
WPI-CS-TR-WPI-CS-TR-22-02 Apr 2022

Waiting to Play – Measuring Game Load Times and their Effects on Players

by

Shengmei Liu
Federico Galbiati
Miles Gregg
Eren Eroglu

Atsuo Kuwahara
James Scovell
Mark Claypool

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280



Waiting to Play – Measuring Game Load Times and their Effects
on Players

Shengmei Liu, Federico Galbiati, Miles Gregg,
Eren Eroglu, Mark Claypool

sliu7,fgalbiati,mgregg,ezeroglu,claypool@wpi.edu
Worcester Polytechnic Institute, Worcester, MA

USA

Atsuo Kuwahara, James Scovell
atsuo.kuwahara,james.j.scovell@intel.com

Intel Corporation, Hillsboro, OR
USA

ABSTRACT
Before playing, gamers must wait for the game to launch the level
to load, waiting for at least several seconds for some games but
up to several minutes for others. While the effects of waiting on
user experience is well-studied for some domains, such as Web
browsing, the effects of wait times on games players is not known,
nor is the impact of computer system components, such as the pro-
cessor or graphics card, on game loading times. We present results
from two experiments: 1) a user study that evaluates the impact of
game loading time using a custom tool that simulates game loading
and collects player experience, and 2) a systematic measurement
of the effects of key system components on the game load times
themselves. Analysis of the user study results shows game loading
time has a pronounced effect on player quality of experience, but
differs based on game time and game load content. Analysis of the
measurement experiments shows the potential to reduce game load
times – processor and graphics card have a significant effect on
game load times, but storage device less so.

CCS CONCEPTS
• Applied computing→ Computer games; •Human-centered
computing → User studies.
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1 INTRODUCTION
Human-computer interactions often have moments where users
must wait for the system to gather the application data before users
can interact with it. Common examples include waiting for a file
to download, a Web page to load or a video to finish buffering
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Figure 1: The player’s perspective of game loading.

before the user experience can commence. Early studies in human-
computer interaction converged on a commonly agreed “acceptable”
waiting threshold of about ten seconds, beyond which users find
waiting reduces the quality of the experience [2, 9]. Longer waiting
times can be sources of boredom, at best, and anxiety and frustration
at worst. While prior research has demonstrated the relationship
between user waiting time and decreased user satisfaction [3, 7, 8],
the severity of this degredation depends upon the application [6].

Computer game players often face considerable wait times since
the game needs to load before play can commence. During game
loading, the computer system reads and converts data needed by the
game engine and initializes various sub-systems, such as physics
and graphics, needed to run the game. For the player, loading a
game happens during two phases, depicted in Figure 1. The player
must first wait while the game is launched (labeled “Game Launch”),
much as is done for any application started on a computer. Once
the game has been launched, the player enters a home screen which
has an interface to select the version of the game to play (e.g., game
mode and character selection). Once the player has configured all
game settings, the player must again wait while the game level
loads (labeled “Level Load”). Only once the level had loaded can
play commence.

To mitigate the negative effects of waiting on users, applications
can provide feedback on progress, widely accepted as a means to
improve a user’s waiting experience [9, 11]. Feedback during game
loading can take many forms such as progress bars, text messages,
and animated graphics and videos.

In addition, while decreasing the waiting time for some Internet-
based applications can be done by increasing network bitrates [5],
much of what a computer game loads is not related to the network
capacity. It is unknown how standard hardware upgrades, such as
improved processor, storage device or graphics card, can decrease
game load times.

This paper presents seeks to better understand game load times
and quality of experience and game load times and hardware com-
ponents via two experiments. The first is a user study that assesses
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the quality of experience for users waiting for a game to load. We se-
lected 12 popular games and encoded their game loadings as videos,
re-encoding them to different lengths. We then recruited 54 users
that had experience playing at least 3 of the games and had each
participant use our custom application to simulate loading each
game and provide an assessment of the experience for each. Analy-
sis of the results shows a marked decrease in quality of experience
(QoE) with game load times with results that vary from game to
game. Models based on game loading time, possibly supplemented
with visual content, have the potential to accurately predict QoE
for loading games in general without needing to measure the QoE
of individual games.

Based on these results, players and computer system developers
may see benefits to user quality of experience from decreasing
game load times. So, the second experiment measures game load
times on different computer systems, varying processor, graphics
card and storage device for the 12 games tested in the user study.
Analysis of the measurement experiments shows game load times
vary considerably (almost amagnitude) across games, and processor
and graphics device have a significant effect on game load times,
while storage device type less so.

The rest of the report is organized as follows: Section 2 describes
what happens in the computer system during game loading; Sec-
tion 3 provides work related to this paper; Sections 4 and 5 detail
our methods and results for our user study and measurements ex-
periments, respectively; Section 6 mentions some limitations of our
work; and Section 7 summarizes our conclusions.

2 GAME LOADING BACKGROUND
During game loading, the game system must transfer and convert
game data from long-term storage, such as a hard drive or a solid
state drive, to memory so it can be used by the game software. The
largest volume of game data is typically from art assets, such asmod-
els, animations, and textures, but also includes sound effects and
music. These assets usually need to be converted from their storage
format, typically compressed to save space, to an in-memory format
usable by the game engine. Other aspects of game loading include
bringing in and parsing game data such as virtual world maps and
game object attributes, and code and data for game systems and
interfaces to control them. Processing during loading also includes
pre-calculations and pre-rendering for visuals, and initialization
of the many different sub-systems that run the game, such as the
graphics, physics and AI engines, as well as networking and log-
ging. Garbage collection may also run in order to free up code and
assets that are used during initialization but can subsequently be
discarded.

