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Abstract

We consider the problem of maintaining a binary search tree (BST) that minimizes the average ac-
cess cost needed to satisfy randomly generated requests. We analyze scenarios in which theaccesses are
generated according to a vector of fixed probabilities which isunknown. Our approach is statistical.

We devise policies for modifying the tree structure dynamically, using rotations ofaccessed elements.
The aim is to produce good approximations of the optimal structure of the tree, while keeping the number
of rotations as small as possible. The heuristics we propose achieve a close approximation to the optimal
BST, with lower organization costs than any previously studied.

We introduce theMove Once(MO) rule. The average access cost to the treeunder this rule is shown to
equal the value achieved by the common ruleMove to the Root(MTR). The advantage ofMO overMTR and
similar rules is that it relocates each of the items in the tree at most once. We show that the total expected
cost of modifying the tree by theMO rule is close ton(π2=3�2) rotations (in a tree withn items). This
holds independently of the access probabilities and the number ofaccesses to the tree.

Next we combine theMO rule with reference counters, one per item, that provide estimates of the
reference probabilities. We define the ruleMOUCS, and show, that for anyδ andα> 0, it achieves a cost
that approaches the optimum up to a difference ofδ with probability higher than 1�α, within a number
of accesses that is proportional ton=(αδ2).

Key words: Binary search tree, reorganization, move to the root, counter scheme,access probabilities,
stopping point.
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1 Introduction

The Binary Search Tree(BST) is commonly used for storing lists of entries that satisfy a total order. The
advantage of a tree is that it allows an efficient search in the list. Typically, the search is most efficient when
the tree is kept as balanced as possible, and when popular elements are close to the root. We study methods
that maintain aBST in a nearly optimal form.

We consider a fixed set ofn records in random storage,L = fR1; : : : ;Rng. The recordRi is uniquely
identified by the keyKi , for 1� i � n. The keys satisfy a total order, and the set is maintained as aBST.
The records are accessed according to a multinomial distribution driven by the areference probabilityvector
(RPV), p= (p1; : : :; pn). Thus,Ri may be requested at any stage with the same probabilitypi, independently
of previous requests and the state of the tree – and in particular of the location ofRi in the tree. This is called
the independent reference model(IRM). Since theRPV andL do not change, the passage of time is realized
by the sequence of references. There is no other notion of time in the model.

Each reference requires a search for a record in the tree. The cost of a single access is defined as the
number of key-comparisons needed to locate the specified record. This equals itsdepthin the tree.

The order by which the records are initially inserted into the tree is assumed to be random (with equal
probability over all possible permutations. The implications of this assumptions are discussed further in the
note to Theorem 3 below). Different initial-insertion sequences usually result in different trees, with very
large range of expected access costs.

The access probabilities listed in theRPV p are assumed unknown.Werethey known, we could restructure
the tree, using a known dynamic-programming approach to provide the smallest possible expected cost. Since
theRPV is constant, so would be the optimal structure. Withp unknown, we are reduced to looking at policies
that use the accumulating reference history to adapt the tree structure, with the goal of rearranging the records
so that the expected access cost is minimized.

The reorganization process incurs a cost as well: the manipulations performed on the tree when its struc-
ture is modified. The only operations used for this arerotations, operations that exchange the ‘rotated’ node
with its parent, while maintaining the key-order in the tree. Figure 1 shows the tree modifications that result.
Note that the inverse of the rotation operation is a rotation as well. The cost of the reorganization is defined
as the number of rotations, since each rotation requires essentially the same computing time.
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Figure 1: Single left-child and right-child rotations that reflect(A)< Ka < (B)< Kb < (C)
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The two cost components of key comparisons and rotations are denoted byC andR respectively. A few
performance measures which are of interest in this context are:

1. Cm – The access cost following themth reference (and possible reorganization),m� 0.

2. C – The asymptotic access cost, especially its expected value,E[C].

3. R– The work done in reorganizing the tree, such as the moments of the total number of rotations.

In addition to the limiting expectation of the random variableC, it is interesting to consider the rate at
whichCm approaches this limit: since most data processing systems exist for a finite time only, a policy which
reduces the access cost promptly may be preferable to one that does it more slowly, even if the limiting cost
of the latter is somewhat lower.

