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ABSTRACT

Cloud-based game streaming lets users play games with a
lightweight client by streaming the game frames as video
from a server. For a good player experience, cloud-based
game streaming clients need a network connection that sup-
ports the high bitrates needed for visual quality and the low
latencies needed for interactivity — both a challenge when
competing for network capacity with other flows. While net-
work capacities for cloud-based game streaming have been
studied, as have system responses to capacity constraints,
packet losses and competing bulk-download flows, missing
are comparative performance and congestion responses for
cloud-based games competing with video streaming flows.
This paper presents results from experiments that measure
how three popular commercial cloud-based game streaming
systems — Google Stadia, NVidia GeForce Now, and Ama-
zon Luna - respond to Dynamic Adaptive Streaming over
HTTP (DASH) flows on a congested network link. Analysis
of bitrates, frame rates and round-trip times for the game-
streaming flows and analysis of media throughput, interrupts
and quality changes for the DASH flows show the three sys-
tems have markedly different responses to the arrival and
departure of competing DASH traffic, with corresponding
differences in the quality of the game streams and DASH
videos.

1 INTRODUCTION

Cloud computing infrastructures combined with high-capacity
networks have enabled the emerging market of cloud-based
game systems that stream game frames as video, letting the
player experience high quality graphics and gameplay with
only a lightweight client. Systems that seek to capitalize on
the opportunity afforded by cloud-based game streaming
systems include Sony PlayStation Now, Microsoft xCloud,
Google Stadia, NVidia GeForce Now, and Amazon Luna with
Meta (formerly Facebook) arriving soon. Cloud-based game
streaming as a market is growing rapidly with a value of
$865.8 million USD in 2021, with the expectation for expan-
sion at an annual growth rate of 48.2% from 2021 to 2027 [17].
Unlike in traditional computer games, cloud-based game
streaming clients do not run full versions of the game engine.
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Instead, only the cloud-based server handles the relatively
heavyweight game and graphics tasks — applying physics,
resolving collisions, processing Al, and rending the game
frames - streaming the game as video to the game client. This
allows the game client to be fairly lightweight, needing only
the capability to play the streamed game frames similarly to
a streaming video player. However, unlike a streaming video
player, the cloud-based game client sends the frequent player
game input back up to the server to be acted upon in the
game. This means a significant disadvantages of cloud-based
game streaming is added round-trip latency from the client to
the server for all player actions, and also the increased traffic
required for the game frame streaming. In particular, the
bitrate requirements for frequent, high-quality video frames
can cause congestion, degrading player quality of experience
especially in the presence of co-located network traffic.

Prior work has shown that cloud-based game streaming
requires a high capacity network and is sensitive to network
latency [3, 10, 22]. While studies have analyzed network
traffic for specific cloud systems like Google Stadia, NVidia
GeForce Now and Sony PSNow [11, 16, 38], there are only
a few papers that compare aspects how cloud-based game
streams respond to congestion from competing flows. This
latter aspect, congestion, could be self-induced when the
network capacity is insufficient to support their maximum
bitrates or co-induced when the cloud-based game stream-
ing competes for capacity with other network flows on the
bottleneck link.

Previous work has compared the congestion response for
some cloud-based game streaming systems competing with
bulk-downloads [39, 40], whereas an alternate scenario is
that of cloud-based game streaming systems competing with
streaming video flows. A potentially common bottleneck
situation is when a cloud-based game stream shares a bottle-
neck link with a Dynamic Adaptive Streaming over HTTP
(DASH) flow, as might happen in a home network where
one person is playing a cloud-based game while a house-
mate streams a YouTube or Netflix video. And this scenario
is increasingly likely. Every week in February 2021, Amer-
icans streamed 143.2 billion minutes of video content [25]
for an the average of 19.3 hours of video streamed per week
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per household!, or about 2.75 hours day. That number in-
creased to about 3.25 hours per day in 2022 [24]. Moreover,
the bitrate requirements for video streaming service have sig-
nificantly increased, as well, with more support for 4K UHD
content. Live sports, including e-sports, are also streamed
with greater frequency. Such streaming bitrates can be as
high as 35 Mb/s [31], on par with cloud-based game stream-
ing bitrates [38].

This paper presents an analysis of the network congestion
response for three commercial cloud-based game streaming
systems — Google Stadia, NVidia GeForce Now and Amazon
Luna - providing a direct comparison of their bitrates over
time and impact on network congestion when competing for
scarce capacity with DASH flows over a range of network
conditions. We configure and host a DASH server and client
in our testbed. Our methodology launches the client and
streams the video automatically while running the game
systems via a script playing the same game on each system
to ensure similar player actions across runs. By necessity, the
commercial cloud-based game streaming servers are on the
Internet, so as to be as comparable as possible we: 1) interlace
runs of each game system serially to minimize temporal
differences, and 2) doing 15 runs for each test condition to
provide for a large sample.