For the player, the above process of loading a game happens
during two phases, depicted in Figure 1. The player must first wait
while the game is launched (labeled “Game Launch”), much as is
done for any application started on a computer. Once the game
has been launched, the player enters a home screen which has an
interface to select the version of the game to play (e.g., game mode
and character selection). Once the player has configured all game
settings, the player must again wait while the game level loads
(labeled “Level Load”). Only once the level had loaded can play
commence.

So, the player must wait during two phases of game loading:
game launch and level load. Game launch happens only once, when
the game is first started and does not need to happen again until the
player exits the application and restarts at a later time. Level load,
however, needs to happen each time the player starts or re-starts a
game level which can be as frequently as once every few minutes
for some games or as infrequently as once every few hours, for
others.

During both phases of game loading – game launch and level load
– the game often shows visuals, such as splash screenswith company
logos from the game studios, publishers or systems, or images of
game characters or game scenes, or even cinematic renditions of
gameplay, sometimes accompanied by sound effects or music. In
some cases, the cinematics and animations can be skipped by the
player with the press of a button or key. Some load screens show a
progress indicator, such as a loading bar or animated loading icon,
providing feedback to the player that the game system is getting
the game ready to play.

3 RELATEDWORK
This section describes related work in three areas: user experience
while waiting 3.1, feedback to mitigate waiting 3.2 and cognitive
load and waiting 3.3.

3.1 Wait Time and User Experience
Egger et al. [5] discuss the psycho-physics basis for a model of
quality of experience and human time perception (e.g., delay when
buffering a video during initial playout). The authors describe a set
of studies that lay out the basis for a logarithmic relationship for
waiting time and user satisfaction ratings. They find this relation-
ship holds for several tasks, including file downloading – i.e., that
user satisfaction with file downloads decreases logarithmicly with
download time.

Hoßfeld et al. [6] quantify the impact of wait time on user ex-
perience for different application scenarios by means of subjective
laboratory and crowdsourcing studies. They find user quality of
experience (QoE) for the waiting time depends on the application,
with users waiting for a video to start playing being more tolerant
of waiting than users logging into a social network.

Allard et al. [1] study the tradeoffs between initially waiting
for a streaming video to start playing and interrupts (waiting) in
the middle of a video playout. They show users’ annoyance with
waiting increases logarithmically with the time it takes a video to
start playing, with this annoyance greater for interrupts.

3.2 Feedback While Waiting
Branaghan and Sanchez [3] found that duration indicators for users
watching simulated movies were most satisfactorily indicated with
a constant progress bar. Nah [8] examined how feedback while
waiting improves user satisfaction and showed the presence of a
display feedback increases how long a user is willing to wait. Lalle-
mand and Gronier [7] confirm these results and show users more
satisfied with a waiting interface that provides more information.
However, too much feedback with details on progress can make a
wait seem longer as the user interprets every event as taking time,
and more events feels like more waiting time [3, 7].
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3.3 Cognitive Load While Waiting
Lalleman and Gronier [7] use cognitive models of time perception,
varying the cognitive workload and informational feedback, to
study impact on satisfaction and perceived waiting time for users.
They find a link between cognitive workload and waiting time
perception. Users judged shorter waiting times more positively
with a decrease in satisfaction that is linear with time.

4 QUALITY OF EXPERIENCE
In order to assess the effects of game load time on player experi-
ence, we selected games to cover a range of genres, designed and
implemented an application to simulate game loading, recruited
participants for a user study, had each participant load games and
rate their quality of experience, and analyzed the results.

4.1 Methodology

Table 1: Games studied

Game Publisher Year Genre
ACOD [13] Ubisoft 2018 First-Person Shooter
Apex Legends [12] EA 2019 First-Person Shooter
Civ VI [14] 2K 2016 Turn-based Strategy
CS:GO [15] Valve 2012 First-Person Shooter
Fortnite [16] Epic 2017 Battle Royale
GTA V [17] Rockstar 2013 Role-Playing Game
Hearthstone [18] Blizzard 2014 Turn-based Strategy
LoL [19] Riot 2009 MOBA
Minecraft [20] Mojang 2011 Sandbox
Overwatch [21] Blizzard 2016 First-Person Shooter
PUGB [22] Microsoft 2017 Battle Royale
R6S [23] Ubisoft 2015 First-Person Shooter

We selected twelve (12) games based on their popularity to make
it more likely participants in our sample pool would have some
familiarity, while also covering a range of game types. Table 1 shows
the abbreviated name for the games (the full names can be found
in the references), listed in alphabetic order along with publisher,
year published and genre. The twelve games cover six (6) genres:
four first-person shooter games, two turn-based strategy games,
two battle royale games, two role-playing games, one multiplayer
online battle arena (MOBA) game and one sandbox game. For each
game, we record a video of the game launch and the level load on
the same PC in order to provide for a single point of reference. The
PC is an Alienware with an Intel i7-6700 CPU @3.4 GHz with 16
GB RAM and an NVIDIA GeForce GTX 1070 graphics card.

In order to assess how changes to loading times might impact
player experience (e.g., if the user purchased a faster computer
system or if the game developer reduced the game load time), we
scaled the lengths of the videos for each game: 0.25, 0.5, 0.75, 1.0
and 1.25. So, for example, a 10 second game load video scaled to 0.25
would run in 2.5 seconds. When scaling, we took care to reduce the
times only for non-animated portions of the load videos in order to
minimally distort the visuals.

In order to mimic the game loading experience, we developed
a stand-alone application that had users launch the game (e.g.,
double-click on the game icon on the desktop) and load the level
(e.g., select “start” and pick the intended map to play) as if they
were about to play the game. For each case – game launch and level
load – the application plays the pre-recorded video, pausing when
input is needed by the user to proceed. When this happens, the
app highlights where the user must click (e.g., the “start” button).
When the video finishes playing, the application pops up a survey
to assess the players’ quality of experience via two questions: a) a
Mean Opinion Score (MOS) “Please rate your experience” with a
text box for 1.0 to 5.0 point numeric entry, shown along with scale:
Excellent, Good, Fair, Poor, Bad; and b) a binary question “Is the
experience acceptable?”