The problem of reorganizing aBST to minimize the average access cost has been widely studied. Most
of the work we have seen focus either on the asymptotic value ofC, or an “amortized” analysis of the cost,
which combinesC andR, but is limited to considering a worst-case scenario [8, 19, 16]. Typically, such an
approach only yields bounds. Such an analysis cannot assess the advantages of methods that rely on properties
of theIRM (on the other hand, since it considers the worst case, the bounds it produces apply to more diverse
scenarios, in particular – where theIRM assumption does not hold). The results in [4] refer to the case when
the elements of theRPV are known only up to a permutation.

Some of the research focused on the situation where theRPV is known, with the goal of finding the optimal
tree – or achieving a nearly optimal one, with a smaller computational effort. An early outline is given in [15].
A survey of more recent work on balancedBSTs appears in [18]. Recently, parallel algorithms have been
considered for construction of optimal and nearly optimalBSTs ([2, 13]).

In this paper we devise and analyze policies which achieve a close approximation to the optimalBST, with
lower organization costs than any of the previously studied heuristics.

Section 2 defines some additional notation, and presents the dynamic-programming algorithm that con-
structs the optimal tree for a knownRPV. In Section 3 we discuss theMove Once(MO) rule, which achieves
the same costC as theMove to the Root(MTR) rule ([1]), but requires at mostn�1 reorganization steps for
any reference sequence to the tree.

We then propose in section 4 a method for approximating the optimal search tree, which improves the
asymptotic average cost obtained by theMO or MTR. Our method, which we callMove Once and Use Counter
Scheme(MOUCS) guarantees, that for anyδ andα > 0, the tree is dynamically reorganized until the average
access cost is withinδ of the optimal cost, with probability of at least 1�α. We obtain a distribution-free
bound on the running time of the algorithm, which is linear inn (the size of the tree) and 1=(αδ2).

2 Preliminaries

Let C(Tn) denote the average access cost to aBST T of n elements, with the access probabilities p1; : : :; pn,
then, with the root at level 0,

C(Tn) = 1+
n

∑
i=1

pi � (level(Ri)): (1)

Under theIRM, for any set of keys with a givenRPV, there exists an optimalstatic BST. We denote by
C(OPTjp) the average access cost in such an optimal tree.
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The optimal tree structure and its expected cost are straightforward to compute using the following Dy-
namic Programming equations, which need to be satisfied at every internal node (adapted from [15]). Let
C(i; j) be the expected access cost of the optimal subtree that consists of recordsRi+1;Ri+2; :::;Rj. Then
C(0;n) is C(OPTjp), as defined above. We also defineπi; j = ∑ j

k=i pk. These costs satisfy the Bellman equa-
tions

C(i; i) = 0;

C(i; j) = πi+1; j + min
i<k� j

(C(i;k�1)+C(k; j)) (2)

When the access probabilities areunknown, a dynamic reorganization of the tree may be used to achieve an
approximation of the optimal order. Some of the well known modification rules are studied in [1] and [4].
Various performance measures were considered for this model. With a given reorganization policyB and an
unknownRPV p, the following costs are used below:

1. The average access cost after themth reference,m� 0, denoted byCm(Bjp),

Cm(Bjp) = 1+
n

∑
i=1

pi � E[Level(i) jB;p] ; (3)

Note: the expected level at which an item may be found, under a policyB, is determined not only by
the sequence of accesses: it also depends on the initial state of the tree, possibly as a result of the order
the elements were inserted into the tree. As a rule we average over all possible insertion sequences,
considering them equiprobable1.

Under certain policies, the initial state becomes irrelevant following a large number of references
and the changes in the tree they trigger. In particular, this holds for any reorganization policy which
approaches the optimal tree (or the optimal expected cost only) after a sufficiently long sequence of
searches.

2. The expected access cost in the limiting state:

C(Bjp) = lim
m!∞

Cm(Bjp):

3. The total expected number of rotations induced by an input string, characterized either by its size (e.g.
mrequests) or by the number of distinct records it references. In particular – by a sequence that contains
each record at least once.

3 The Move Once (MO) Rule

3.1 The Average Cost of a Single Access

Allan and Munro [1] analyzed the Move To the Root (MTR) rule in detail, assuming theIRM. This rule is the
counterpart of the Move To the Front (MTF) rule for linear lists: a referenced record is rotated to the root of

1This doesnot translate to a uniform distribution over initial tree states, since the number of sequences that result in a given tree
state is not the same for all tree states. Happily, more-balanced trees occur more frequently than badly skewed ones, which have
normally (much) higher access costs.
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the tree (unless it is there already). They showed an upper bound on the ratioC(MTRjp)/C(OPTjp) for any
distribution (their Theorem 3.3), and also estimated its rate of convergence (their Theorem 5.1).

