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ABSTRACT
Cloud-based game streaming has emerged as a viable way to play
games anywhere with a good network connection. While previous
research has studied the network turbulence of game streaming
traffic, there is as of yet no work exploring how cloud-base game
streaming responds to rival connections on a congested network.
This paper presents experiments measuring and comparing the
network response for three popular commercial streaming services
– Google Stadia, NVidia GeForce Now, and Amazon Luna – com-
peting with TCP flows on a congested network. Analysis of the
bitrates, loss and latency show that the three systems have marked
different approaches to network congestion, but are mostly fair to
competing TCP flows sharing a bottleneck link.
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1 INTRODUCTION
The growth in cloud computing coupled with high-capacity net-
works has brought the opportunity for cloud-based game systems
that stream game content as video down to the player. Many com-
panies have capitalized on this opportunity and introduced game-
streaming services such as Sony PlayStation Now,Microsoft xCloud,
Google Stadia, NVidia GeForce Now, and Amazon Luna. The cloud-
based game streaming market is growing rapidly with a value of
$865.8 million USD in 2021 and is expected to expand at a compound
annual growth rate of 48.2% from 2021 to 2027 [11].
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Cloud-based game streaming differs from traditional computer
games in that game clients do not run full versions of the game en-
gine. Instead, only the cloud-based server handles the game engine
logic -– applying physics to game objects, resolving collisions, pro-
cessing AI, etc. -– and renders the game frames, streaming the game
as video to the game client. This allows the game client to be rela-
tively lightweight, mostly just playing the streamed game frames
and sending player input to the server. However, the significant dis-
advantages of cloud-based game streaming are the increased traffic
required for the game frame streaming and the added round-trip
latency for all player actions. In particular, the bitrate requirements
for frequent, high-quality video frames can cause congestion, de-
creasing player quality of experience and impacting co-located
network traffic.

Prior work has shown that cloud-based game streaming re-
quires a high bandwidth network and is sensitive to network la-
tency [1, 6, 13]. While studies have analyzed network traffic for
specific cloud systems like Google Stadia, NVidia GeForce Now and
Sony PSNow [8, 10, 19], lacking are comparative aspects across sys-
tems, especially how cloud-based game streams respond to conges-
tion. This latter aspect, congestion, could be self-induced when the
network capacity is insufficient to support their maximum bitrates
or co-induced when the cloud-based game streaming competes for
capacity with other network flows on the bottleneck link.

This work presents an analysis of the network congestion caused
by three commercial cloud-based game streaming systems – Google
Stadia, NVidia GeForce Now and Amazon Luna – providing a direct
comparison of their bitrate use over time and impact on network
congestion when competing for scarce bitrates with TCP flows. To
do so, we designed a novel methodology that runs the game systems
via a script, with the games played automatically to ensure similar
player actions across runs. The network testbed and experiments
are done over the Internet, but are designed to be as comparable
across runs as possible by interlacing runs of each game system
serially to minimize temporal differences, and by doing 15 runs for
each test condition to provide for a large sample.

The results show the three game systems use similar bitrates
when facedwith capacity constraints, with Google Stadia having the
most bitrate variance. When competing for network capacity with
bulk-download TCP flows, Google Stadia and Amazon Luna share
the capacity fairly equally, but NVidia GeForce Now defers to the
competing flow more than necessary. The degree to which fairness
is achieved depends upon the network bottleneck capacity and the
bottleneck queue size, with more packet loss and more unfairness
caused by more congested conditions – i.e., tighter capacity limits
and smaller queue sizes have more unfairness.
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The rest of this paper is organized as follows: Section 2 pro-
vides related work on the network aspects of cloud-based game
streaming; Section 3 describes our methodology, including testbed
setup and experiment design and parameters; Section 4 analyzes
the experimental results; Section 5 mentions limitations and future
work, and Section 3.1 summarizes our conclusions.