Since a user’s opinion of a game load’s time may depend upon
their familiarity with the game, users were invited to participate in
the study based on how much and how recently they played each
game in Table 1. Invited users were familiar with at least 3 of the
games, chosen so as to provide an approximately equal number
of users for all games. After testing, the number of users for each
game was:

ACOD (15), Apex Legends (15), Civ VI (18), CS:GO (19), Fort-
nite (18), GTA V (18), Hearthstone (16), LoL (17), Minecraft (19),
Overwatch (17), PUGB (16), and R6S (17).

For each participant, the application randomly shuffled the order
of the games loaded. For each game, users first assessed all the
game launches and then assessed all the level loads, with the scale
lengths randomly shuffled. Thus, we had a between-subjects design,
where each user loaded 3 (of the possible 12) games, each with two
conditions (game launch and level load) and 5 lengths for each
condition (3 × 2 × 5) for a total of 30 game loads.

The user study was conducted in a dedicated, on-campus com-
puter lab. Our test computer was a Windows 10 Alienware with an
Intel i7-4790K CPU @4 GHz with 16 GB RAM and an Intel HD 4600
graphics card. While users may have more powerful PCs to play the
game, our game load simulation application is lightweight, needing
only processing akin to that needed for a streaming video player.
However, in order to provide for fast input and display, the PC was
equipped with a gaming mouse and high refresh rate monitor: a
25" Lenovo Legion monitor, 1920x1080 16:9 pixels @240 Hz with
AMD FreeSync and a 1 ms response time; and b) a Logitech G502
mouse, 12k DPI with a 1000 Hz polling rate.

After completing all the game rounds, users were given an ad-
ditional questionnaire with demographics questions about overall
gamer experience – average time spent playing games and self-rated
expertise with computer games.

In summary, the procedure each user followed was:

(1) Submit screener to ensure familiarity with the games.
(2) For invited participants, arrive at the dedicated lab at a sched-

uled time and sign the consent form.
(3) Adjust the computer chair and monitor so as to be comfort-

ably looking at the center of the screen.
(4) Read the instructions regarding the application and controls.
(5) Launch the game and, when done, fill out the corresponding

QoE survey. Repeat for each scaled length (shuffled).



ACM MM ’22, October 10-14, 2022, Lisbon, Portugal Shengmei Liu, Federico Galbiati, Miles Gregg, Eren Eroglu, Mark Claypool and Atsuo Kuwahara, James Scovell

Table 2: Participant demographics

Gaming per Gamer
Users Age (yrs) Gender Week (hours) Self-rating

54 19.3 (1.48) 40 ♂ 13 ♀ 1 ? 10.4 (8.3) 3.4 (1.1)

(6) Load the level and, when done, fill out the corresponding
QoE survey. Repeat for each scaled length (shuffled).

(7) Repeat the previous 2 step for each of 3 games (shuffled).
(8) Complete a final demographics questionnaire.
The study length depended upon the games tested, but was

under 30 minutes total in nearly all cases. A user study proctor was
available for questions and trouble-shooting for the duration.

Study participants were solicited via university email lists. All
users were eligible for a $10 USDAmazon gift card upon completion
of the study, and many users received playtesting credit for relevant
classes in which they were enrolled.

4.2 Analysis
This section first summarizes participant demographics (Section 4.2.1)
then presents the core results – Quality of Experience (QoE) (Sec-
tion 4.2.2) versus game loading time. It then describes derived mod-
els of QoE based on game loading time and loading screen content
(Section 4.4).

4.2.1 Demographics. Table 2 summarizes the demographic infor-
mation for the user study participants. Game self-rating is on a
five-point scale, 1-low to 5-high. For age and game self-rating, the
mean values are given with standard deviations in parentheses.
Our user study had 54 participants, ranging from 17-24 years. Gen-
der breakdown is predominantly male (40 males out of 54 users),
which reflects the sample pool of students at our university. Half
of the participants played 10 or more hours of computer games
per week. User self-rating as a gamer ability skews towards above
the mid-point (mean 3.4). Most participants majored in Robotics
Engineering, Computer Science, or Game Development.

4.2.2 Quality of Experience (QoE). Quality of Experience (QoE)
was assessed from user responses to the MOS question filled out at
the end of each round. Responses are on a 5 point scale, from 1-low
to 5-high.

Actual game load time. Figure 2 depict scatter plots of QoE rat-
ings versus game load times for game launch and level load. The
x-axes are times in seconds and the y-axes are QoE ratings on a
5-point scale (higher is better). Each dot is the QoE value for one
user rating one game load. The black dashed lines are linear re-
gression trendlines through all data in each graph. The correlation
(𝑅) between rating and time is -0.56 for game launch and -0.58 for
level load, indicating a medium strength of downward trend. As a
take away, on average, player experience degrades 1.92 points (on
a 5-point scale) and 2.58 points for each minute for game launching
and level loading, respectively.

Scaled game load time. Since each game load video was scaled
relative to the initial encoding, we analyze how QoE changes with
relative game load times. Figure 3 depicts the results. The y-axis it

Figure 2: QoE versus game load time (Grouped)

Figure 3: QoE versus game load scale

the QoE rating and the x-axis is the scale relative to the baseline
game load time – i.e., 100% is the original scaling, with values
below this being faster and values above this being slower. For each
loading condition, there are 5 scales ranging from 25% to 125%. The
green squares (game launch) and blue circles (level load) are mean
values for all users across all games, shown with 95% confidence
intervals. The lines are linear regression fits through the mean
values. The linear regressions fit the data well for both game launch
and level load with 𝑅2 near 1. As a take away, a 50% decrease in
game loading time improves player experience by about 0.75 on a
5-point scale, with a slightly larger impact on game launch.