The results show the three game systems do not have self-
induced congestion when there are no competing flows, but
do suffer from congestion when competing with DASH flows.
How fairly bottleneck capacity is shared depends primarily
upon the game system and bottleneck queue sizes, with small
bottleneck queues favoring the Stadia and Luna systems,
while GeForce is the most fair but less so with a typical
bottleneck queue. The frame rates for the cloud-based game
systems are always good, but round-trip times can degrade
the player quality of experience when bottleneck queues are
large. The quality of the DASH streams are best when the
bottleneck capacity is shared equally, which primarily only
happens for a large bottleneck queue with high capacity.
Interruptions to the DASH flow per minute, however, only
severely degrades when the bottleneck capacity is low.

The rest of this paper is organized as follows: Section 2
provides related work on measurements of commercial cloud-
based game streaming systems and DASH video; Section 3
describes our methodology, including testbed setup and ex-
periment design and parameters; Section 4 analyzes the ex-
perimental results; Section 5 discusses the implication of the
results; Section 6 mentions limitations and future work; and
Section 7 summarizes our conclusions.

IThere are 123.6 million households in the U.S.
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2 RELATED WORK

This section describes work that is related to ours in two
main areas: 1) measurements of cloud-based game streaming
systems (Section 2.1) and Quality of Experience (QoE), and
2) performance of Dynamic Adaptive Streaming over HTTP
(Section 2.2).

2.1 Cloud-based Game Streaming

There are studies analyzing the network performance of
early commercial cloud-based game systems, such as On-
Live [37] and Gaikai [36]. Manzano et al. [22] collect and
analyze network traffic traces from five different games on
both OnLive and Gaikai. They find cloud-based game stream-
ing systems have higher bitrates than do traditional network
games. Claypool et al. [10] make more detailed analysis and
observations of OnLive network traffic traces and find On-
Live has network turbulence more akin to high-definition,
live video, with large, frequent packets and high bitrates.

For current systems, Suznjevic et al. [32] measure network
traffic for NVidia GeForce Now and find GeForce requires
bitrates significantly higher than earlier systems (about 25
Mb/s compared to 6 Mb/s previously). Marc et al. [7] limit
link capacities for Google Stadia during gameplay, finding
Stadia adjusts the resolution and/or frame rates in response
to a bitrate reduction. Xu and Claypool [38] measure Google
Stadia game traffic for several games, showing Stadia has a
traffic pattern similar to but still significantly different than
streaming video and at much higher rates than previous
cloud-based game systems or video (about 19 Mb/s compared
to 6 Mb/s). An extension of this work [40] measures the
responses of three commercial systems, finding the three
systems have different adaptations to network congestion
and vary in their fairness to competing TCP flows sharing a
bottleneck link.

While the above papers are helpful for characterizing net-
work characteristics for cloud-based game streaming sys-
tems, they do not measure system congestion response when
faced with competing DASH flows.

2.2 Dynamic Adaptive Streaming over
HTTP

There have been numerous works assessing the Quality of
Experience of DASH video. Seufert et al. [30] and Garcia et
al. [14] provide surveys of different techniques.

Duanmu et al. [12] compared several QoE models by first
conducting a user study to develop a new model and then
doing comparisons via simulation. Pastrana et al. [27], Qi
et al. [28] and Moorthy et al. [23] measure the impact of
interrupts on streaming video and show QoE is impacted by
the duration and the frequency of the interrupt events. They
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find users tend to prefer videos with fewer, even if longer,
interrupts.

Hof¥feld et al. [19] and Sackl et al. [29] find fundamental
differences between initial delays and interrupts, where ini-
tial delays are generally more tolerated than interrupts in
the middle of the video stream. These results are confirmed
by Allard et al. [4].

Garcia et al. [13] investigate the quality impact of the com-
bined effect of initial loading, interrupts, and compression
for high definition sequences, from which they observe an
additive impact of interrupts and compression on perceived
QoE.

Based on these subjective user studies, the video quality
and number of interrupts in the video playout are key factors
in our assessment of DASH QoE.

There are numerous evaluations of DASH, as well. A core
aspect of DASH performance is the bitrate adaptation al-
gorithm deployed. Bentaleb et al. [5] provide a survey of
bitrate adaptation techniques. Bhat et al. [6] evaluate DASH
using QUIC versus DASH using TCP with different quality
adaptation algorithms. They assess 2v2 flows competing on
a measurement testbed, and find QUIC does not provide an
immediate benefit to performance versus TCP. Abdelsalam
et al. [2] evaluate DASH bitrate adaptation policies over
“challenging” network links — those with highly variable ca-
pacities. They find adapting bitrates based on throughput
leads to frequent resolution changes, whereas adapting bi-
trates based on buffer occupancy leads to a high number of
streaming interruptions. Our work is complementary in that
while our focus is on the cloud-based game streaming system,
we evaluate the quality of a reference DASH implementation
when it competes with a game stream.

3 METHODOLOGY

To observe the response of cloud-based game streaming sys-
tems to competing DASH flows, we selected three popular
commercial systems and a game common to all (Section 3.1),
configured a client and server for DASH streaming (Sec-
tion 3.2), setup a measurement testbed that allowed for con-
trolling congestion conditions (Section 3.4), gathered net-
work traces (Section 3.5), and analyzed the data (Section 4).