2 RELATEDWORK
There are studies analyzing the network performance of early
commercial cloud-based game systems, such as OnLive [18] and
Gaikai [17]. Manzano et al. [13] collect and analyze network traf-
fic traces from five different games on both OnLive and Gaikai.
They find cloud-based game streaming systems have higher bi-
trates than do traditional network games. Claypool et al. [6] make
more detailed analysis and observations of OnLive network traf-
fic traces and find OnLive has network turbulence more akin to
high-definition, live video, with large, frequent packets and high
bitrates.

For current systems, Suznjevic et al. [15] measure network traf-
fic for NVidia GeForce Now and find GeForce requires bitrates
significantly higher than earlier systems (about 25 Mb/s today com-
pared to 6 Mb/s previously). Xu et al. [19] measure Google Stadia
game traffic for several games, showing Stadia has a traffic pattern
similar to but still significantly different than streaming video and
at much higher rates than previous cloud-based game systems or
video (about 19 Mb/s compared to 6 Mb/s).

While the above papers are helpful for characterizing network
characteristics for cloud-based game streaming systems, they do not
measure system congestion response when faced with competing
network flows, nor do they compare systems to each other.

The closest work to our own that we are aware of is fromMarc et
al. [4] that limits link capacities for Google Stadia during gameplay,
finding Stadia adjusts the resolution and/or frame rate in response
to a bitrate reduction. However, the experiments conducted do not
necessarily represent responses TCP flows competing for the net-
work, nor are other, non-Stadia systems considered and compared
as does our work.

3 METHODOLOGY
To capture the network congestion caused by cloud-based games,
we selected 3 popular commercial cloud-based game streaming
platforms and a game common to all (Section 3.1), setup a measure-
ment testbed that allowed for controlling congestion conditions
(Section 3.3), gathered network traces (Section 3.4), and analyzed
the data (Section 4).

3.1 Platform and Game Selection
We selected 3 cloud-based game streaming platforms – Google
Stadia, NVidia GeForce Now, and Amazon Luna – based on the
their current and likely future popularity for game players. While
Luna and GeForce offer native applications for client-side player,
all three support play via the Google Chrome browser which we
used for a fair comparison across systems.

For game selection, as for the platform, we sought a game that
could be played on each to allow for a fair comparison. We selected

one of the few games available on all: Ys VIII: Lacrimosa of Dana
(Nihon Falcom, 2016) – a third person action/exploration game.

Since gameplay visuals (i.e., what the player sees and is streamed
to the client) depends upon the player’s actions, we developed
innovative scripts to play the game automatically, thus providing
identical, repeatable gameplay conditions across runs and across
platforms. Our scripts automatically open the game (with input
appropriate for each platform), select the right level, and then play
the game automatically as if run by a human player.

3.2 Network Conditions
Our goal is to assess the response to congestion for the cloud-
based game streaming systems considering congestion arising from
both network capacity limits and competing traffic. The network
capacity limits allow comparison of system response to self-induced
congestion arising from various “last-mile” network conditions
provided, say, by an Internet Service Provider (ISP). Competing
traffic allows comparison of system congestion response for co-
induced congestion caused by the presence of other network flows
on the bottleneck link. We consider link capacities that are: 1) above
the maximum required for each system, but that are less than twice
the needed capacity when competing with another flow, 2) right at
the maximum capacity required, and 3) 30% below the maximum
capacity required.

The dynamics of many congestion control algorithms (e.g., TCP)
is influenced by the size of the queue at the bottleneck router [7]. A
general rule of thumb is that the bottleneck buffer queue size should
be a multiple of the bottleneck capacity and the round-trip delay,
otherwise known as the bandwidth-delay product (BDP). Guidelines
suggest a “good” queue size is the (𝐵𝐷𝑃)/𝑠𝑞𝑟𝑡 (𝑛), where 𝑛 is the
number of flows at the bottleneck link. However, there are also
routers that have considerably larger buffers, a phenomena known
as “buffer bloat” [9]. We consider queue sizes that are: 1) shallow,
at about one-half the BDP, 2) typical, at about 2x the BDP, and 3)
bloated, at about 8x the BDP.