4.3 Threshold and QoE
After each game load, in addition to a QoE rating, players were
asked if the experience was acceptable.

Figure 4 depicts the relationship between acceptable and QoE.
The x-axis is the QoE rating collected by the MOS question, and the
y-axis is the fraction that unacceptable was answered (i.e., “no”).
Each dot is the unacceptable fraction for all corresponding QoE
values grouped by 0.5 point bins. The green squares are for game
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Figure 4: Unacceptability and quality of experience

launch and the blue circles are for level load. In general, QoE values
less than 2 are nearly always unacceptable and QoE values above 3.5
are always acceptable and in-between there is a steep change from
unacceptable to acceptable. The “above 3.5” threshold can be used
in conjunction with QoE models in order to estimate how system
improvements that result in reduced game load times pertinent to
the user.

4.4 Modeling
This section presents different approaches to modeling QoE for
game loading. Such models can be helpful for game and system
developers to predict how improvements to game loading time
might benefit player experience. Equations for all models presented
are not provided inline due to space constraints, but can be found
online.1

4.4.1 Individual models. While the relationship between QoE and
game load time can be coarsely modeled with the “grouped” regres-
sion depicted in Figure 2, the individual games themselves may not
adhere closely to this relationship.

Figure 5: QoE model - Individual

We model QoE for game launch and level load individually for
each game. Figure 5 depicts individual models for each game, with
axes as in Figure 3. The circles are mean values for all users across
1(URL hidden to preserve anonymity. Upon acceptance, they will be made public.)

the 5 different time scales, shown with 95% confidence intervals.
The lines are linear regressions through the mean values. Each color
represents data from one game. The regressions fit the individual
games well, with 𝑅2 from 0.91 to 1.00 (mean 0.96, SD 0.03) for game
launch and 𝑅2 from 0.90 to 1.00 (mean 0.93, SD 0.15) for level load.
The exception is for the Apex Legend level load with an 𝑅2 of 0.46.

These individual models represent a sort of “best case” in that
the model may accurately reflect QoE for that specific game, but
may not generalize to other games.

4.4.2 Unified models. In order to generalize QoE models to games
that have not been tested (and may not have even been invented
yet), we look to generalize beyond the individual game-specific
models.

We use the base load time as a model parameter to derive a “uni-
fied model” that can be applied to all games. The unified model fit
for game launch is 𝑅2 0.70 and for level load is 𝑅2 0.67, an improve-
ment over the “grouped” model but less than the individual game
models.

Since the differences in QoE across games does not appear to be
only based on game load times, we use game content as parameters
in the model. The ITU recommended [10] measures of spatial per-
ceptual information (SI) and temporal perceptual information (TI)
are used as model inputs – for each video, we compute SI and TI
for each frame then average. The resulting equations have 𝑅2 0.81
for game launch and 0.82 for level load. Using these model on an
untested game would require first capturing the game load content
and running it through a tool2 to compute the SI and TI.

Some game load videos show just one or two screens for the
entire load, whereas others have several different scenes to provide
visual interest for the user. Similarly, some game loading screens
show progress indicators (e.g., a loading bar) that provides feedback
to the user about when the game loading might complete. We
manually count scene changes and encode progress indicators (0
means none and 1 means one or more) for each game load video
and use that as input to the model. Scene changes provide only
modest benefit (𝑅2 0.73 for game launch and 𝑅2 0.67 for level load)
as do progress bar indicators (𝑅2 0.71 for game launch and 𝑅2 0.71
for level load) but together they provide more improvement (𝑅2
0.75 for game launch and 𝑅2 0.79 for level load). Using these models
on an untested game requires first manually watching and scoring
the video for scene changes and progress indicators.

Finally, all of SI, TI, scene changes and progress indicators can be
used along with the unified model with the base encoding time and
actual encoding time. That provides for 𝑅2 0.84 for game launch
and 𝑅2 0.85 for level load, within 10% of the individual game load
models.

Table 3 summarizes the models ordered by their increasing 𝑅2
values. The clustered and individual models are averaged across
the models, with the standard deviation shown in parentheses. The
grouped model uses a single equation for QoE based on encoding
time for all games. As such, it is the easiest to use, but the least
accurate. At the other end are the individual models, one per game,
which are quite accurate but require user studies to assess quality
with scaling making them impractical. In between are generalized
models that unify (U) the base encoding time and actual encoding
2e.g., https://github.com/Telecommunication-Telemedia-Assessment/SITI

https://github.com/Telecommunication-Telemedia-Assessment/SITI
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time, with options to add scene changes (S) and progress encoding
(P) – both of which requires manual scoring – and spatial infor-
mation (SI) and temporal Information (TI) – both of which require
capturing then analyzing via code the spatial/temporal quantities.

Table 3: QoE models. Grouped - all data. Unified (U), S - Scene
change, P - progress, SI - spatial information, TI - temporal
information. Clustered - k-means 𝑘 = 3 (launch), 𝑘 = 2 (load).
Individual - per game.

𝑅2 Game 𝑅2 Level
Model Launch Load

Grouped 0.60 0.65

Unified

U 0.71 0.67
U, S 0.73 0.72
U, P 0.71 0.71
U, S, P 0.75 0.79
U, SI 0.72 0.67
U, TI 0.79 0.74
U, SI, TI 0.81 0.82
U, S, P, SI, TI 0.84 0.85

Clustered 0.95 0.79
(0.03) (0.12)

Individual 0.96 0.93
(0.03) (0.15)

4.4.3 Clustered models. The other row in the table labeled “clus-
tered” is a QoE model using k-means clustering for base encoding
time. We compute a silhouette score for cluster sizes from 2 to 6 for
base encoding times, showing which peaks at 𝑘 = 3 (score 0.81) for
game launch and 𝑘 = 2 (score 0.73) for level load.