3.1 System and Game Selection

We selected three cloud-based game streaming platforms -
Google Stadia, NVidia GeForce Now, and Amazon Luna -
based on their current popularity for game players. While
Luna and GeForce offer native applications for client-side
players, since all three support play via the Google Chrome
browser, we use Chrome as the game client for a fair com-
parison across systems. We also considered Sony Playstation
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Now and Microsoft XCloud cloud-based game streaming sys-
tems, but Playstation Now does not support play through a
Web browser (a special App is required) and our preliminary
measurements show XCloud appears to have a much lower
target quality and bitrate making for unequal comparisons
with other systems.

For game selection, as for the platform, we sought a game
that could be played on each system to allow for a fair com-
parison. We selected one of the few games available on all:
Ys VIII: Lacrimosa of Dana (Nihon Falcom, 2016) - a third
person action/exploration game. In our experiments, each
Ys run, the game loads the same map and during gameplay,
three characters (one controlled by the player) fight enemies
for 10 minutes.

Since gameplay visuals (i.e., what is streamed to the client
and the player sees) depend upon the player’s actions, we
wrote scripts to play the game automatically, thus providing
identical, repeatable gameplay conditions across runs and
across platforms. Our scripts open the game (with input ap-
propriate for each system), load the same game map, and
then play the game automatically as might a human player.
The script executes player actions, including jump, run, at-
tack, cast abilities and camera rotation, at a frequency and
pattern that a human player does (although not necessarily
in response to what is happening on the screen). This means
the same actions can be repeated exactly across all runs.

3.2 DASH Configuration

The server runs Apache on Linux, hosting a manifest and
segments for the DASH configuration of the video Big Buck
Bunny? encoded into 5 different quality levels for adaptive
bitrate scaling. The encoding levels, resolutions and bitrates
are shown in Table 1. The DASH client is DASH.js*> - a
reference client implementation for playback of DASH via
JavaScript - running on Firefox. The reference client uses the
DYNAMIC [31] Adaptive Bitrate Streaming (ABR) algorithm
by default.

Table 1: DASH quality levels.

Quality Resolution Bitrate

Level (pixels) (Mb/s)
1 480x270 2.0
2 640x360 3.0
3 960x540 5.0
4 1280x720 10.0
5 1920x1080 17.5

Zhttps://en.wikipedia.org/wiki/Big_Buck_Bunny
3https://github.com/Dash-Industry-Forum/dash.js/
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3.3 Network Conditions

Our goal is to assess the congestion response for the cloud-
based game streaming systems considering congestion aris-
ing from both network capacity limits and competing DASH
traffic. The network capacity limits alone allow comparison
of system responses to possible self-induced congestion aris-
ing from various “last-mile” network conditions provided,
say, by an Internet Service Provider (ISP), as well as provide
baseline performance for constrained conditions without
competing DASH flows. Adding competing traffic allows
comparison of system congestion responses for co-induced
congestion caused by the presence of other network flows
on the bottleneck link. We consider link capacities that are:
1) above the maximum required for each system, but that are
less than twice the needed capacity when competing with
another flow, 2) right at the maximum capacity required, and
3) less than half (40%) of the maximum capacity required.

The dynamics of TCP congestion control algorithms (used
by the DASH streams) are influenced by the size of the queue
at the bottleneck router. A general rule of thumb is that the
bottleneck link’s buffer queue size should be a multiple (typ-
ically 1x) of the product of the bottleneck capacity and the
round-trip delay, otherwise known as the bandwidth-delay
product (BDP) - i.e., the BDP is computed by taking the link
capacity (bottleneck) in bits per second and multiplying it
by the round-trip time (delay) in seconds. Other guidelines
suggest a “good” queue size is (BDP)/+/n, where n is the
number of flows at the bottleneck link. However, there are
also routers that have considerably larger buffers, a phenom-
ena known as “buffer bloat” [15]. We consider a range of
queue sizes, including those that are: 1) shallow, at about
one-half the BDP, 2) typical, at about 1x the BDP, and 3)
bloated, at about 7x the BDP.

3.4 Measurement Testbed

Figure 1 depicts the general setup for our measurement
testbed. Our testbed automatically plays the game YS via
Chrome on the game client depicted in the figure, connecting
through our custom router to the appropriate cloud-service
provider (one of Google Stadia, NVidia GeForce Now or Ama-
zon Luna). For experiments with competing traffic, the bot-
tleneck link (from the router down to the clients) is shared by
a DASH client. The game client is a PC running Windows 10
Pro, connecting to the cloud-based game streaming service
via Chrome version 98.0.4758.102 (64-bit). The PC hardware
is an Intel i7 eight-core CPU @ 2.0 GHz with 64 GB RAM
with a 1 Gb/s Ethernet NIC. The PC has an LED monitor
with 1920x1080 pixels running at 60 Hz. The DASH client
and server are both Alienware PCs each with an 4-core Intel
i7-4790K CPU @ 4 GHz with 16 GB RAM running Ubuntu
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20.04 LTS, Linux kernel version 5.4, and connect with 1 Gb/s
Ethernet NICs.

The game client and DASH client PCs connect via a 1 Gb/s
switch to a Raspberry Pi 4 configured to act as a network
router. The Pi has a 5 GHz 64-bit quad-core CPU with 8 GB
of RAM and runs Ubuntu 20.04 LTS, Linux kernel version 5.4,
using tc [35] and netem to constrain the network capacity
and add delay. Wireshark is used to gather all network traces
for throughput analysis, gathering the game streaming traffic
on the router and the DASH traffic on the DASH client.