3.3 Measurement Testbed
Figure 1 depicts the general setup for our measurement testbed.
Our testbed automatically plays the game via Chrome on the ‘game
client depicted in the figure, connecting through our custom router
to the appropriate cloud-service provider (one of Google Stadia,
NVidia GeForce or Amazon Luna). For experiments with competing
traffic, the bottleneck link (from the router down to the clients) is
shared by an iperf client that does bulk-downloads from an iperf
server. The game client has a PC running Windows 10 Pro, connect-
ing to the cloud-based game streaming service via Chrome version
98.0.4758.102 (64-bit). The PC hardware is an Intel i7 eight-core
CPU @ 2.0 GHz with 64 GB RAM with a Gb/s Ethernet NIC. The
PC has an LED monitor with 1920x1080 pixels running at 60 Hz.
The iperf client and server are both Alienware PCs with an 8-core
Intel i7-4790K CPU @ 4 GHz with 16 GB RAM running Ubuntu
20.04 LTS, Linux kernel version 5.4, and connect with Gb/s Ethernet
NICs.

The Game client and iperf client PCs connect via a Gb/s switch
to a Raspberry Pi 4 configured to act as a network router. The Pi has
a 5 GHz 64-bit quad-core CPU with 8 GB of RAM and runs Ubuntu
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Figure 1: Measurement testbed.

20.04 LTS, Linux kernel version 5.4, using tc [16] and netem to
constrain the network capacity. The router also runs Wireshark to
gather network traces.

The router connects to the Internet via our campus network. As
a baseline measure of throughput, Google’s M-Lab Internet speed
test consistently shows downstream bitrates from the campus net-
work, through the router and to the client PC of over 900 Mb/s and
upstream bitrates over 200 Mb/s. These rates are well-beyond what
the streaming services require – i.e., our campus network is not the
bottleneck.

3.4 Experiments
Our pilot studies determined 3 minutes of gameplay provided for
the full range of observed network behaviors. Thus, for all analysis,
the Wireshark traces were trimmed to 3 minutes of core gameplay
(i.e., loading, menus, etc. are not included — just gameplay).

The average bitrates for the 3 platforms and our selected game
on an unconstrained network were around 25 Mb/s. Thus, for our
experiments, we tested 3 network conditions: a “good” connection
with a capacity limit of 35 Mb/s, a “normal” connection with a
capacity limit of 25 Mb/s, and a “bad” connection with a capacity
limit of 15 Mb/s.

Additional scripts automatically launch a ping command to the
game server, and connect to the router to set the queue size and
bottleneck capacity limit, as appropriate, and launch Wireshark.
Again, we trim all data analysis to only the core gameplay.

For each round, the fully-automated experiment procedure is:

(1) Start the game in the browser and wait for the game load.
(2) Connect to the router to set the bitrate and queue size, and

start Wireshark.
(3) Initiate a ping to the game server.
(4) Run the script on the game client that plays the game for 3

minutes.
(5) For appropriate runs, after 3 minutes, start iperf on the iperf

client,
(6) Continue the script which plays the game for 3 minutes.
(7) Close the game, all data collection tools, and reset the router

to the unconstrained conditions.
(8) Repeat the above procedure for each of the three systems

(Stadia, GeForce and Luna).

We repeat the above 15 times for each network condition and
each platform. Since Internet conditions from the campus network
to the game servers can change over time, for each setting, note that

we stripe across game service to keep system comparisons as tempo-
rally close as possible. All this is done by the scripts automatically,
without manual intervention for consistency.

A complete run of all systems and all iterations takes about 24
hours providing for performance that accounts for any time-of-day
affects. Data was gathered for a weekday in December 2021.

Table 1 provides the full list of experimental parameters.

Table 1: Experimental parameters.