Figure 6: QoE model - Clustered

Figure 6 depicts the clustering results for game launch and level
load. The x-axes are the game load times in seconds and the y-
axes are the QoE. The colors represent the clusters, with the dots
indicating the mean values for games in that cluster.

For game launch, the blue cluster is: GTA V, R6S, Fortnite, Civ
VI, ACOD and Apex Legends. The red cluster is: LoL, Minecraft and
Hearthstone. The green cluster is: PUBG, Overwatch and CS:GO.
The blue, red and green regression lines through the clustered points

fit the data well with 𝑅2 0.92, 0.91, 0.97, respectively. For level load,
the olive cluster is: PUBG, CS:GO, GTA V, R6S, Fortnite, LoL, Civ
VI, ACOD, and Apex Legends. The purple cluster is: Overwatch,
Minecraft and Hearthstone. The olive regression line fits the data
moderately with 𝑅2 0.69, while the purple regression line fits with
𝑅2 0.87.

Compared to the grouped model, the clustered model provides
the potential to more accurately predict QoE using just the base
encoding time, but without needing to analyze the content nor
measure quality for the individual games.

5 MEASUREMENTS
Since user QoE improves with a decrease in game load times, we
designed experiments to assess how game load times vary for dif-
ferent hardware components – potentially helpful for game players
in deciding to do an upgrade, or hardware developers as they target
next generation systems. We setup a hardware testbed to facilitate
adjusting configurations, implemented scripting software to au-
tomatically launch games and load their levels while measuring
hardware performance, and ran repeated runs of our scripts for all
games and different processors, graphics cards and storage devices.

5.1 Scripts
We designed and implemented scripts in order to automatically
launch each game and load each level while recording game load
times and hardware performance.

For each game, screenshots are captured for each button that
the automated script needs to click in order. Then, the automated
script iterates through each button screenshot, polling every 0.5
seconds until the button is displayed on the screen and pausing
a minimum of 1.5 seconds between button presses. This design
allows for relatively easy update to the script when a publisher’s
game update changes the load sequence – when this happens, the
old screenshot just needs to be replaced with one or more new
screenshots for the script to follow.

In cases where the loading screen can be skipped (e.g., some
game cut scenes allow the player to bypass them), the scripts are
set to always skip them (i.e., the game loading is done as fast as
possible).

The script is written in Python. The ESP32 bot simulates all
mouse presses, and PyDirectInput generates all keyboard input
except for the Windows key which needs to done with PyAutoGUI.
PyAutoGUI also helps detect buttons by comparing the current
screen shot with the previously taken screenshot with the expected
button, with a confidence threshold of 80%.

5.2 Testbed Hardware
Figure 7 is a photo of our hardware testbed. Our testbed has an open-
air frame to allow for easy swapping of components and to facilitate
cooling to avoid performance degredations from overheating. All
configurations used: A) the all-in-one Cooler Master MasterLiquid
Lite 240 evaporative water cooler; B) an EVGA 700 GD 80+ GOLD
power supply; and C) Team T-Force Vulcan Z 16 GB (2x8 GB) DDR4-
3000 CL16 RAM.

The testbed has two different motherboards whichwere swapped
in as needed: the ASUS H110M-K with the LGA 1151 CPU socket
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Figure 7: Hardware measurement testbed

and the H410M-A with the LGA 1200 socket. The LGA 1151 socket
support the 6th and 7th generation Intel processors, and the LGA
1200 the 10 generation Intel processor.

The independent variables of interest and their parameters are
shown in Table 4.

Table 4: Hardware Parameters

Component Type
Intel i5-6500 CPU @ 3.20GHz (6th Gen)

CPU Intel i5-7600 CPU @ 3.50GHz (7th Gen)
Intel i5-10400 CPU @ 2.90GHz (10th Gen)
Intel CPU integrated UHD Graphics 630

graphics NVIDIA GeForce GTX 960
AMD Radeon RX 5600XT

storage
Seagate BarraCuda ST2000DM001-9YN164 HDD
Crucial MX500 500GB 3D NAND SSD

Base system: Our base system has the most recent CPU, most
powerful GPU and fastest storage device in our set: 10th generation
Intel i5, Crucial MX500 SSD, and the AMD Radeon graphics card.
From that base system, we varied each component independently:
CPU, graphics card and storage.

During game load, a script collects hardware metrics and usage
data every second using Open Hardware Monitor.3 An evaluation
of the script’s overhead shows in contributes less than 3% to the
CPU load. All of the tests on all systems were conducted within
a couple of days in March 2022 and there were no game updates
between the trials on each system.

State-of-the-art system: In addition, we measured one addi-
tional hardware configuration: a ROG Strix Z590-E motherboard
with an Intel i9-11900K @ 3.50GHz (11th Gen) CPU, Corsair Ven-
gance RGB 32GB DDR4 3200 RAM, a Samsung 970 Evo Plus solid
state drive, and an NVIDIA GeForce RTX 2080 graphics card. This
represents a “state of the art” system in terms of our performance
evaluation.
3https://openhardwaremonitor.org/

Figure 8: Game launch times

5.3 Data Collection
During collection, the testbed used a single monitor at 1920x1080p.
The same resolution was maintained throughout all tests so that the
size and location of each target button matches the pre-recorded
screenshots

For level loading for multiplayer network games (e.g., League of
Legends), we used single player/offline modes with bots so as not
to have the load times dependent upon other player’s networks.

Each game load was executed for 10 iterations in order to un-
derstand variation across runs, observe any differences in the first
game load times compared to subsequent times. One round of 10
iterations took about 6 hours, after which we archive the data and
swap out a single hardware component (e.g., change the graphics
card), and then repeat.