Examples of a tc-netem commands run on our router are:

tc qdisc add dev eth@ root handle 1: \
netem delay 4ms

tc qdisc add dev eth@ parent 1: handle 2: \
tbf rate 15mbit burst Tmbit limit 510kbit

The first command adds delay to the system (used to make
sure all systems have the same round-trip times) and the
second command sets the capacity limit and buffer size.

The router connects to the Internet via our campus net-
work. As a baseline measure of throughput, Google’s M-Lab
Internet speed test consistently shows the campus network
through the router to our client PC has downstream bitrates
over 900 Mb/s and upstream bitrates over 200 Mb/s. These
rates are well-beyond what the streaming services require —
i.e., our campus network is not the bottleneck. According to
the IP addresses observed and the server location informa-
tion released by the platforms, the game servers used in our
experiments are all on the U.S. east coast, physically near
our university.

Based on ping measurements from our client, the Stadia
servers have an average round-trip time of 11.5 ms, GeForce
servers 4.0 ms and Luna servers 16.0 ms. For equal compari-
son across systems, our router adds 4.5 ms round-trip delay
to Stadia, 12.0 ms to GeForce and 15.0 ms for the DASH
client to provide about a 16.0 ms round-trip time for all.
While a 16.0 ms may be a lower round-trip time than that of
many residential connections, our focus is on a comparison
of congestion response, not necessarily the quality of the
individual connections. The delay is added symmetrically
(equal amounts on the up and down streams), while many
residential networks may have asymmetric delays. However,
since the our delay measurements are primarily used as in
indication of Quality of Experience (QOE) and QoE for cloud-
based games is affected by round-trip times, the asymmetry
should not matter.

3.5 Experiments

Our pilot studies determined 3 minutes of gameplay provided
for a steady state bitrate for cloud-based game streams. Our
Wireshark traces begin after the game is being played (i.e.,
loading, menus, etc. are not included — just gameplay).
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Figure 1: Measurement testbed.

We measured the steady-state bitrates for our systems
(Stadia, GeForce and Luna) and selected game (Ys) on an
unconstrained network, and the averages are shown in Ta-
ble 2 with the standard deviation in the parenthesis. All three
game systems have the same quality settings — 1080P reso-
lution and 60 f/s framerate. Based on these rates, we tested
3 network conditions: a “good” connection with a capacity
limit of 35 Mb/s which is above the baseline bitrates, a “nor-
mal” connection with a capacity limit of 25 Mb/s which is
right at the baseline bitrates, and a “bad” connection with a
capacity limit of 15 Mb/s which is below the baseline bitrates.

Table 2: Game system bitrates without capacity con-
straints or competing traffic. Units are Mb/s. Mean val-
ues are reported with standard deviations in parenthe-
ses.

System  Bitrate (Mb/s)

Stadia 28.5(2.3)
GeForce 27.5 (4.8)
Luna 23.7 (0.9)

Additional scripts automatically: 1) connect to the router
to: a) set the queue size and bottleneck capacity limit, as
appropriate, and b) launch Wireshark; 2) launch a ping
command from the client to the game server?; and 3) start
presentmon’ to record frame rates at the client.

In summary, for each round, the fully-automated experi-
ment procedure is:

(1) Connect to the DASH server.

(2) Start the game in the browser and wait for the game
to load.

(3) Connect to the router to set the bitrate, delay and queue
size and start Wireshark.

(4) Initiate a ping from the client to the appropriate game
server and start presentmon.

“Identified automatically in a script via the Wireshark trace.
Shttps://github.com/GameTechDev/PresentMon
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(5) Run the script on the game client which launches and
then plays the game Ys.

(6) After 3 minutes, start to play the video streaming to
the DASH client.

(7) Continue the script which plays the game Ys for 3 more
minutes, then stop the DASH video streaming.

(8) Continue the script which plays the game Ys for a 3
final minutes.

(9) Close the game and all data collection tools and reset
the router to the unconstrained conditions.

(10) Repeat the above procedure for each of the three sys-

tems (Stadia, GeForce and Luna).

We repeat the above procedure 15 times for each network
condition (capacity constraint and router queue size com-
bination), and cloud-based game streaming system. Since
Internet conditions from the campus network to the game
servers can change over time, we stripe across game service
to keep system comparisons as temporally close as possible.
For consistency, all this is done by the scripts automatically,
without manual intervention. Thus, the order of experimen-
tal runs through the parameters from outer loop to inner
loop is: [1 to 15 iterations] [B35, B25, B15 capacity constraint]
[7x, 1x, 0.5x router queue size] [Stadia, GeForce, Luna game
system].

A complete run of all systems and all iterations takes about
24 hours providing for performance that accounts for any
time-of-day affects. All runs were completed on a weekday
during November 2022.

Table 3 provides a summary of the key experimental pa-
rameters.

Table 3: Experimental parameters.

