, we compare the mean

throughput for an alternate protocol choice – BBR, Hybla or

PCC – to the mean of Cubic by doing independent, 2-tailed

t tests (α = 0.05) with a Bonferroni correction, as well as

compute the effect sizes. The effect size provides a quantitative

measure of the magnitude of difference – in our case, the

difference of the means for two protocols. The Cohen’s d

effect size quantifies the differences in means in relation to the

standard deviation. Generally small effect sizes are anything

under 0.2, medium is 0.2 to 0.5, large 0.5 to 0.8, and very

large is above 0.8. The t test and effect size results are shown

in Table III. Statistically significance is highlighted in bold.

From the table, the mean overall throughput for BBR and

Hybla are statistically different than Cubic, whereas PCC is

not. The effect size for BBR versus Cubic is moderate, and

the effect sizes for Hybla versus Cubic is very large.

TABLE III
OVERALL THROUGHPUT EFFECT SIZE (VERSUS CUBIC).

t(158) p Effect Size

BBR 3.69 0.0003 0.58

Hybla 12.85 <.0001 2.03

PCC 0.5133 0.6084 0.08

Figure 6 shows the cumulative distributions of the round-

trip times taken over the entire download for each flow. The

x-axis is the round-trip time in seconds computed from the

TCP acknowledgments in the Wireshark traces, and the y-axis

is the cumulative distribution. There is one trendline for each

protocol. Table IV provides the overall throughput summary

statistics.

Fig. 6. Overall round-trip time distributions.

TABLE IV
OVERALL ROUND-TRIP TIME SUMMARY STATISTICS.

Protocol Mean (ms) Std Dev

BBR 827 85.4

Cubic 806 163.1

Hybla 906 129.3

PCC 722 49.6

From the table and figure, Hybla has a slightly higher

distribution of round-trip times, with BBR and Cubic next, and

PCC with the lowest round-trip time distribution. Conversely,

Cubic and BBR have the heaviest tail distribution of RTTs,

owing to the times they saturate the bottleneck queue. While

BBR and Cubic have similar mean round-trip times, BBRs

has considerably less variance. PCC has both a low round-trip

time and a steady round trip time, with the smallest variance.



Cubic does have RTT values over 10 seconds, trimmed off to

the right of the graph.

Figure 7 shows the cumulative distributions of the retrans-

missions. The axes and data groups are as for Figure 6, but

the y-axis is the percentage of retransmitted packets computed

over the entire flow.

From the figure, BBR and Cubic have the highest distri-

butions of retransmissions, caused by saturating the bottle-

neck queue and having packets lost. Hybla has the lowest

distribution of retransmissions, almost always under 1%. PCC

is inbetween, consistently having a 0.5% retransmission rate,

although it has a maximum near 4%.

Fig. 7. Overall retransmission distributions.

D. Steady State

TCP’s overall performance includes both start-up and con-

gestion avoidance phases – the latter we call “steady state” in

this paper. We analyze steady state behavior based on the last

half (in terms of bytes) of each trace.

Fig. 8. Steady state throughput distributions for 10%, 50%, 90% and mean.

Figure 8 depicts throughput comparisons for the steady

state of all downloads for each protocol. The graphs are as

in Figure 5, but only include the last half of all downloads.

Table V shows the corresponding summary statistics.

TABLE V
STEADY STATE THROUGHPUT SUMMARY STATISTICS.

Protocol Mean (Mb/s) Std Dev

BBR 112.9 12.2

Cubic 123.3 17.0

Hybla 130.1 17.2

PCC 112.6 17.9

From the graphs, BBR has lowest distribution of steady

state throughput at the tenth percentile. This is attributed to

the round-trip time probing phase by BBR, which, if there is

no change to the minimum round-trip time, triggers every 10

seconds whereupon throughput is minimal for about 1 second.

PCC’s throughput at the tenth percentile is also a bit lower than

Cubic’s or Hybla’s.

BBR, Cubic and Hybla all have a similar median steady

state throughputs, while PCC’s is a bit lower.

BBR has the highest distribution of throughput at the nineti-

eth percentile, followed by Cubic, Hybla and PCC. Hybla’s

distribution here is the most consistent (as seen by the small

box), while PCC’s is the least.

From the table, Hybla has the highest mean steady state

throughput, followed by CUBIC and then BBR and PCC are

about the same. BBR steady state throughput varies the least.

Table VI is like Table III, but for steady state. From the

table, the mean steady state throughputs are all statistically

significantly different than Cubic. BBR and PCC have lower

steady state throughput than Cubic with a large effect size.

Hybla has a higher throughput than Cubic with a moderate

effect size.

TABLE VI
STEADY STATE THROUGHPUT EFFECT SIZE (VERSUS CUBIC).

t(158) p Effect Size

BBR 4.44 <.0001 0.7

Hybla 2.51 0.0129 0.4

PCC 3.88 0.0002 0.6

Figure 9 shows the cumulative distributions of the round-

trip times during steady state. The axes and data groups are as

in Figure 6, but taken only for the second half of each flow.

