Complex Ports and Roles within Software Architecture

Helgo Ohlenbusch and George T. Heineman
Computer Science Department

WPI

Worcester, Massachusetts USA
{helgo,heineman }@Qcs.wpi.edu
WPI-CS-TR-98-12

Abstract

The Software Architecture community has de-
veloped a common vocabulary for describing
software components and their interconnec-
tions. However, the structure of ports and roles
have been too simplistic for capturing even sim-
ple examples. This paper explores the part that
composition, inheritance, and interfaces play
in defining ports and roles. We discuss these
concepts within the context of the JavaBeans
component model and show how to capture the
complexity inherent in the interfaces of compo-
nents and connectors.

1 Introduction

As the size of software applications increases, it
becomes infeasible to implement software sys-
tems from scratch. Software developers are re-
sponding to this growing complexity by con-
structing software systems based on software
components. However, it is still an elusive
goal to construct applications entirely from
pre-existing, independently developed software
components. There are many obstacles to
reusing software components. First, one must
locate a component with the exact functional-
ity needed; then, once a component is found
that (perhaps only closely) matches the de-
sired need, the software developer must over-
come incompatibilities between interfaces, im-
plicit assumptions, and any hidden dependen-
cies that components may have. The motiva-

This paper is based on work sponsored in part by
National Science Foundation grant CCR-9733660.

tion for reuse is great, since reusing a compo-
nent reduces implementation costs and, most
importantly, maintenance costs.

One aim of Software Architecture research
is to better specify the high level design and
overall structure of the system, focusing on the
individual components and their interconnec-
tions [3]. An Architectural Description Lan-
guage (ADL) provides the syntax for describing
a software architecture. As software develop-
ers construct systems from components, they
can describe the developing software architec-
ture using an ADL specification.

The focus of this paper is to better un-
derstand the impact that composition, inter-
faces, and inheritance have on the ADL speci-
fications of components and systems. Object-
oriented programming languages have greatly
increased the opportunities for reuse through
composition and inheritance. As described by
Gamma [2], these common techniques are com-
plementary and allow functionality to be eas-
ily reused. Their experience leads them to two
principles of reusable object-oriented design:
(P1) Program to an interface, not an imple-
mentation; and (P2) Favor object composition
over class inheritance. In this paper, we take a
closer look at how to capture the complexity of
the interfaces of components and connectors.

1.1 Context

We explore the notions of composition, inheri-
tance, and interfaces by investigating the Jav-
aBeans [5] component model. A Java Bean
is a reusable software component that can
be manipulated visually in a design environ-



ment, such as the sample Bean Development
Kit (BDK). BDK allows application builders
to instantiate a collection of Beans that com-
municate with each other using events. The
JavaBeans event model allows components to
propagate state change notifications to one or
more registered listeners. Each Bean contains
a set of state properties (i.e., named attributes)
that can be customized by application builders.
For example, one can change the font, back-
ground color, or dimensions of a Bean. A Bean
also has public methods that other Beans can
invoke.

JavaBeans is designed for simplicity — in
theory every Java Class is already a Bean;
there is no need to subclass from a special
Bean class. A Bean is defined by its prop-
erties, events, and methods. Properties sim-
ply reflect an implicit naming scheme of pub-
lic methods; for example, if a Bean has pub-
lic methods void setHeight (int h) and int
getHeight (), one can infer that the Bean has
a property Height. Similarly, if a Bean im-
plements a Java interface ControllListener
and has a method void handleControlEvent
(ControlEvent e) then ControlEvent is an
event that the Bean is prepared to handle.