Game system Stadia, GeForce, or Luna
Game Ys VIII: Lacrimosa of Dana
15, 25, or 35 Mb/s

0.5x, 1x, or 7x BDP

Competing connection DASH video streaming

Capacity limit

Queue size

Trace length 9 minutes (3 with DASH)
Iterations 15 runs per condition
4 ANALYSIS

This section compares the different cloud-based game stream-
ing systems with capacity and queue limits, both with and
without competing DASH flows, considering: 1) game stream-
ing bitrates and DASH video streaming bitrates (Section 4.1);
2) bitrate fairness (Section 4.2); and 3) indicators of quality
of experience both for the cloud-based game and the DASH
video (Section 4.3).
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Figure 2: Game system bitrate versus time with a simultaneous DASH flow from 190s to 380s. Each line shows a
separate run with a different bottleneck queue size (0.5x, 1x, or 7x) in multiples of the bandwidth delay product

(BDP).

4.1 Bitrates

We start analysis with a bitrate comparison (computed every
0.5 seconds) of each cloud-based game streaming system for
each queue size (0.5x, 1x and 7x BDP) where the competing
DASH flow runs for 3 minutes in the middle of the 9 minute
game run. Figure 2 depicts the results for all capacity con-
straints (35, 25 and 15 Mb/s). For each graph, the x-axis is
gameplay time, in seconds, and the y-axis is the measured
bitrate, in Mb/s. The mean bitrate for the game system is
shown with a colored line with the shading depicting 95%
confidence intervals across the 15 runs. There is one line for
each queue size: 0.5x BDP - red, 1x BDP - green, and 7x BDP

- blue. The left vertical dotted line at 190s shows when the
DASH flow starts and the right vertical dotted line at 390s
shows when the DASH flow stops.

Before the competing DASH flow arrives (i.e., up to time
190s), mostly the three systems have similar maximum bi-
trates near the capacity limit except for Luna when the capac-
ity is 35 Mb/s because the maximum bitrate of Luna is around
25 Mb/s. Generally Luna has the least bitrate variation and
GeForce and Stadia the most.

When the DASH flows arrive (time 190s), the bitrates for
all three systems decrease, indicating they respond to the
presence of other traffic competing for the available capacity
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Figure 3: DASH bitrate versus time with a different cloud-base game streaming systems.

and, similarly, the systems recover to their original bitrates
sometime after the DASH flows leave (after time 370s). When
competing with DASH flows, the Stadia and Luna bitrates
depend upon the bottleneck queue sizes, with a larger queue
(7x BDP) resulting in a lower bitrate by the game system
than with a small queue (0.5x BDP). GeForce bitrates are
always highest with the typical queue (1x BDP) and lowest
with the small queue (0.5x BDP) and the larger queue (7x
BDP).

Figure 3 shows similar bitrate data but for the DASH video
streams, which run from 190s to 380s but are shifted to start
at time 0 in these graphs. For all capacity constraints, the
DASH bitrates fluctuate over time significantly, with the
largest fluctuations for the 7x BDP queue, although the 7x
queues also generally yield the highest DASH bitrates. As

implied by Figure 2, the DASH flows are mostly under their
fair-share in capacity, but periodically rise above the fair
share for most configurations save for when competing with
Stadia at 0.5x and 1x BDP queues.

4.2 Fairness

We next analyze bitrate fairness measured as the difference in
bitrates between each game system and the competing DASH
flow from time 220s to 370s, normalized by the capacity. This
provides fairness measures that range from -1 to +1, with
positive values indicating the game system receives a higher
portion of the bottleneck capacity and negative numbers
indicating the DASH flow receives a higher portion of the
bottleneck capacity.
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Figure 4: Ratio of bitrate difference (i.e., difference + capacity) for a game system competing with DASH flow.

Figure 4 uses heatmaps to depict the results. The top row
of heatmaps is for the game systems competing with DASH
flows. There is one large box for each game system (Stadia
on the left, GeForce in the middle, and Luna on the right),
with the smaller boxes within each representing one network
condition - 35, 25, and 15 Mb/s capacities as rows and 0.5x,
1x and 7x BDP queues as columns. The numbers in the boxes
are the average difference in throughput for the game system
minus the competing TCP flow, shown normalized by the
capacity (thus ranging from -1 to +1). The warm, red tones
show where the game system has a higher bitrate than the
DASH flow and the cool, blue tones where the game system
has a lower bitrate.

Visually, Stadia is mostly “warm” and gets more than its
fair share of the capacity. In contrast, GeForce has more
“cool” areas where it gets slightly less than the fair share,
with GeForce having one “warm” column for the typical
queue (1x BDP). Luna has half “warm” areas for the small
queue (0.5x and 1x BDP) and half “cool” areas for the larger
queues (1x and 7x BDP). Stadia is mostly “hot” but does have
two “cool” areas with slightly less than the fair share for
large queues (7x BDP) and capacity 25 and 35 Mb/s.

4.3 Indicators of Quality of Experience

This section analyzes the indicator of quality of experience
(QoE) for both the game flow and the DASH flow.

4.3.1 Game Flow QoE. While formal, game-independent
predictors of player QoE in cloud-based games have not
been established nor agreed upon, indicators of QoE are
delay (which degrades responsiveness) and frame rate (which
relates to visual smoothness).