Table VII shows the summary statistics.

TABLE VII
STEADY STATE ROUND-TRIP TIME SUMMARY STATISTICS.

Protocol Mean (ms) Std Dev

BBR 780 125.1

Cubic 821 206.4

Hybla 958 142.1

PCC 685 73.1

The steady state trends are similar in many ways to the

overall trends, with Hybla typically having round-trip times



Fig. 9. Steady state round-trip time distributions.

about 200 milliseconds higher than any other protocol. PCC

has the lowest and steadiest round-trip times, near the link

minimum. BBR and Cubic are inbetween, with BBR being

somewhat lower than Cubic and a bit steadier. Cubic, in

particular, has a few cases with extremely high round-trip

times. Across all flows, about 5% of the round trip times are

2 seconds or higher.

Figure 10 shows the cumulative distributions of the retrans-

missions during steady state. The axes and data groups are as

for Figure 10, but the y-axis is the percentage of retransmitted

packets computed over just the second half of each flow.

From the figure, Cubic has the highest retransmission dis-

tribution and Hybla the least. BBR and PCC are inbetween,

with BBR moderately higher but PCC having a much heavier

tail. Hybla and PCC are consistently low (0% loss) for about

3/4ths of all runs, compared to only about 20% for BBR and

Cubic.

Fig. 10. Steady state retransmission distributions.

E. Start-Up

We compare the steady state behavior for each protocol by

analyzing the first 30 seconds of each trace, approximately

long enough to download 50 MBytes on our satellite link.

This is indicative of protocol performance for some short-lived

flows, such as for a large Web page.

The average Web page size for the top 1000 sites worldwide

was around 2 MBytes as of 2018, a steady increase over

previous years [22]. This includes the HTML payloads, as

well as all linked resources (e.g., CSS files and images). The

distribution’s 95th percentile was about 6 MBytes and the

maximum was about 29 MBytes (a shared-images Website).

Today’s average total Web page size is probably about 5

MBytes [23], dominated by images and video. Note, these

sizes are upper bounds for the average download sizes from

a Web server since the individual components of a page

are obtained from different servers [24], hence different TCP

flows.

Many long-lived TCP flows carry video content and these

may be capped by the streaming video rate, which itself

depends upon the video encoding. However, assuming videos

are downloaded completely, about 90% of YouTube videos are

less than 30 MBytes [25].

Traditionally, the initial congestion window for TCP is

one or two maximum segment sizes (MSS) (subsequently

four [26]), and during slow-start, the window increases by the

MSS for each non-duplicate ACK received [27]. While there

are advantages to throughputs from a larger initial window,

there are risks to overshooting the slow start threshold and

overflowing router queues [8].

The initial congestion window settings can vary from server

to server, ranging from 10 to 50 MSS for major CDN

providers [28]. The default initial window in Linux since

kernel version 2.6 in 2011 is 10. Hybla multiplies the initial

congestion window by ρ from Equation 3 based on the TCP

handshake round-trip time measurement; for our testbed, this

is an increase of about 25x over the default, so a starting

window of 50. Our servers use an initial congestion window

of 10 for both BBR and Cubic, with Hybla adjusting it’s initial

congestion window size as above. PCC’s initial congestion

window over our satellite connection is about 25.

Figure 11 depicts the time that would have been required

to download an object on the x-axis (in seconds) for an object

sized on the y-axis (in MBytes). The object size increment is

1 MByte. Each point is the average time required a protocol

run to download an object of the indicated size, shown with

a 95% confidence interval.

From the figure, for the smallest objects (1 MByte), Hybla

and PCC download the fastest, about 4 seconds, owning to

the larger initial congestion windows they both have – both

PCC and Hybla have initial congestion windows about 2.5x

to 5x larger than either BBR or Cubic. In general, Hybla

downloads small objects fastest followed by PCC up to about

20 MBytes, then BBR and Cubic. After 20 MBytes, BBR

downloads objects faster than PCC. For an average Web page

download (5 MBytes), Hybla takes an average of 4 seconds,

PCC 7 seconds, BBR 10 seconds and Cubic 13 seconds. For

90% of all videos and the largest Web pages (30 MBytes),

Hybla takes about 8 seconds, BBR and PCC about twice that

and Cubic about thrice.

Table VIII presents the summary statistics for the first 30

seconds of each flow for each protocol. During startup, Cubic



Fig. 11. Download time versus download object size.

has a low round-trip time, mostly because it takes a long

time to ramp up its data rate, hence a low throughput. BBR

has the highest round-trip time despite not having the highest

throughput – that is had by Hybla, despite having a lower

round-trip time than BBR. PCC has average throughputs and

round-trip times, but the steadiest round-trip times.

TABLE VIII
START-UP SUMMARY STATISTICS.