There are many drawbacks of such an im-
plicit approach to component construction.
First, because there is no explicit specification
of the interactions between the component and
its environment, Connectors, Ports, and Roles
are implicit in JavaBeans. An architectural de-
scription of the component will simply be doc-
umentation of a very abstract nature. Also,
interoperability between components from dif-
ferent component models is hindered if each fol-
lows their own implicit scheme. A guiding prin-
ciple of Software Engineering that we follow in
this paper is to explicitly define all implicit de-
pendencies and definitions. To overcome this
implicit approach, we concretely define the var-
ious Port and Role types that are possible in
JavaBeans. In this way, we provide a means for
a Bean developer to accurately document the
interface of the Bean, thus allowing an appli-
cation builder to fully understand how to reuse
this Bean within a software application.

|-_--__ i

FACULTY [GTUDEHTS

Figure 1: JavaBeans Spreadsheet Application

1.2 Motivating Example

Consider the simple spreadsheet application in
Figure 1 composed of nine interacting Beans.
A TableBean tb displays a matrix of informa-
tion with C' columns and R rows. The col-
umn header TableBean tb(C has height of 1 and
width of C'. The row header TableBean tbR has
width of 1 and height of R. A status TableBean
tbBoz (showing C8 in Figure 1) has height and
width of 1. There are two ScrollbarBeans, one
vertical (vs) and one horizontal (hs), that al-
low users to select values from within a par-
ticular range. A TextBean textb allows users
to enter text. A List Bean selecth allows users
to switch between sheets, or create new ones.
Lastly, an invisible SpreadsheetBean ss main-
tains and calculates all values in the spread-
sheet, of which only a few are visible as deter-
mined by th. A Java applet app creates these
Beans and registers their interactions.

The components react to GUI events (i.e.,
mouse clicks) and communicate with each other
through events. For example, when the user se-
lects an entry in tb using the mouse, tb gener-
ates a TableEventObject event. app processes
this event by setting entry (1,1) for tbBoz to
the designated cell while the contents of the
spreadsheet cell (i.e., (+ C2:C5)) are shown in
textb.

In Section 2 we briefly describe the building
blocks of ADLs and how they are reflected in
JavaBeans. Section 3 presents the main results
of this paper, namely, that composition, inher-
itance, and interfaces help define the complex
structures embodied by ports and roles. Sec-
tion 5 summarizes our conclusions.



2 Software Architecture

At the architectural level, the first step is to
characterize the style selected for the software
application. The results of this paper are fo-
cused on JavaBeans, but they can be equally
applied to any other component model. The
seven basic entities common to ADLs [6] are:
components, connectors, ports, roles, config-
urations, representations, and representation-
maps. Typically, representations have been re-
sponsible for describing the hierarchy found in
software systems. However, these have only
been applied to components and connectors; in
this paper, we argue that hierarchy is essential
to capture the complexity of ports and roles.

Architectural descriptions use the terminol-
ogy of components, ports, connectors and roles
to describe a system. Ports define the points
of interaction of a component with its environ-
ment. Similarly, a role defines the interaction
between a connector and a component. The
design of a system is an arrangement of com-
ponents where the connectors represent their
interactions. A connector is composed of roles
that are connected to specific ports. A con-
nector can be as simple as a function call, but
it can also be a complex protocol or an appli-
cation in itself (e.g. distributed systems using
CORBA). Within a style, ports and their cor-
responding roles have different properties.

Components with complex interfaces are
overloaded with many different ports. Ports
should have an interface to allow interrelated
functionalities to be grouped into one port.
Interfaced-ports increase the level of abstrac-
tion of the interaction between components.
The roles are used to specify which interfaces of
the port are being used. There are many ways
to partition methods into different ports. If we
allow a port to be composed of other ports, we
can build a hierarchy of component interaction
points.

2.1 JavaBeans Connections

In JavaBeans, a Bean is characterized by its
properties, methods and by the type of events
it can fire. The JavaBeans model provides two
ways for components to communicate with each
other. The first type is direct method invo-

cation, whereby a component directly invokes
a method on another component. This corre-
sponds to a simple connector with roles such
as {caller, callee}. Connectors of this type can
only be connected to ports that match the pub-
lic interface of the Bean. There is no code re-
quired for such connectors, but by requiring
a Bean to access directly another Bean, this
type of communication increases the coupling
between the different components.

The second type uses events for the interac-
tions. A Bean registers itself as a listener for a
specific event produced by another Bean. The
listener Bean only needs to understand how the
event is constructed, and it can listener to any
Bean that produces the same type of event.
We refer to these connectors as event trans-
porters with roles such as {consume-event,
deliver-event}. The underlying implementa-
tion for this connection is a simple method
invocation to a pre-defined method specified
by an interface, such as handleEvent (Event
e). Again no code is required for the connec-
tor; the Bean provides the necessary connec-
tion code as defined by the JavaBeans speci-
fication. Methods such as AddEventListener
and RemoveEventListener serve this purpose.