Games played over a cloud-based game streaming system
are sensitive to delay since all player input needs to be sent
to the server, acted upon by the game engine, rendered, and

Table 4: Round-trip time (ms) without competing
DASH flow.

BDP 0.5x BDP 1x BDP 7x

Capacity | Stadia GeForce Luna| Stadia GeForce Luna| Stadia GeForce Luna
15 Mb/ 16.1 16.2 16.8 | 17.3 16.5 18.4 | 215 22.0 16.5

Sl@n @) @2 @3) (24 (2)| (140) @186 (53)
25 Mb/ 16.4 16.2 16.0 | 17.2 16.5 16.0 | 24.8 18.4 15.9

$1 (2.2 11)  (09) | (43) (23) (1.1) | (6.0 (8.7)  (0.6)
35 Mb/ 15.7 16.0 16.0 | 15.6 16.0 16.0 | 15.7 16.0 16.0

106 (05 (09| (07 (04 (08)] (0.6) (05  (0.7)

Table 5: Round-trip time (ms) with competing DASH
flow.

BDP 0.5x BDP 1x BDP 7x

Capacity | Stadia GeForce Luna| Stadia GeForce Luna| Stadia GeForce Luna
15 Mb/ 17.5 16.6 17.2 | 224 21.9 22.4 | 89.0 67.4 68.2

Sl @6 (1.6) (23)| 54 (54 (54) | (39.9) (41.8) (46.9)
25 Mby/ 17.5 16.7 17.7 | 22.2 21.8 21.6 | 80.4 72.1 76.6

Sl @6 (16) (6)| (59 (53) (5.8)| (41.0) (40.3) (45.0)
35 Mby/ 17.5 17.0 17.1 | 22.2 21.1 23.3 | 83.0 80.6 74.8

Sl @6 (1.8 (22| (55 (54 (7)| (393) (40.1) (47.3)

then sent back to the client before the player can see the
outcome of their actions. There are inherent delays in the
end systems - e.g., input delay from the mouse and monitor
on the client, game engine updates and rendering on the
server — but the network round-trip time is “extra” delay
that would not be present if the game was played entirely
locally. Table 4 (without a competing DASH flow) and Table 5
(with a competing DASH flow) have the round-trip times for
the 3 systems for each condition (capacity, queue size). Each
value is the mean for 3 minutes of gameplay with standard
deviations shown in parentheses. For all systems, when there
is no competing DASH flow, the round-trip times are low,
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Table 6: Game frame rate (f/s) without competing
DASH flow.

BDP 0.5x BDP 1x BDP 7x

Capacity | Stadia GeForce Luna|Stadia GeForce Luna| Stadia GeForce Luna
15 Mby 59.2 58.4 53.8 | 58.9 58.0 52.2 | 59.7 58.5 59.8

$1 (1) 0.5 (1.9 | (0.3) 0.7) (29| (0.1) 0.4)  (0.1)
25 Mby/ 58.7 5785 59.9 | 585 58.0 59.2 | 59.7 59.5 59.9

103 (09 (02 02 (07 (06| (01 (01 (0.1)
35 Mb/ 59.8 59.9 59.9 | 59.8 59.9 59.9 | 59.8 59.9 59.9

1 (0.0) 0.1)  (0.1) | (0.0 0.1)  (0.1) | (0.1) 0.1)  (0.1)

Table 7: Game frame rate (f/s) with competing DASH
flow.

BDP 0.5x BDP 1x BDP 7x
Capacity | Stadia GeForce Luna|Stadia GeForce Luna| Stadia GeForce Luna

53.1 39.8 55.1 | 55.4 55.4 56.2 | 56.0 46.7 57.3
06 (127 (07) | (04) (700 (20)| (06) (121) (1.0)

15 Mb/s

55.7 57.6 53.5 | 57.5 57.1 59.1 | 57.3 55.5 58.3

BMYs| 60 (06  (06)| 07) (10) (05)| 03 (44) (02)

54.6 57.1 57.8 | 56.6 57.7 58.9 | 57.1 55.2 58.4

BMb/s| o 08)  (1L0)| (1L0) (0.6) (04)| (03) (7)) (02)

near minimal (about 16 ms) for small queues, but increasing
by about 50% for Stadia and GeForce for larger queues and
small capacities. Luna always has lower round-trip times
possibly since it has slightly lower maximum bitrates. The
small differences in delays between systems may be notice-
able to users, but are small enough to not appreciably affect
performance or QoE [1]. These round-trip times do not reach
even the delays that would be caused by a full queue sug-
gesting that the systems themselves do not saturate a link’s
available capacity until there is loss.