Game Ys VIII: Lacrimosa of Dana
Capacity limit 15, 25, 35 Mb/s, or no restriction
Queue size 0.5x, 2x, 8x BDP
Competing connection none and iperf TCP flow
Trace length 3 minutes
Iterations 15 runs per game system, per condition

4 ANALYSIS
This section compares the different cloud-based game streaming
systems with capacity limits and competing TCP flows considering:
1) bitrates (Section 4.1) and 2) delay (round-trip time) and packet
loss (Section 4.2). This section then summarizes bitrate fairness
across systems and network conditions when competing with a
TCP flow for capacity (Section 4.3).

4.1 Bitrates
We start analysis with a bitrate comparison (computed every 0.5
seconds) of each gaming system when they are not competing
with another TCP flow (i.e., no competing iperf flow) for our three
different capacity constraints – 35 Mb/s, 25 Mb/s and 15 Mb/s –
each with a typical 2x BDP queue. Figure 2 depicts the results, with
the left side (sub-figures a, e and i) showing bitrates without iperf.
For each graph, the x-axis is gameplay time, in seconds, and the
vertical axis is the measured bitrate, in Mb/s. The mean for each
system is showed with a colored line (Stadia - blue, GeForce - red,
Luna - green) with the shading depicting 95% confidence intervals
for that point across the 15 runs. Note, the graphs show the three
systems at once for comparison, but they were run independently,
not simultaneously.

From the graphs, when there is a surfeit of capacity (35 Mb/s)
the systems use a similar bitrate. However, Stadia has considerably
more bitrate variance and an overall downward trend over the
3 minute run. For constrained capacities (25 Mb/s and 15 Mb/s),
Luna and GeForce settle near the capacity limit, but Stadia stays
considerably under this limit and still has the downward trend.
Periodic increases in Stadia bitrates (e.g., 75s, 125s and 175s in
Figure 2e) suggest it is probing for available bandwidth, before
returning at the previous bitrate.

Figure 3 depicts another representation of this same bitrate data,
here shown with a boxplot. The x-axis has 3 sets of a capacities
(15, 25 and 35 Mb/s) and the y-axis the bitrate. Each box depicts
quartiles and median for the distribution using the same colors as
before (blue for Stadia, orange/red for GeForce, and green for Luna).
The whiskers span from the minimum to the maximum and the
white circles show the average values. From the graph, the large



Conference’17, July 2017, Washington, DC, USA Xu and Claypool, et al.

(a) B35 without iperf (b) B35 Stadia and iperf (c) B35 Geforce and iperf (d) B35 Luna and iperf

(e) B25 without iperf (f) B25 Stadia and iperf (g) B25 Geforce and iperf (h) B25 Luna and iperf

(i) B15 without iperf (j) B15 Stadia and iperf (k) B15 Geforce and iperf (l) B15 Luna and iperf

Figure 2: Bitrate versus time with different capacity limits.

bitrate variation for Stadia is apparent from the vertical height of
its boxes, as is the generally lower bitrates for Stadia for the 15 and
25 Mb/s capacity limits.

We next analyze bitrates when competing with an iperf flow.
Using TCP, iperf expands to consume the available bandwidth,
but responds to packet losses as indicators of congestion. Given
that there are two flows for these experiments (one game-system
flow and one iperf flow), a fair share of the bottleneck bandwidth
would be one-half the capacity limit. The graphs in the 2nd, 3rd and
4th columns of Figure 2 depict bitrates for the simultaneous flows
for each system in a column (Stadia, GeForce and Luna) and each
capacity (35 Mb/s, 25 Mb/s and 15 Mb/s) as a row. The lines again
show average bitrate with 95% confidence intervals. The horizontal
dashed line depicts the fair share at 1/2 the capacity limit.

From the graphs, the 9 conditions depicted all look quite different.
GeForce stands out visually as deferring to the iperf flow, with

the iperf average being consistently above the fair share line and
GeForce being below. In contrast, Stadia and Luna tend to share
the capacity evenly with iperf, with averages for both flows near
the dashed line. The exception is Luna at 35 Mb/s where the Luna
flow is almost entirely above the fair share and iperf is below. As
for the earlier graphs, Stadia has considerably more variation in
bitrate than the other systems, and the periodic bitrate “probing” is
quite visible in the 15 Mb/s condition (Figure 2j).