Beans can only listen to events that they
have been created to handle. To overcome this
limitation, the Bean Development Kit (BDK)
dynamically generates new Java classes that
transform events received from one Bean into
method calls (most likely) on another Bean.
The connector that is generated knows how to
handle a particular event from a source Bean
and can directly invoke any public method from
the target Bean. This enables Beans to react
to a wider set of events.

3 Ports and Roles

Ports and roles define the interaction between
components and connectors. We now com-
pletely classify the interactions of a Bean with
its environment into two different types of
ports, IncomingMethod and OutgoingMethod.
These two types constitute the foundation of
the hierarchy of all the ports used to describe
the JavaBeans architectural style.

The IncomingMethod type defines the pub-



lic interface of the Bean. All public methods
of the Bean are identified by ports that inherit
from this port type. This type is then further
refined using the naming convention defined by
the JavaBeans model specification to create a
hierarchy of all the services requested by an-
other Bean.

The OutgoingMethod type identifies method
calls that are initiated by the Bean itself. Inter-
actions of this kind can occur spontaneously (if
a Bean has its own thread of control) or by the
direct result of an IncomingMethod invocation.
This second type captures the dependencies be-
tween different components and helps to trace
outgoing method invocations. These ports are
not part of the Bean’s public interface, and cap-
ture the external dependencies that the Bean
has on its environment. Events in JavaBeans
are announced using a FireEvent port type
that inherits from OutgoingMethod.

3.1 Type Hierarchy

We now fully describe the JavaBeans core spec-
ifications by creating a hierarchy of port and
role types. The ACME [1] specification for
these hierarchies are contained in Appendix A.

3.1.1 The IncomingMethod hierarchy

The first type hierarchy is based on the
IncomingMethod port type. This type is re-
fined to capture the different types of method
defined in the JavaBeans specifications. The
port type associated with a method defines the
interaction with the Bean. We first differen-
tiate between method invocations that result
in an outgoing method invocation and those
that don’t. Ports that correspond to methods
that do not generate outgoing method invoca-
tion are of the primary type IncomingMethod.
This type is refined to capture the specificity
of the simple set and get methods, respec-
tively PropertySetter and PropertyGetter
that are subtypes of the IncomingMethod type.
The port type ReceiveEvent that corresponds
to the HandleEvent type of methods is a sub-
type of IncomingMethod that recognizes this
method as an event handler.

The ActionMethod port type is for methods
that result in one or more outgoing method in-

BoundPropertySetter
etoablePropertySetter

Figure 2: The incoming port type hierarchy

vocations. This type is refined to create the
ActionEvent port type for methods that will
produce events. JavaBeans provides a consis-
tent mechanism for announcing state changes,
whereby an event is fired whenever a bound
property is changed. The port type that cor-
responds to this type of method invocation
is BoundPropertySetter and it is a sub-type
of both ActionEvent and PropertySetter.
The VetoablePropertySetter port type fur-
ther determines that the particular property
is a constrained property and other Bean may
deny the set request.

When a Bean is a veto-listener, it uses ex-
ceptions to oppose the change of a property.
This is the first feature of JavaBeans that re-
lies on the exception handling provided by the
Java language. To capture this mechanism
we must refine the base type IncomingMethod
to a new type ExceptMethod to record that
the method throws exceptions. Using mul-
tiple subtyping, we can then build a new
type ReceiveVetoEvent that is a subtype from
ReceiveEvent and ExceptMethod.

Figure 2 summarizes the port types intro-
duced in this section that constitute the basic
types defines in the JavaBeans model. By using
multiple subtyping we can create more complex
types to better fit real Beans. For example,
a method that is initiated by an event (type
ReceiveEvent) that also results in the firing of
one or more events will be of a type that will
subtype from ReceiveEvent and ActionEvent.