When there is a competing DASH flow, the round-trip
times are still less than the limit dictated by the queue size.
In other words, the 0.5 BDP queue can have at most an extra
8 ms of delay from queueing, the 1x queue 16 ms and the 7x
queue 112 ms but average values mostly fall short of these
numbers. The 0.5x and 1x BDP queues both provide for a
good QoE for the game players. The 7x queues appear only
about 1 to £ full on average, slightly higher for Stadia than
GeForce and Luna, but add a moderate amount of delay to the
game stream degrading QoE. This illustrates how large router
queues in the presence of competing flows during congestion
result in added delay for game-streaming systems. This delay
has been shown to degrade player performance and quality
of experience [8]

Frame rate is another key indicator of the game quality,
where higher frame rates can improve player performance
and are generally associated with a better player quality of
experience [9, 20, 21, 42].
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Table 6 (without a competing DASH flow) and Table 7
(with a competing DASH flow) have the frame rates for the 3
systems for each condition (capacity, queue size). Each value
is the mean for the 3 minutes of gameplay with standard de-
viations shown in parentheses. Without a competing DASH
flow, the frame rates of all systems for all network condi-
tions are near the maximum 60 f/s. When competing with a
DASH flow, frame rates are generally a little bit lower com-
pared with frame rates when there is no competing DASH
flow, but are still high. For higher link capacities (35 and 25
Mb/s), frame rates are all high (greater than 55 f/s), but for
lower link capacity (15 Mb/s), frame rates for all systems
decline, especially for GeForce with 0.5x and 7x BDP queues.
At 15 Mb/s capacity, GeForce only gets high frame rates with
typical queues (1x BDP).

4.3.2 DASH Flow QoE. While there are several models
for DASH QoE that could be used, since a single metric has
not been agreed upon, we use video throughput, interrupts
(stalls) and video quality switch rates as indicators of the
QoE for a DASH video [33].

Our DASH video is encoded with 5 quality levels (see Ta-
ble 1) and with higher bitrates, the video can stream at higher
resolutions. Table 8 shows the DASH bitrate when compet-
ing with the different cloud-based game systems. Each value
is the mean for the 3 minutes the video played with stan-
dard deviations shown in parentheses. Generally for small
and typical queues (0.5x and 1x BDP), average bitrates are
less than half of the link capacities when competing with all
game systems, except for GeForce at 35 Mb/s capacity. With
large queues (7X BDP), DASH flows generally get more of
the link capacities, particularly for high capacities (25 and
35 Mb/s), and, hence have higher frame resolutions. When
competing with Stadia, DASH flows get less of the capacity
and have worse frame resolutions.

When the client playout buffer runs out, the video playout
is interrupted and the buffer is refilled. Users generally find
these interrupts annoying [4] - the interrupt rate provides
another indication of the QoE for a DASH video. Table 9
shows the number of interrupts per minute for the DASH
stream when competing with the different cloud-based game
systems. The interrupt rates are low in most network condi-
tions and for most game systems — well under once a minute.
Only for DASH flows competing with Stadia at restricted
(15 Mb/s) capacity do interrupts average about once every
2 minutes. At this same capacity restriction, GeForce and
Luna have a moderate interrupt rate. Overall, DASH streams
competing with GeForce have the lowest interrupt rates.

With DASH, the video quality resolutions adapt to mea-
sures of throughput and playout buffer occupancy. Generally,
users prefer a steady, unchanging visual quality over variable
visual quality [14, 30]. Table 10 shows the number of quality
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Table 8: DASH bitrate (Mb/s).

BDP 0.5x BDP 1x BDP 7x
Capacity | Stadia GeForce Luna|Stadia GeForce Luna| Stadia GeForce Luna
3.9 5.1 4.1 3.6 4.9 4.9 4.9 5.0 3.2
Mb/s | gy (01)  (08)] 0.2) (03 (©5)| 04 (02 (0.1)
25 Mb/s 5.8 10.4 4.9 5.5 8.7 10.3 | 10.5 10.6 12.6
@1 (01 (06| 08 (13 (05| (03) (0.8  (0.8)
35 Mb/s 6.5 18.2 9.7 6.4 10.9 14.4 | 16.6 18.2 17.9
(2.3) 0.4) (1.1) | (1.9) 05)  (38) | (2.1) (1.0)  (0.4)
Table 9: DASH interrupts per minute.
BDP 0.5x BDP 1x BDP 7x
Capacity | Stadia GeForce Luna| Stadia GeForce Luna| Stadia GeForce Luna
15 Mb/ 0.49 0 0.24 | 0.51 0.16 0.49 | 0.16 0.02 0
$1027) (0 (0.15)] (0.29)  (0.17)  (0.34)| (0.17)  (0.08) (0)
0.20 0 0.07 | 0.11 0 0.02 | 0.13 0 0
BMbs| o0 @  013)] (0.16) (©  (0.08) (016) ()  (0)
35 Mb/s 0.09 0 0 0.11 0 0 0.09 0 0
(0.19)  (0) 0) | (016) (0 (0) | (015) (0 (0)

Table 10: DASH quality switches per minute.

BDP 0.5x BDP 1x BDP 7x
Capacity | Stadia GeForce Luna| Stadia GeForce Luna| Stadia GeForce Luna
BMs L oy 09|08 09 09|08 09 62
25 Mb/s ?i.lo) (16?2) (31%6) ?1'(.)5) ?i.21) (16.79) ?i.31) (2(;)6) (16.94)
35 Mb/s ?i.34) (2(;)8) ?i(.)o) ?2'%0) ?(fs) ?i?s) ?i.64) (3i.24) (l(fz)

switches per minute - i.e,. the DASH video switched from
one level to another in the encoded video in Table 1 during
playout. In general, when competing with Luna and GeForce,
the DASH video streams have fewer quality switches per
minute than when competing with Stadia, and the quality
switches per minute drop substantially for GeForce and Luna
for large bottleneck queues (7X BDP). GeForce, has similar
rates of quality switching for both 0.5x and 7x BDP queues.