Figure 4 shows a boxplot of the bitrate differences between each
system and the competing iperf flow. The axes and boxes are as for
Figure 3, but here the values are the game system flows minus the
iperf flows computed each 0.5 second. Values at 0 (the horizontal
line) are completely fair in that both flows have equal bitrates.
Values above 0 mean the streaming system has more of the capacity
than the iperf flow and values below 0 mean the iperf flow has more
of the capacity than the streaming system flow. From this graph, it
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Figure 3: Bitrate distributions.

Figure 4: Bitrate difference (system - iperf) distributions.

is apparent that GeForce defers to the iperf flow nearly all the time,
while Luna rarely does and has significantly more of the capacity
for the higher 25 and 35 Mb/s limits. Stadia generally has slightly
more of the capacity than the iperf flow (and nearly always does at
15 Mb/s) but there are many cases where iperf has a higher bitrate.

4.2 Delay and Packet loss
Indicators of congestion are delay (which manifests when the router
queue becomes filled with excess traffic) and packet loss (which
happens when a full router queue drops incoming packets).

Table 2 (without iperf) and Table 3 (with iperf) have the round
trip times for the 3 systems under each network condition (capacity
and queue size). Each value is the mean for the 3 minutes of game-
play with standard deviations shown in parentheses. In the 35 Mb/s
condition without iperf, Geforce has lowest round-trip time from
our campus network (about 4 ms), followed by Stadia (about 12 ms)
and Luna (about 16 ms). These values increase with a decrease in
capacity, but do not reach even 0.5x BDP suggesting the systems
themselves to not look to saturate available capacity until there is
loss. With iperf, the round-trip times are consistently at the limit
dictated by the queue size, which makes sense given that the iperf
flow generally increases sending rates until there is packet loss.

Table 2: Round-trip time (ms) without iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 11.9
(1.1)

4.1
(0.9)

16.7
(2.1)

13.9
(6.5)

7.6
(8.4)

20.2
(9.9)

16.4
(12.6)

7.8
(8.6)

18.3
(14.2)

25 Mb/s 11.9
(1.5)

4.1
(0.9)

15.9
(0.8)

13.7
(6.4)

5.8
(5.1)

15.9
(0.8)

17.7
(14.4)

6.4
(7.6)

15.9
(10.9)

35 Mb/s 11.6
(0.7)

4.1
(0.8)

16.1
(0.8)

11.6
(0.8)

3.9
(0.7)

16.0
(0.9)

11.6
(0.8)

6.9
(10.9)

16.1
(2.8)

Table 3: Round-trip time (ms) with iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 13.3
(1.9)

5.5
(1.7)

17.1
(2.1)

28.5
(4.7)

25.1
(4.2)

37.6
(5.9)

84.3
(15.9)

84.0
(10.2)

120.5
(15.8)

25 Mb/s 13.3
(1.9)

6.1
(1.8)

17.1
(2.2)

27.7
(5.3)

21.2
(3.5)

37.9
(6.3)

89.3
(10.8)

86.3
(9.2)

121.4
(17.9)

35 Mb/s 13.4
(2.1)

6.2
(1.8)

17.0
(2.1)

27.3
(5.2)

20.9
(3.6)

37.9
(5.5)

82.9
(15.7)

87.4
(13.9)

122.9
(13.0)

Table 4: Packet loss (percent) without iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 0.04
(0.07)

0.04
(0.09)

0.06
(0.06)

0.04
(0.05)

0.04
(0.05)

0.04
(0.05)

0.04
(0.05)

0.02
(0.04)

0.04
0.05)

25 Mb/s 0.09
(0.07)

0.03
(0.05)

0
(0)

0.05
(0.05)

0.03
(0.03)

0
(0)

0.04
(0.03)

0.003
(0.01)

0
(0)