OutgoingMethod

oy
Figure 3: The outgoing port type hierarchy

3.1.2 The OutgoingMethod hierarchy

A Bean can also invoke methods from other
components. The port types that capture this
interaction are based on the QutgoingMethod
port type are are shown in Figure 3. This
first specialization is for the case where a Bean
fires an event. Even though the fireEvent
method of a bean is typically a private method,
we need to specify a port for the interac-
tion between the Bean and the other com-
ponents. To differentiate between different
event types that are fired, we can further spe-
cialize the FireEvent port type. The only
event defined by the JavaBeans model is the
PropertyChangeEvent, corresponding to the
FirePropertyChangeEvent port type.

3.1.3 Role type hierarchy

Connection between beans are formed from
one or more JutgoingMethod ports to one or
more IncomingMethod ports. The roles used
to build this type of connector have different
types, with a hierarchy similar to the one of
the port types. The two base types of roles
are InvokeMethod and ReceiveMethod, and
they correspond to the IncomingMethod and
OutgoingMethod port type hierarchy.

The InvokeMethod role is refined to
GetProperty, SetProperty, DeliverEvent.
One reason why the role SetProperty is not
split into different roles (bounded and con-
strained) is that it is out of the scope of the con-
nector; its task is only to perform the change
and not to monitor it. To monitor a change, the
connector would have to be connected to the
corresponding FireEvent port. A role of type
SetProperty can be connected to several types
of port (any port type in the SetProperty hier-

InvokeMethod ReceiveMethod

GetProperty SetProperty DeliverEvent

Figure 4: The role type hierarchy

ConsumeEvent

!
I

archy). The ConsumeEvent role is a subtype of
the ReceivelMethod role and can be connected
to any FireEvent port.

When designing an application, each Bean is
specified by one or more instances of the port
types. The connectors then are defined using
different instances of the role types defined in
the style. When the connectors are attached
to Beans, the different types of the ports and
roles enable static checking for compatibility
and traceability.

3.2 Interface

A one to one mapping from methods to ports
is sufficient when designing small application;
however, the design becomes unwieldy as the
complexity increases. Once we view ports as
having interfaces, then we can create com-
plex structures describing the composition of
ports. Ports need to have an interface for
two reasons. First, a port with an interface
supports functional overloading. For exam-
ple, a port that defines setHeight (int) can
be extended to support setHeight(float),
setHeight (string). Second, interfaced-ports
enable “similar functionalities” to be grouped
into one port, and thereby leads to simplifica-
tion of the design.

When functional partitioning is used, all
ports that affect the Bean in the same way
are grouped together. This reduces only some-
what the complexity of a Bean’s interface. A
more dramatic reduction is seen when all ports
with the same type are grouped together. For
example, there would be one port of type
PropertySetter that would be composed from
the many individual PropertySetter ports for
each of the Bean’s properties. This is a behav-
toral partitioning, since the ports are grouped
based upon the external behavior as seen by the
environment; Figure 5 describes this extreme.
This partitioning presents a simple interface to



IncomingMethod

ActionEvent PropertyGetter

PropertySetter

ReceiveVetoEvent BoundProperty Setter

VetoablePropertySetter
FirePropertyChange
OutgoingMethod

Figure 5: Representation of a Bean with
interfaced-ports

connectors seeking to attach to the Bean. It
dramatically reduces the number of ports and
introduces a simple two-level structure to the
Bean’s methods which are too often viewed as a
flat list of methods. For an event-based model
such as JavaBeans, this approach makes it eas-
ier to trace event propagation. From the de-
sign we can directly see that when a connec-
tor is connected to the interfaced-port of type
BoundPropertySetter this will cause the bean
to fire an event using the FirePropertyChange
port. This view enables the tracing of the dif-
ferent interactions. However, this partitioning
may obscure the many semantic differences be-
tween the ports and methods.

A third possible partitioning is informa-
tional that groups all ports that affect spe-
cific properties together. For example, the
PropertySetter and PropertyGetter for a
particular Bean property would be composed
into the same port. This grouping most closely
matches the spirit of JavaBeans, and can read-
ily support composition of interrelated proper-
ties. There are problems, however, with classi-
fying methods that affect multiple properties.