Tput (Mb/s) RTT (ms)

Protocol Mean Std Dev Mean Std Dev

BBR 23.1 1.8 917 42.9

Cubic 16.6 0.3 757 22.3

Hybla 40.8 2.9 799 130.8

PCC 20.3 1.6 806 15.1

Table VI is like Table III, but for start-up (the first 30

seconds). From the table, the start-up throughputs are all

statistically significantly different than Cubic. The effect sizes

for throughput for PCC, BBR and Hybla are all very large

compared with Cubic.

TABLE IX
STARTUP THROUGHPUT EFFECT SIZE (VERSUS CUBIC).

t(158) p Effect Size

BBR 31.9 <.0001 5

Hybla 74.2 <.0001 12

PCC 20.3 <.0001 3.2

F. Power

In addition to examining throughput and round-trip time

separately, it has been suggested that throughput and delay

can be combined into a single “power” metric by dividing

throughput by delay [21] – the idea is that the utility of higher

throughput is offset by lower delay and vice-versa.

Doing power analysis using the mean throughput (in Mb/s)

and delay (in seconds) for each protocol for each phase (start-

up, steady state and overall) yields the numbers in Table X

(units are MBytes). The protocol with the most power in each

phase is indicated in bold.

TABLE X
TCP POWER - THROUGHPUT ÷ DELAY

Power (MBytes)

Protocol Overall Steady Start-up

BBR 115 144 35

Cubic 112 150 22

Hybla 123 136 51

PCC 127 165 25

From the table, Overall, Cubic has the least power owing

to its low throughput and moderate round-trip times. PCC

has the most power, with moderate throughputs but relatively

low round-trip times. BBR is only slightly better than Cubic

whereas Hybla is almost as good as PCC.

During steady state, PCC remains the most powerful based

on high throughput with the lowest round-trip times. Cubic

is more powerful than BBR or Hybla since it has good

throughput and round trip times, whereas BBR is deficient

in throughput and Hybla in round-trip times.

At start-up, Hybla has the most power by far, primarily due

to its high throughput. BBR has moderate power, while Cubic

and PCC are similar at about half the power of Hybla.

V. CONCLUSION

Satellite Internet connections are important for providing

reliable, ubiquitous network connectivity, especially for hard

to reach geographic regions and when conventional networks

fail (e.g., in times of natural or human-caused disaster). While

research in satellites has increased satellite network through-

puts, the inherent latencies satellites bring are a challenge to

TCP connections. Moreover, conventional approaches to split

a satellite’s TCP connection via a middle-box Performance

Enhancing Proxy (PEP) are ineffective for encrypted TCP

payloads and for the increasingly popular QUIC protocol.

Alternate TCP congestion control algorithms – such as BBR

or Hybla instead of the default Cubic – can play a key role

in determining performance in latency-limited conditions with

congestion. However, to date, there are few published research

papers detailing TCP congestion control performance over

actual satellite networks.

This paper presents results from experiments on a produc-

tion satellite network comparing four TCP congestion control

algorithms – the two dominant algorithms, Cubic and BBR, a

commercial implementation of PCC, as well as the satellite-

tuned algorithm Hybla. These algorithms together represent

a different approaches to congestion control: default AIMD-

based (Cubic), bandwidth estimation-based (BBR), utility

function-based (PCC), and satellite-optimized for startup (Hy-

bla) Results from 80 downloads for each protocol, interlaced

so as to minimize temporal differences, are analyzed for over-

all, steady state and start-up performance. Baseline satellite

network results are obtained by long-term round-trip analysis

in the absence of any other traffic.



Overall, the production satellite link has consistent baseline

round-trip times near the theoretical minimum (about 600

milliseconds) and very low (about a twentieth of a percent)

loss rates. For TCP downloads, during steady state, the four

protocols evaluated – Cubic, BBR, Hybla and PCC – all have

similar median throughputs, but Hybla and Cubic have slightly

higher mean throughputs owing to BBR’s bitrate reduction

when probing for minimal round-trip times (probing lasts

about a second and happens about once per second). During

start-up, Hybla’s higher throughputs allow it to complete small

downloads (e.g., Web pages) about twice as fast as BBR

(∼5 seconds versus ∼10), while BBR is about 50% faster

(10 seconds versus 15 seconds) than Cubic. Hybla is able

to avoid some of the high retransmission rates brought on

by Cubic and BBR, and to a lesser extent PCC, saturating

the bottleneck queue, too. However, as a cost, Hybla has a

consistently higher round-trip time, an artifact of more packets

in the bottleneck queue, while PCC has the least. Combining

throughput and round-trip into one “power” metric shows PCC

the most powerful, owing to high throughputs and steady, low

round-trip times.

There are several areas we are keen to pursue as future work.

Settings to TCP, such as the initial congestion window, may

have a significant impact on performance, especially for small

object downloads. Since prior work has shown TCP BBR does

not always share a bottleneck network connection equitably

with TCP Cubic [29], future work is to run multiple flow

combination with homo- and heterogeneous congestion control

protocols over the satellite link. Lastly, experiments with the

increasingly popular QUIC protocol are warranted since QUIC

can use BBR and has encrypted payloads, making it difficult

to use with satellite PEPs.
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