Assassin’s Creed level load and League of Legends game launch
failed on our base system so are excluded from all level load and
game launch analysis, respectively. During our measurements on
our “state of the art” system, League of Legends and Assassin’s
Creed had been updated, breaking our scripts so those games are
excluded completely from analysis on that platform only.

5.4 Measurement Analysis
This section first presents the game load times for each game on
our base system, then analyzes the game load times for the differ-
ent components of interest: CPU, graphics card and storage device.
These latter results are also compared to our “state of the art” sys-
tem.

Figure 8 and Figure 9 depict the game load times on our base
system for game launch and level load, respectively. The x-axes
have the games, abbreviated: Apex Legends (AL), AC Assassin’s
Creed: Odyssey (AC), Counter-Strike: Global Offensive (CS), Civi-
lization VI (CV), Fortnite (FN), Grand Theft Auto 5 (G5), Hearthstone
(HS), League of Legends (LoL), Minecraft (MC), Overwatch (OW),
PlayerUnknown’s Battle Grounds (PG), and Rainbow Six Siege (R6).
The y-axis is the time in seconds. The bars are the mean game load
times for the 10 iterations on the base system, ordered high to low,
and shown with a 95% confidence interval.

https://openhardwaremonitor.org/
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Figure 9: Level load times

Table 5: Total CPU and GPU usage percent for base system

Game Launch Level Load
Game CPU (%) GPU (%) CPU (%) GPU (%)

Apex Legends 20.5 32.9 16.4 25.9
CS:GO 12.8 17.1 15.1 41.7
Civ VI 9.1 16.2 11.6 36.5
Fortnite 17.2 12.4 21.9 17.0
GTA5 8.9 15.0 8.8 20.9
Hearthstone 9.9 18.6 3.2 16.2
Minecraft 67.9 15.0 86.9 14.4
Overwatch 24.0 20.1 10.7 77.4
PUBG 18.7 28.2 41.2 81.9
R6S 15.8 12.3 14.2 29.8

Table 5 shows the overall breakdown of CPU and CPU usage
recorded during game launch and level load. The units are a per-
centage reported by Open Hardware Monitor, averaged over all iter-
ations. Games that load with a high CPU utilization (e.g., Minecraft)
may benefit more from a more powerful CPU, while games that
load with a high GPU (e.g., PUGB level load) may benefit more from
a more powerful graphics card. Overall, given the sizeable CPU
and GPU loads observed, we would expect CPU and GPU to both
affect game load times. In addition, when the CPU and GPU are
not busy, we expect the game loading to be waiting on information
from storage. Thus, overall, we expect an improved storage device
– an SSD versus an HDD – to improve game load times.

To assess the impact of hardware components on game load
times, we measure the time it takes for game loading for one itera-
tion of each game and then divided that by the number of games to
get the average game loading performance. We do this separately
for each of game launch and level load, for 9 iterations of each.

Figure 10 depicts the game loading time versus CPU generation.
There are two graphs depicted: on the left is the average game
launch performance and on the right is the average level load per-
formance. The y-axes are the game load times in seconds and the
x-axes are the CPU generations, ordered oldest to newest. Each bar
is the mean game load time shown with a 95% confidence interval.
For this and subsequent graphs, we show the game load time for
our “state of the art” system on the right, separated by a bit of
space and with a different color. This system has a different (better)

Figure 10: Game load time versus CPU generation

Figure 11: Game load time versus graphics card

Figure 12: Game load time versus storage device type

components than our base system so is not directly comparable for
the individual components, but provides a useful reference point for
where our system performs relative to an overall high-end system.

From the graphs, there is a statistically significant difference in
the game load times, with a reduction to average game load time
for an improved CPU. Game launch times decrease about 4% per
generation and level load times decrease about 3% per generation.

Figure 11 depicts the same data, but for different GPUs on the
x-axes, ordered from least powerful (a GPU integrated with the
CPU) to most powerful (the 5600 XT). From the graph, the GPU also
makes a statistically significant difference to performance with a
decrease in game load times with an increase in GPU power. Times
decrease about 10% from the integrated graphics card to the best
graphics card for game launch and 6% for level load.

Figure 12 depicts the same game load performance but with a
different storage device a BaraCuda hard disk drive (HDD) compare
to a MX500 solid state drive (SDD). The storage device also makes
a statistically significant difference to performance, albeit not as
much – the SDD only decreases game load times by about 3%. This
is significantly less than similar measurements about a decade ago
(albeit for different games) whereupon SSDs were found to provide
game launch times about 25% faster than HDDs [4].
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6 LIMITATIONS AND FUTUREWORK
As noted in Section 4.2.1, our user study had 54 users in total.
While this sample size was large enough for statistically significant
results for user quality of experience with game load time, more
users may help with challenging QoE predictions for games like
Apex Legends that has an individual level load linear regression
𝑅2 of 0.46. Similarly, potentially sampling more game load time
lengths, especially within the ranges we currently study, could help
determine where a linear relationship does and does not hold.

Our sample is skewed towards males (only 13 females out of 54
participants). While this may reflect the gender breakdown present
in some games today, the results reported may not be representative
of female performance. Similarly, our study of 12 games across 7
genres was reasonably broad, yet the breadth of game genres is
considerably broader. That, and the fact that games are played on a
variety of devices (e.g., mobile) maymean that the QoE relationships
reported here do not hold for other games and devices.

Our methodology intentionally had users watch videos of game
loading instead of actual launching and play games in order to
minimize human errors and ensure reproducibility of the study.
While the process requires the same user interactions (e.g., mouse
clicks) as an actual game loading experience, how would the results
differ from actual game loading experience remains unknown.