Since the ports have a complex structure,
the roles must correspondingly reflect this com-
plexity. We thus move away from the vague
use of roles such as {caller, callee} and — for
the first time in the software architecture lit-
erature — associate a structure and interface
with roles. By doing so, we finally allow ports
and roles to capture the many complex interac-
tions between components and connectors. As
a visual aid, the outgoing ports in Figure 5 are
represented with triangles pointing outside the
Bean.

3.3 Composition

To simplify the design, we need to be able
to group different ports or interfaced-ports
into one entity. For example, a behav-
ioral approach would group together all the
ports that inherit from PropertySetter (i.e.
PropertySetter, BoundPropertySetter and
VetoablePropertySetter).

An informational approach allows designers
to partition the ports based on their relation-
ships. Some attributes of an object can be
interrelated; for example, a Bean may have a
Width and Height property, as well as a com-
bined Dimension property. To capture this
type of nested interdependencies we use a port
Dimension that is composed of two sub-ports,
one for Height and one for Width. The Dimen-
sion port is then composed of 4 ports corre-
sponding to get-dimension, set-dimension and
two other ports for Width and Height.

Composing ports makes it possible to have
different level of depth at the design level. The
designer groups the methods and their asso-
ciated ports into logical and inter-dependent
entities. The same composition rule can be
applied to the roles of the connector. With-
out modifying the complexity of the specifica-
tion of the design, composition of ports asso-
ciated to interfaced-ports introduce a hierar-
chy in the architectural design. In the same
way we can look into the design of one compo-
nent or connector by “zooming” into the con-
nection at the design level. Figure 6 presents
a visual metaphor (based on fractals) for the
hierarchy of ports. Connector “B” simply at-
taches to the Dimension port while connector
“A” attaches to specific elements of the port,
including the sub-port Height and the individ-
ual method getDimension().

4 Putting it all together

Returning to our motivating example, we
would like to interconnect the various Beans
to produce a fully-functioning spreadsheet.
The TableBean objects react to mouse events
by generating TableEvent events. The ap-
plet app has installed itself as a listener on
th for these events; the TableBean thus in-
vokes the handleTableEvent object on its



Figure 6: Details of a “complex” connection

listeners whenever it generates events. The
handleTableEvent method is part of the ap-
plet and performs the following functions: (1)
determine the actual spreadsheet cell based
upon the leftColumn and topRow offsets; (2)
unselect any selected Columns or Rows in ¢tbC'
and tbR, respectively; (3) update tbBoz to
contain the absolute reference of the desired
cell; (4) retrieve the value of this cell from
the spreadsheet; and (4) display this value in
textBean.

This fragment is really the code for a con-
nector between the five collaborating beans: tb,
textB, tbBozx, th(C, and tbR. The roles for this
connector are implicit, and the ports for the
various Beans are also implicit; our task now is
to identify the roles and ports explicitly. As de-
scribed in Section 3.2, there are multiple ways
in which to group the individual ports of a com-
ponent. Each grouping affects the definition of
the roles, and hence the connectors. For space
reasons, we can only present the details of the
TableBean component. The language used to
describe the ports and components is our Com-
ponent Specification Language (CSL) [4].

4.1 Behavioral

The specification of the TableBean interface in
Figure 8 shows how the various ports are com-
bined based upon their type; for example, all
the getProperty() methods are now part of
the port TBGetter. The TableBean component
type is defined to contain an instance of each
of these port types. This partitioning provides
a simple two-level structure for the methods of

public void handleTableEvent (TableEventObject teo) {
TableElement from = teo.getFrom();
TableElement to = teo.getTo();

// Offset these table events (by leftColumn/topRow) to
int offsetR = tbR.getTopRow() - 1;
int offsetC = tbC.getLeftColumn() - 1;

Cell fromCell = new Cell (from.getColumn() + offsetC,
from.getRow() + offsetR);
Cell toCell = new Cell (to.getColumn() + offsetC,
to.getRow() + offsetR);

if (teo.getSource() == tb) {
// on MousePress, un-select any column or row

if (teo.getType() == TableEventObject.MOUSE_PRESS) {
tbC.setSelectedRegion (null);
tbR.setSelectedRegion (null);