35 Mb/s 0
(0)

0.03
(0.06)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

Table 5: Packet loss (percent) with iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia Geforce Luna Stadia Geforce Luna Staida Geforce Luna

15 Mb/s 0.24
(0.01)

0.05
(0.09)

0.13
(0.11)

0.17
(0.09)

0.03
(0.03)

0.04
(0.08)

0.06
(0.09)

0.02
(0.03)

0.02
(0.04)

25 Mb/s 0.18
(0.10)

0.05
(0.13)

0.11
(0.09)

0.11
(0.09)

0.02
(0.03)

0.04
(0.03)

0.04
(0.05)

0.01
(0.03)

0.01
(0.03)

35 Mb/s 0.14
(0.07)

0.01
(0.04)

0.06
(0.06)

0.04
(0.05)

0
(0)

0.01
(0.03)

0.03
(0.05)

0
(0)

0.01
(0.02)

This illustrates how large router queues in the presence of compet-
ing flows during congestion mean added delay for game-streaming
system. This delay has been shown to degrade player performance
and quality of experience [5].

Table 4 (without iperf) and Table 5 (with iperf) show the corre-
sponding loss rates (percent) for each condition. When there are no
competing flows (i.e., without iperf), the systems themselves induce
almost no packet loss, even for constrained conditions. However,
with iperf, packet loss rates are noticeably higher, but still under a
0.5% in all cases, even the most bitrate constrained.
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Figure 5: Bitrate difference (system-iperf) heatmap.

4.3 Summary
We summarize the bitrate difference between each game system
and iperf for each network condition via a heatmap in Figure 5. For
capacity limit xb, cloud streaming bitrate x1 and iperf bitrate x2,
the bitrate difference is:

𝑓 (𝑥1, 𝑥2) =
𝑥1 − 𝑥2
𝑥𝑏

There is one large box for each system (Stadia on the left, GeForce
in the middle, and Luna on the right), with the smaller boxes within
each representing one network condition – 35, 25, and 15 Mb/s as
rows and 0.5x, 2x and 8x BDP queues as columns. The numbers in
the boxes are average difference in throughput for the game system
minus the competing iperf flow, shown normalized by the capacities
(ranging from -1 to 1) with absolute differences in parentheses. The
warm, red tones show where the game system has a higher bitrate
and the cool, blue tones where the game system has a lower bitrate.
Visually, GeForce is entirely “cool” and always gets less than it’s
fair share of the capacity when competing with iperf. In contrast,
Stadia and Luna have some “hot” areas where they get more than
their fair share of the capacity, with Luna having the “hottest” areas
for small queues (0.5x) BDP and high capacities (25 and 35 Mb/s).
However, both Stadia and Luna are “cool” with less than their fair
share of the bandwidth for large queue sizes (8x BDP).

We also compute Jain’s fairness index [2], one of the most widely
used metrics for measuring the fairness of system resources alloca-
tion. For two flows with throughputs x1 and x2, Jain’s fairness is
computed as:

𝑓 (𝑥1, 𝑥2) =
(𝑥1 + 𝑥2)2

2(𝑥21 + 𝑥22 )
(1)

and ranges from 1
2 (most unfair) to 1 (most fair). Figure 6 shows the

fairness results as a heatmap corresponding to the same conditions
as for Figure 5. The green shades indicate better fairness, whereas
red shades indicates worse fairness. Generally, Stadia and Luna are
fair (mostly green) whereas GeForce has more red (iperf getting

more of the capacity). The lowest capacity (15 Mb/s) tends to have
the most fairness, with slightly better fairness for higher queue
sizes (2x and 8x).

5 LIMITATIONS AND FUTUREWORK
There are several limitations to our work, that also suggest future
work.

Our experiments are for one game only and prior work has
shown that the bitrates for different games on the same system can
vary considerably [19]. Future work should see if the comparative
differences illustrated here hold for other games, as well.