Future work is to validate our models with more users and games
and, once validated, use the models to simulate game loading ex-
perience for wide range of games. In addition, instead of linear
regression, we may look to other shapes for an even better fit.

7 CONCLUSION
People are increasingly turning to games for entertainment evi-
denced by the growth in the game and esports industries, particu-
larly so during the COVID-19 pandemic. While users may be eager
to play, waiting for game loading is inevitable and, unfortunately,
the waiting time can degrade player quality of experience (QoE).

This paper presents results from a user study designed to assess
player QoE under controlled game loading conditions. We recorded
game loading videos and built an self-contained application to
mimic the actual game loading experience. By re-encoding the
game loading videos to be faster and slower, we are able to measure
how game loading time directly impacts QoE. We setup a user study
in a dedicated lab where 54 participants each launched and loaded 3
games (selected from 12 games) across 9 different game load times,
providing subjective opinions on their experience via surveys.

Analysis of user study results shows both game launch and level
load times have significant impact on player experience. Across
the range of game load times studied (less than 10 seconds to over
80 seconds), a 50% decrease in game loading time improves player
experience by about 0.75 points on a 5-point scale – an amount that
can improve the player experience from unacceptable to acceptable.
Models of QoE with game load times suggest simple linear regres-
sion can be improved by considering game load screen content or
via k-means clustering based on base encoding time.

This paper also presents results from experiments that measure
game load times for different hardware components of interest,
including processor, graphics card and storage device. We design

and implement scripts to automatically load games and record per-
formance and run repeated iterations of loading and launching the
12 games, individually swapping out a single hardware component
to assess its impact.

Analysis of results for over 48 hours of continuously launching
games and loading levels shows considerable variation in game
launch times and level load times, differing by 6-fold for game
launch and 15-fold for level load. CPU and GPU use during game
loading is similarly varied, but all games use some of each, sug-
gesting improvements to hardware can reduce game load times.
These results are born out by our analysis which shows better CPUs
and graphics cards can reduce game load times by about 5% per
generation, with a slightly smaller benefit to game load times (3%)
for upgrading from a hard disk drive to a solid state drive.

REFERENCES
[1] Josh Allard, Andrew Roskuski, and Mark Claypool. 2020. Measuring and Mod-

eling the Impact of Buffering and Interrupts on Streaming Video Quality of
Experience. In Proceedings of the 18th International Conference on Advances in
Mobile Computing & Multimedia (MoMM). Chiang Mai, Thailand.

[2] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. 2000. Quality is in the Eye of
the Beholder: Meeting Users’ Requirements for Internet Quality of Service. In
Proceedings of the ACM CHI. The Hague, The Netherlands.

[3] Russell Branaghan and Christopher Sanchez. 2009. Feedback Preferences and
Impressions of Waiting. Human Factors 51, 4 (2009), 528 – 538.

[4] Mark Claypool, Jared Hays, Alex Kuang, and Thomas Lextrait. 2011. On the
Performance of Games using Solid State Drives. In Proceedings of NetGames.
Ottawa, Canada.

[5] Sebastian Egger, Peter Reichl, Tobias Hoßfeld, and Raimund Schatz. 2012. ’Time
is Bandwidth’? Narrowing the Gap between Subjective Time Perception and
Quality of Experience. In Proceedings of the IEEE International Conference on
Communications (ICC). Ottawa, ON, Canada.

[6] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. 2012.
Initial Delay vs. Interruptions: Between the Devil and the Deep Blue Sea. In
Proceedings of IEEE QoMEX.

[7] Carine Lallemand and Guillaume Gronier. 2012. Enhancing User Experience Dur-
ing Waiting Time in HCI: Contributions of Cognitive Psychology. In Proceedings
of the Designing Interactive Systems Conference (DIS). Newcastle Upon Tyne, UK.

[8] Fiona Fui-Hoon Nah. 2004. A Study on Tolerable Waiting Time: How Long are
Web Users Willing to Wait? Behaviour & Information Technology 23, 3 (2004),
153–163.

[9] Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann, San Francisco,
CA, USA.

[10] ITU-T Rec. 2008. Subjective Video Quality Assessment Methods for Multimedia
Applications. (Accessed September 5, 2021).

[11] Dominique Scapin and J. M. Christian Bastien. 1997. Ergonomic Criteria for Eval-
uating the Ergonomic Quality of Interactive Systems. Behaviour & Information
Technology 16, 4-5 (1997), 220 – 231.

[12] Wikipedia. (Accessed 2-Apr-2022). Apex Legends. https://en.wikipedia.org/
wiki/Apex_Legends

[13] Wikipedia. (Accessed 2-Apr-2022). Assassin’s Creed Odyssey. https://en.
wikipedia.org/wiki/Assassin%27s_Creed_Odyssey

[14] Wikipedia. (Accessed 2-Apr-2022). Civilization VI. https://en.wikipedia.org/
wiki/Civilization_VI

[15] Wikipedia. (Accessed 2-Apr-2022). Counter-Strike: Global Offensive. https:
//en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive

[16] Wikipedia. (Accessed 2-Apr-2022). Fortnite. https://en.wikipedia.org/wiki/
Fortnite

[17] Wikipedia. (Accessed 2-Apr-2022). Grand Theft Auto V. https://en.wikipedia.
org/wiki/Grand_Theft_Auto_V

[18] Wikipedia. (Accessed 2-Apr-2022). Hearthstone. https://en.wikipedia.org/wiki/
Hearthstone

[19] Wikipedia. (Accessed 2-Apr-2022). League of Legends. https://en.wikipedia.org/
wiki/League_of_Legends

[20] Wikipedia. (Accessed 2-Apr-2022). Minecraft. https://en.wikipedia.org/wiki/
Minecraft