}

// Show this region in the tbBox TableBean.
CellRegion cr = new CellRegion (fromCell, toCell);
tbBox.setTableValue (1, 1, cr.toString (true));

// Show value of the first cell of cr in textBean
Cell cell = cr.getStart();
String s = spreadsheet.getValue (cell.toString());

if ((s == null) && (! textBean.getText().equals ("")))

textBean.setText ("");
else {
textBean.setText (s);
textBean.select (0, s.length());
}
}
}

Figure 7: Connector for processing TableEvent
events



Port Type TBGetter extends PropertyGetter with {

String getTableValue (int, int);
int getRowHeight ();

int getColumnWidth ();
Dimension getPreferredSize ();
Color getForeground ();

Color getBackground ();
TableRegion getSelectedRegion ();

int getNumRows ();

int getNumColumns ();

};

Port Type TBSetter extends PropertySetter with {
void setTableValue(int, int, String)

};
Port Type TbBoundSetter extends BoundPropertySetter with {
void setRowHeight (int);
void setColumnWidth (int);
void setForeground (Color);
void setBackground (Color);
bool setSelectedRegion (TableRegion);
void setNumColumns (int);
void setNumRows (int);
}
Port Type TBIncomingMethod extends IncomingMethod with {
void paint (Graphics);
void redraw (Graphics, int, int);
bool select (TableRegion);
bool select (TableElement, TableElement);
void addTableListener (TableListener);
void removeTableListener (TableListener);
void addPropertyChangeListener (Listener);
void removePropertyChangeListener (Listener);
void clearTableValue ();

};

Port Type TBActionEvent extends ActionEvent with {
void mouseClicked (MouseEvent);
void mousePressed (MouseEvent);
void mouseReleased (MouseEvent);
void mouseEntered (MouseEvent);
void mouseExited (MouseEvent) ;
void mouseDragged (MouseEvent);

void mouseMoved (MouseEvent) ;
};
Component Type TableBean extends JavaBean with {
Port Getter : TBGetter;
Port Setter : TBSetter;
Port BoundSetter : TBBoundSetter;
Port FireTableEvent : FireEvent;
Port FireEvent : TBActionEvent;
Port FirePropertyChangeEvent : FireBoundPropertyEvent;
Port MethodCall : TBIncomingMethod;

Figure 8: Behavioral partitioning

the Bean and enables some rudimentary anal-
ysis of the system. For example, when a con-
nector attaches to the TBGetter port, one can
infer that no property values will change.

4.2 Informational

The specification of the TableBean interface
in Figure 9 creates a richer structure for the
ports, and groups individual methods together
based upon their effect on the Bean’s proper-
ties. The TableValue port, for example, has
setTableValue and getTableValue — the ba-
sic ones assumed from the JavaBeans model
— and a third method that clears out all val-
ues, clearTableValue. A connector can at-
tach to the entire port, in which case it has
access to all its functionality, or it could at-
tach simply to the the getTableValue sub-
port. This partitioning creates more ports than
a behavioral partitioning, but it more closely
follows the object-oriented approach. Note how
the SelectedRegion port is composed of the ba-
sic functionality of a BoundProperty port, with
the additional functionality as provided by the
two select methods. Finally, consider the
TableEvent port which reacts to mouse events
from the user interface. This port contains
a sub-port that is responsible for firing the
TableEvent events. Through composition, it is
clear that the TableFvent events are directly
related to mouse events, an inference we could
not have drawn from Figure 8.

Figure 10 contains the informational specifi-
cation for the connector whose implementation
is shown in Section 4. This notion of defining
an interface before the actual implementation is
a key concept from object-oriented technology.
Note how the connector describes each of the
functionalities that it needs to function prop-
erly; at a glance, we can see that this connector
will process a TableBean event, retrieve var-
ious property values from other components,
and set the TableValue property of a compo-
nent. Through composition, handl1eTBEvent
accurately describes the interactions that oc-
curs between the various beans. Also, the at-
tachments clause shows exactly the elements
from the various ports that are accessed by the
role.