All the experiments with iperf use the Cubic [12] congestion con-
trol algorithm for TCP. While Cubic is the default for Linux, emerg-
ing congestion control protocols such as the Bottleneck Bandwidth
Round-trip time (BBR) [3] have different responses to congestion
and queue sizes [7]. Future work should examine BBR and perhaps
other congestion control protocols.

Our router uses only a drop-tail queue, whereas prior research
has shown considerably different behavior for Active Queue Man-
agement approaches (AQM) that signal congestion earlier in an
effort to avoid full queues. Future work might consider experiments
with the Controlled Delay (CoDel) AQM approach [14].

6 CONCLUSIONS
Emerging cloud-based game streaming systems promise to provide
for a convenient gaming experience for players, provided that net-
work conditions are sufficient. In particular, streaming computer
games need high definition frames sent at high frame rates (at least
60 f/s). This, in turn, requires high bitrates that have the poten-
tial to congestion last mile networks, particularly when competing
for capacity with other network flows. This paper compares three
commercial systems – Google Stadia, NVidia GeForce and Amazon
Luna – with repeated runs of the same game across capacity con-
straints and bottleneck queue sizes, while competing for capacity
with a TCP flow.

Analysis of the results show the three systems have typical
bitrates when there is more than the maximum bitrate they require
(e.g., 35 Mb/s), but when bitrates are constrained, Stadia is the
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Figure 6: Fairness heatmap.

most conservative and decreases bitrates the most, well below the
capacity limit. When competing with a bulk-download TCP flow,
Stadia and Luna generally share the available capacity fairly, but
GeForce defers and lets the TCP flow have more than half of the
capacity. Large bottleneck queues (buffer bloat) tend to favor the
competing TCP flow and result in larger delays for the game systems
(which is bad for user quality of experience). More constrained
network conditions are generally more fair, although they also
have the highest loss rates, albeit all are under 0.5%. These results
provide a better understanding of game systems interaction with

constrained and competitive network links, and should be useful to
better plan for, and hopefully deter, resulting network congestion.

Future work can include gathering framerate data and analyz-
ing how framerate changes in different scenarios. Or, select more
games and cloud gaming systems to do the experiment which make
the results more generalized. Another interesting and meaningful
idea is doing the same experiment with iperf with BBR congestion
control algorithm to see how cloud gaming system interact with
BBR, and compare the results with the experiments we have done.
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APPENDICES
Sections are:

A Frame rates for game systems measured with and without competing iperf flows.
B Bitrates versus time with capacity limits and with competing TCP flow (CUBIC)
C Bitrates versus time with capacity limits and with competing TCP flow (BBR)
D Bitrates with 4 different games (Stadia and GeForce only)
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Appendix A FRAME RATES
Frame rates captured on the client via presentmon.1

Table 6: Frame rate (f/s) without iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 59.9
(0.1)

59.5
(0.1)

59.9
(0.1)

59.89
(0.2

59.7
(0.2)

59.7
(0.2)

59.8
(0.2)

59.8
(0.2)

59.8
(0.3)

25 Mb/s 58.3
(0.9)

59.1
(0.2)

59.7
(0.4)

59.4
(0.3)

58.7
(0.4)

59.3
(0.1)

59.8
(0.2)

59.8
(0.2)

59.8
(0.2)

35 Mb/s 59.1
(0.5)

59.1
(0.2)

59.5
(0.8)

59.4
(0.4)

58.8
(0.2)

59.1
(0.2)

59.6
(0.2)

59.3
(0.2)

59.6
(0.3)

Table 7: Frame rate (f/s) with iperf.