[21] Wikipedia. (Accessed 2-Apr-2022). Overwatch (video game). https://en.wikipedia.
org/wiki/Overwatch_(video_game)

[22] Wikipedia. (Accessed 2-Apr-2022). PUBG: Battlegrounds. https://en.wikipedia.
org/wiki/PUBG:_Battlegrounds

[23] Wikipedia. (Accessed 2-Apr-2022). Tom Clancy’s Rainbow Six Siege. https:
//en.wikipedia.org/wiki/Tom_Clancy%27s_Rainbow_Six_Siege

https://en.wikipedia.org/wiki/Apex_Legends
https://en.wikipedia.org/wiki/Apex_Legends
https://en.wikipedia.org/wiki/Assassin%27s_Creed_Odyssey
https://en.wikipedia.org/wiki/Assassin%27s_Creed_Odyssey
https://en.wikipedia.org/wiki/Civilization_VI
https://en.wikipedia.org/wiki/Civilization_VI
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
https://en.wikipedia.org/wiki/Counter-Strike:_Global_Offensive
https://en.wikipedia.org/wiki/Fortnite
https://en.wikipedia.org/wiki/Fortnite
https://en.wikipedia.org/wiki/Grand_Theft_Auto_V
https://en.wikipedia.org/wiki/Grand_Theft_Auto_V
https://en.wikipedia.org/wiki/Hearthstone
https://en.wikipedia.org/wiki/Hearthstone
https://en.wikipedia.org/wiki/League_of_Legends
https://en.wikipedia.org/wiki/League_of_Legends
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/Minecraft
https://en.wikipedia.org/wiki/Overwatch_(video_game)
https://en.wikipedia.org/wiki/Overwatch_(video_game)
https://en.wikipedia.org/wiki/PUBG:_Battlegrounds
https://en.wikipedia.org/wiki/PUBG:_Battlegrounds
https://en.wikipedia.org/wiki/Tom_Clancy%27s_Rainbow_Six_Siege
https://en.wikipedia.org/wiki/Tom_Clancy%27s_Rainbow_Six_Siege


ACM MM ’22, October 10-14, 2022, Lisbon, Portugal Shengmei Liu, Federico Galbiati, Miles Gregg, Eren Eroglu, Mark Claypool and Atsuo Kuwahara, James Scovell

APPENDIX A - MODELS

𝑄𝑔 = 0.07 · 𝑏 · 𝑙 − 0.07 · 𝑙 + 4.90 (1)

𝑄𝑙 = 0.06 · 𝑏 · 𝑙 − 0.06 · 𝑙 + 4.85 (2)

Figure 13: Game launch QoE (𝑄𝑔) and level load QoE (𝑄𝑙 )
based on: base length (b - in seconds), actual length (l - in
seconds).

(3)𝑄𝑔 = 0.11 · 𝑏 · 𝑙 − 0.08 · 𝑙 + 0.07 · 𝑏 + 0.003 · SI + 0.11
· TI − 0.0003 · SI · 𝑙 + 0.004 · TI · 𝑙 + 4.59

(4)𝑄𝑙 = 0.10 · 𝑏 · 𝑙 − 0.09 · 𝑙 − 0.35 · 𝑏 + 0.01 · SI − 0.05
· TI − 0.0001 · SI · 𝑙 + 0.08 · TI · 𝑙 + 4.70

Figure 14: Game launch QoE based on: base length (b - in
seconds), actual length (l - in seconds), spatial information
(SI - Sobel filter), and temporal information (TI- Motion dif-
ference)

(5)𝑄𝑔 = 0.07 · 𝑏 · 𝑙 − 0.10 · 𝑙 + 0.50 · 𝑏 + 0.11 · p
− 0.03 · s + 0.002 · p · 𝑙 + 0.004 · s · 𝑙 + 4.90

(6)𝑄𝑙 = 0.003 · 𝑏 · 𝑙 − 0.08 · 𝑙 + 0.44 · 𝑏 − 0.30 · p
− 0.13 · s + 0.003 · p · 𝑙 + 0.01 · s · 𝑙 + 5.30

Figure 15: Game launch QoE based on: base length (b- in
seconds), actual length (l- in seconds), progressive indicator
(p - 0/1), and scene changes (s - count)

𝑄𝑔 = 0.10 ·𝑏 · 𝑙 −0.09 · 𝑙 +1.52 ·𝑏−0.004 ·SI+0.29 ·TI+0.33 ·p−0.12
· s− 0.0003 · SI · 𝑙 − 0.004 ·TI · 𝑙 − 0.002 ·p · 𝑙 +0.006 · s · 𝑙 +4.67

(7)

𝑄𝑙 = 0.16 ·𝑏 · 𝑙 −0.11 · 𝑙 −1.66 ·𝑏 +0.01 · SI−0.16 ·TI−0.50 ·p+0.05
· s− 0.0001 · SI · 𝑙 + 0.01 · TI · 𝑙 + 0.01 · p · 𝑙 − 0.005 · s · 𝑙 + 5.31

(8)

Figure 16: Game launch QoE based on: base length (b- in sec-
onds), actual length (l- in seconds), progressive indicator (p -
(0/1)), scene changes (s - count), spatial information (SI - Sobel
filter), and temporal information (TI - Motion difference)
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APPENDIX B - MODEL GRAPHS

Figure 17: [U, S, P, SI, TI] model - game launch

Figure 18: [U, S, P, SI, TI] model - level load

Figure 19: Average silhouette - game launch

Figure 20: Average silhouette - level load
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APPENDIX C - GAME LOAD TIMES PER-GAME

Figure 21: Per game launch time versus CPU generation

Figure 22: Per game level load versus CPU generation

Figure 23: Per game launch time versus graphics card

Figure 24: Per game load level time versus graphics card

Figure 25: Per game launch time versus storage device

Figure 26: Per game level load time versus storage device
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