Port Type PropertyPort extends PropertySetter,
PropertyGetter with { };
Port Type BoundPropertyPort extends BoundPropertySetter,
PropertyGetter with { };
Port Type EventPort extends ActionEvent, FireEvent with {3}

Port TableValue : PropertyPort extended with {

Port void setTableValue (int,int,String) : PropertySetter;
Port String getTableValue (int,int) : PropertyGetter;
Port void clearTableValue () : PropertySetter;

};

/* Similar for ColumnWidth (deleted for space reasons) */
Port RowHeight : BoundPropertyPort extended with {

Port int getRowHeight () : PropertyGetter;

Port void setRowHeight (int) : PropertySetter;

h;
Port Dimension : BoundPropertyPort composedof RowHeight,
ColumnWidth extended with {

Port Dimension getPreferredSize() : PropertyGetter;

};

/% Similar for Background (deleted for space reasons) */
Port Foreground : BoundPropertyPort extended with {
Port Color getForeground () : PropertyGetter;
Port void setForeground (Color) : PropertySetter;
};
Port Graphic : BoundPropertyPort composedof Foreground,
Background, Font extended with {
Port void paint (Graphics) : IncomingMethod;
Port void redraw (Graphics, int, int) : IncomingMethod;

};

Port SelectedRegion : BoundPropertyPort extended with {
Port TableRegion getSelectedRegion () : PropertyGetter;
Port bool setSelectedRegion (TableRegion): PropertySetter;

/* Interfaced-port in a composed port */
Port select : IncomingMethod extended with {
bool select (TableRegion);
bool select (TableElement, TableElement);
}
}

Port TableEvent : EventPort extended with {

Port void mouseClicked (MouseEvent evt) : ActionEvent;
Port void mousePressed (MouseEvent evt) : ActionEvent;
Port void mouseReleased (MouseEvent evt) : ActionEvent;
Port void mouseEntered (MouseEvent evt) : ActionEvent;
Port void mouseExited (MouseEvent evt) : ActionEvent;
Port void mouseDragged (MouseEvent evt) : ActionEvent;
Port void mouseMoved (MouseEvent evt) : ActionEvent;
Port void addTableListener(TableListener) :IncomingMethod;
Port void removeTableListener(TableListener):IncomingMethod;
Port FireTableEvent :FireEvent;

};

/* Similar for NumRows (deleted for space reasons) */
Port NumColumns : BoundPropertyPort extended with {
Port void setNumColumns (int) : PropertySetter;
Port int getNumColumns () : PropertyGetter;

};

Port BoundPropertyChangeEvent : EventPort extended with {
Port addPropertyChangelListener (Listener) : IncomingMethod;
Port remove PropertyChangeListener (Listener):IncomingMethod;

Port FirePropertyChangeEvent :
};

FireBoundPropertyEvent;

Figure 9: Informational partitioning

Role Text: PropertyRole extended with {
Role getText: GetProperty;
Role setText: SetProperty;

};
Connector handleTBEvent : BeanConnector
composedof TextRole extended with {

Role consumeTableBeanEvent : ConsumeEvent;
Role getSelectedRegion_tb : GetProperty;
Role getTableValue_tbR : GetProperty;
Role getTableValue_tbC : GetProperty;
Role getValue : GetProperty;
Role getLeftColumn : GetProperty;
Role getTopRow : GetProperty;
Role setTableValue : SetProperty;

};

Attachments {
tbR.Leftcolumn.getLeftColumn to handleTBEvent.getLeftColumn
tbC.TopRow.getTopRow to handleTBEvent.getTopRow;
tbC.SelectedRegion.setSelectedRegion to
handleTBEvent.setSelectedRegion;
tbR.SelectedRegion.setSelectedRegion to
handleTBEvent.setSelectedRegion;

tbBox.TableValue.setTableValue to handleTBEvent.setTableValue;

ss.Value.getValue to handleTBEvent.getValue;
textBean.Text to handleTBEvent.RoleText with {
Text.set to RoleText.set;
Text.get to RoleText.get;
}
};

Figure 10: Connector for Figure 9.