BDP 0.5x BDP 2x BDP 8x
Capacity Stadia GeForce Luna Stadia GeForce Luna Stadia GeForce Luna

15 Mb/s 54.6
(2.1)

55.0
(1.8)

57.7
(0.7)

59.6
(0.5)

58.8
(0.3)

59.3
(0.1)

57.4
(0.7)

58.3
(0.3)

58.9
(0.5)

25 Mb/s 52.5
(0.9)

56.1
(1.1)

57.3
(1.4)

59.6
(0.3)

59.2
(0.3)

59.6
(0.3)

56.2
(0.4)

57.0
(0.7)

58.1
(0.5)

35 Mb/s 52.2
(1.3)

54.6
(0.6)

55.4
(1.9)

59.1
(0.3)

58.9
(0.4)

59.6
(0.3)

55.4
(0.6)

56.7
(0.8)

58.1
(0.5)

1https://github.com/GameTechDev/PresentMon

https://github.com/GameTechDev/PresentMon
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Appendix B BITRATES WITH CAPACITY LIMITS FOR CUBIC
Cloud systems: Stadia, GeForce, Luna
TCP CCA: Cubic
Bitrate constraints 35 Mb/s, 25 Mb/s, 15 Mb/s
Queue size: 0.5x, 2x, 7x BDP
Game: Ys VIII: Lacrimosa of Dana (Nihon Falcom, 2016).

For each condition, the game is run without by itself for the first 3 minutes, then a competing iperf TCP flow is started and run for the
next 3 minutes, then the iperf flow is stopped and the game run for the final 3 minutes. This process is repeated 15 times for each condition.
Means are computed with 95% confidence intervals.

(a) B35 Stadia with iperf (b) B35 Geforce with iperf (c) B35 Luna with iperf

(d) B25 Stadia with iperf (e) B25 Geforce with iperf (f) B25 Luna and iperf

(g) B15 Stadia with iperf (h) B15 Geforce with iperf (i) B15 Luna with iperf

Figure 7: Bitrate versus time with different capacity limits.



Conference’17, July 2017, Washington, DC, USA Xu and Claypool, et al.

(a) B35 iperf with Stadia (b) B35 iperf with Geforce (c) B35 iperf with Luna

(d) B25 iperf with Stadia (e) B25 iperf with Geforce (f) B25 iperf with Luna

(g) B15 iperf with Stadia (h) B15 iperf with Geforce (i) B15 iperf with Luna

Figure 8: Bitrate versus time with different capacity limits.
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Appendix C BITRATES WITH CAPACITY LIMITS FOR BBR
Cloud systems: Stadia, GeForce, Luna
TCP CCA: BBR
Bitrate constraint: 35 Mb/s, 25 Mb/s, 15 Mb/s
QUeue size: 0.5x, 2x, 7x BDP
Game: Ys VIII: Lacrimosa of Dana (Nihon Falcom, 2016)

For each condition, the game is run without by itself for the first 3 minutes, then a competing iperf TCP flow is started and run for the
next 3 minutes, then the iperf flow is stopped and the game run for the final 3 minutes. This process is repeated 15 times for each condition.
Means are computed with 95% confidence intervals.

(a) B35 Stadia with iperf (b) B35 Geforce with iperf (c) B35 Luna with iperf

(d) B25 Stadia with iperf (e) B25 Geforce with iperf (f) B25 Luna and iperf

(g) B15 Stadia with iperf (h) B15 Geforce with iperf (i) B15 Luna with iperf

Figure 9: Bitrate versus time with different capacity limits (BBR).
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(a) B35 iperf with Stadia (b) B35 iperf with Geforce (c) B35 iperf with Luna

(d) B25 iperf with Stadia (e) B25 iperf with Geforce (f) B25 iperf with Luna

(g) B15 iperf with Stadia (h) B15 iperf with Geforce (i) B15 iperf with Luna

Figure 10: Bitrate versus time with different capacity limits.



Measurement of Network Congestion caused by Cloud-based Game Streaming Conference’17, July 2017, Washington, DC, USA

Appendix D BITRATES WITH DIFFERENT GAMES
Cloud systems: Stadia, GeForce
Games: Ys VIII: Lacrimosa of Dana, Far Cry 5, Farming simulator, Samurai Shodown
Network: no capacity constraints, no competing flows

Each game is run for 10 minutes, repeated 20 times, computing means with 95% confidence intervals.

(a) The Crew (b) Far Cry 5

(c) Farming Simulator (d) Samurai Shodown
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