5 DISCUSSION

Previous work [39] examines cloud-based game streaming
system response to competing bulk-downloads of iperf flows.
The results show competing with bulk-downloads impact
game stream QoE considerably, especially for GeForce and
Luna. Large bottleneck queues and limited capacities espe-
cially degrade QoE, increasing round-trip times 7-fold and
halving frame rates. In contrast, competing DASH flows have
far less impact. While QoE degrades somewhat with bloated
queue capacities that cause higher round-trip times, round-
trip times are usually low and frame rates generally high,
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near 60 f/s for all scenarios. The competing DASH flows do
not fair as well, typically getting less than half the capacity
and frequently quality switches, although interrupts remain
low.

In general, there are significant differences in congestion
response across the three systems - i.e., there is no “one size,
fits all”. This suggests measurement studies should consider
more than one system in order to determine representative
behavior. The good news is that all of the streaming systems
do, in fact, appear to respond to congestion, even if com-
peting DASH flows tend to get less than their fair share of
the bottleneck capacities in most cases. However, the ability
(and perhaps willingness) of cloud-based game streaming
systems to adapt when the capacities are more restricted
(15 Mb/s) is limited, and generally small bottleneck queues
result in a less adaptive cloud-based game streaming flow.

Indicators of quality are that game streaming flows will
provide a good player experience, even in the presence of
competing DASH video, which bodes well for the contin-
ued growth of cloud-based game streaming. However, more
complete measures of QoE should still be sought and could
perhaps include measures of video quality using tools such
as NDNetGaming [34] or Google UVQ [41].

6 LIMITATIONS AND FUTURE WORK

Our focus is on the view of the game player, where the
game session on a cloud-based game streaming system must
compete with an arriving streaming video in the middle
of gameplay. The converse scenario — a streaming video
started first, then later competing with an arriving game
session — is also quite likely and may yield different network
and quality of experience results, both for the game streams
and the video streams. A future study could use the same
methodology employed here, just swapping the timing for
the game system with the DASH video.

Our experiments are for one game only (Ys VIII) and prior
work has shown that the bitrates for different games on
the same cloud-based game streaming system can vary con-
siderably [38]. Future work could see if the comparative
differences illustrated in our paper hold for other games,
as well. Similarly, whether the results hold for other promi-
nent cloud-based game streaming systems such as those by
Microsoft or Sony is not known and could be studied.

This paper focuses on competition from only one DASH
flow since this is a reasonable starting point and likely expe-
rienced by many cloud-based game streams in many house-
holds. Future work could consider more complicated network
scenarios with multiple DASH flows, or even mixtures of
different types of network flows (e.g., DASH and Web brows-
ing and bulk-downloads). Other experiments could consider
mobile networks such as 4G and 5G.
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Our router uses only a drop-tail queue, whereas Active
Queue Management approaches (AQM) that signal conges-
tion earlier (e.g., Flow Queue CoDel [18] or PIE [26]) might
yield different results and could be considered for future
study.

7 CONCLUSIONS

Emerging cloud-based game streaming systems hold out the
promise of providing a convenient gaming experience for
players as long as the network conditions are adequate. In
particular, streaming computer games need high definition
frames sent at high frame rates (typical targets are HD and
60 f/s). This, in turn, requires high bitrates that have the
potential to congest last mile residential networks, particu-
larly when competing for capacity with other network flows.
This paper compares three commercial systems — Google Sta-
dia, NVidia GeForce Now and Amazon Luna — with repeated
runs of the same game on network links with different capac-
ity constraints and bottleneck queue sizes, while the game
systems compete for bottleneck capacity with a DASH flow.

Analysis of the results show the three game systems have
similar bitrates that operate near the capacity constraints,
and even for constrained conditions (lower capacity, smaller
queue sizes) none of the three systems has self-induced con-
gestion, keeping packet queuing low and packet loss minimal
in the absence of competing traffic. When competing with
a DASH flow, GeForce generally shares the available capac-
ity fairly, Stadia dominates taking about twice what is fair,
and Luna take more than it’s fair share of capacity for small
router queues but less than its fair share for large queues
and high capacities.

Large bottleneck queues (buffer bloat) result in larger de-
lays for the game systems, which is bad for game player
quality of experience. The game stream frame rates are gen-
erally good for all conditions tested — even for those where
the game stream is competing with a DASH flow - but con-
strained network conditions also result in slightly lower
frame rates.

The competing DASH flows mostly operate without inter-
ruptions in their playout, except for capacity constrained con-
ditions, especially when competing with Stadia. The DASH
streams switch quality values frequently under most con-
ditions — generally not desirable for viewers — but tend to
be most stable when competing with GeForce and for Luna
with large bottleneck queues.

These results provide a better understanding of game sys-
tem interactions with constrained network links when com-
peting with DASH flows and should be useful to better plan
for, and hopefully deter, resulting network congestion, thus
potentially improving game player and video viewer Quality
of Experience.
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