5 Conclusion

This work is a preliminary investigation on cap-
turing the complexity inherent in the interface
of software components. We evaluated a sim-
ple application composed of nine JavaBeans
and, in doing so, revealed unexpected com-
plexity in specifying the interconnections be-
tween the components. The goal of our efforts
was to thoroughly specify the application using
ACME, and our failures at doing forced us to
question the simple notion of ports and roles.
We defined three possible views — informa-
tional, behavioral, functional — of a compo-
nent’s interface and fully specified the inter-
faces of the individual components. Our ini-
tial findings support the idea that composition
and inheritance should be more widely used in
defining ports and roles. The essential under-
standing we reached is that the interface of a
port clearly defines how the role for a connec-
tor should be attached. More work now needs
to be performed on how useful these complex
descriptions are when constructing applications



from software components.

Our ultimate research goal is to develop tech-
niques for adapting software components. This
paper outlines a necessary first step — the de-
tailed specification of a complex component’s
interface. Next we will define techniques to
help application builders adapt a component by
modifying the specification and providing new
code to extend the component. It is our expec-
tation that sophisticated specifications will be
necessary before sophisticated components can
be reused and adapted.

About the Authors

Helgo Ohlenbusch is a graduate student at
WPI in Worcester, Massachusetts. He can be
reached at helgo@cs.wpi.edu.

George T. Heineman is an assistant Professor
in the Department of Computer Science at WPI
in Worcester, Massachusetts. Heineman was a
visiting researcher at the Centre for Advanced
Studies at IBM during the summer of 1993. He
can be reached at heineman@cs.wpi.edu.

References

[1] John E. Arnold and Steven S. Popovich. In-
tegrating, Customizing and Extending En-
vironments with a Message-Based Archi-
tecture. Technical Report CUCS-008-95,
Columbia University, Department of Com-
puter Science, September 1994.

[2] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Software. Addison-
Wesley, Reading, MA, 1995.

[3] David Garlan and Mary Shaw. An Intro-
duction to Software Architecture, volume I
of Advances in Software Engineering and
Knowledge Engineering. World Scientific
Publishing Company, New Jersey, 1993.

[4] George T. Heineman. A Model for Design-
ing Adaptable Software Components. In
Twenty-Second Annual International Com-
puter Software and Applications Confer-
ence, Vienna, Austria, August 1998. To
appear.

10

[5] Sun Microsystems, Inc. JavaBeans 1.0 API
Specification. Internet site

(http://www.javasoft.com/beans), De-
cember 4, 1996.

[6] Nenad Medvidovic and Richard N. Taylor.
A Framework for Classifying and Compar-
ing Arhchitectural Description Languages.
In Proceedings of the 6th European Software
Engineering Conference ESEC 97, 1997.



A ACME description of JavaBeans

The following is a complete description in ACME of the base ports and roles as defined by the
JavaBeans specification.

/% PORTS */
Port Type IncomingMethod = {
Property comment = '"may throw an exception";
}
Port Type ActionMethod extends IncomingMethod with { };
Port Type ActionEvent extends ActionMethod with { };
Port Type ReceiveEvent extends IncomingMethod with { };

Port Type ReceiveVetoEvent extends ReceiveEvent with {3}

Port Type PropertyGetter extends IncomingMethod with { };
Port Type PropertySetter extends IncomingMethod with { };

Port Type BoundPropertySetter extends ActionEvent, PropertySetter with {
Property comment = "FirePropertyChangeEvent";

};

Port Type VetoablePropertySetter extends BoundPropertySetter with { };

Port Type OutgoingMethod = {
Property comment = "Call of an external method";
Port Type FireEvent extends OutgoingMethod with = { };
Port Type FirePropertyChangeEvent extends FireEvent with {
Property comment = "Catches exception from the Vetos" ;

Component Type JavaBean = { };

/* ROLES */
Role Type InvokeMethod = {
Property comment = "may catch an exception";
};
Role Type ReceiveMethod = { };

Role Type ConsumeEvent extends ReceiveMethod with = { };
Role Type GetProperty extends InvokeMethod with = { };
Role Type SetProperty extends InvokeMethod with = { };
Role Type DeliverEvent extends InvokeMethod with = { };

Connector Type BeanConnector = { };

11