TheMTR rule is on the one hand more attractive than theMTF for a linear list, since the limiting value of
its access cost can be shown to be closer to the optimal cost; on the other hand, theRcomponent of its cost is
even more pronounced than with a list, where any rearrangement uses the same time; here, moving a record to
the root uses the same number of rotations as the number of steps to reach the record in the first place. Hence
it makes sense to look for rules that use less expensive modifications. In [10] we showed that for a linear list,
moving a record at most once (when it is first referenced) to the tail of the sublist of records that were moved
before, achieves the same expected cost as theMTF, at any finite time. We propose to use the same principle
for reorganizingBSTs: a record is only moved the first time it is referenced. It is then rotated towards the root,
until its parent is a record that has already been referenced. The first referenced record goes of course all the
way to the root. Hence the name Move Once (MO).

Allan and Munro [1] consider a similar rule, calling it the First Request Rule, and show it has the same
asymptoticcost as theMTR. However, forBSTs, just as for linear lists, more can be claimed:

Theorem 1: Let aBST be referenced according to theIRM with theRPV p. The rulesMTR andMO have the
same expected access costs for the mth request, for any m� 1.

We use in the proof the following result.

Lemma 2: For a given initialBST, let TB(I) be theBST resulting from processing the reference stringI with
the reorganization ruleB. Then

TMTR(I) = TMO(IR);

where the stringIR is the reverse ofI.

We give a detailed proof of the lemma in the Appendix.

Proof of Theorem 1: We naturally assume that both rules start with the same tree (or with trees selected
at random using the same initial distribution). Under theIRM, any reference stringI and its reverseIR have
precisely the same probability, hence theaccess costs of the two rules are identically distributed; for our needs
only the equality of the expectations matters. The equality may seem surprising, since usually the rules con-
struct for thesameinput string two entirely different trees. The important difference is thatMO uses far fewer
rotations thanMTR, and moreover, the latter churns its tree indefinitely, whereasMO rests after a time which
has a finite expectation.

Hence we can use the results in [1] for the average cost underMTR to state the following theorem.

Theorem 3: ([1]): The expected access cost to aBST reorganized with theMO policy, after m references, is
given by

Cm(MOjp) = 1+ ∑
1�i< j�n

�
2pi pj

πi; j
+(1�πi; j )

m
�

pi + pj

j� i +1
� 2pi pj

πi; j

��
(4)

whereπi; j = ∑ j
k=i pk.
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Note:This result applies when the tree is considered to have been initiated by a uniformly distributed insertion
sequence. If it were created by the same applications which gave rise to theRPV we used above, then its initial
form has the asymptotic distribution induced by theMO policy. This has then the limiting expected value

C(MOjp) = 1+ ∑
1�i< j�n

2pi pj

πi; j
; (5)

and theMO policy calls for no more modifications.

3.2 The Expected Number of Rotations

The variableRn, the total number of rotations theMO policy requires to organize aBST of sizen (that is created
by a random sequence) till all records have beenaccessed at least once, characterizes the cost of implementing
this policy.

The size of such a sequence is known as the length of the Coupon Collector Search. This process is
discussed in detail in [5]. Its length depends critically on theRPV; the expected value of the length is smallest
whenp is uniform, and equals thennHn (Hn is thenth harmonic number, and approaches lnn asymptotically).

While the number of rotations for the first few references would be typically inO(logn), we should expect
most subsequent references to require few rotations, if any.

The number of rotations,Rn for a tree of sizen depends on two distributions. One generates the insertion
sequence that creates the initial tree, and the second governs subsequentaccesses – this is the aboveRPV. In
fact, it would be more accurate to say it depends on the relation between the two distributions. This general
statement has an exception: if the first distribution is uniform – every permutation of the records is equally
likely to serve as the insertion sequence – thenRn doesnotdepend on the accessRPV. The reason is apparent
from the equation we derive now. Consider the first reference. It addresses some recordRI , whereI is the
position of that record in the total order of the keys. Since the tree was created with the uniform distribution,
then regardless of the values ofI and of the access probability pI , the depth of the recordRI is distributed as
Dn (= the depth of a randomly selected node in a randomly constructedBST) – independently ofI . Hence we
may assume that the variableI , sampled according to the accessRPV, is uniformly distributed on[1;n]. Dn is
also the number of rotations that bring it to the root. Once this is done it will have two subtrees of sizesI �1
andn� I , and again, their structure is that of randomly createdBSTs. TheMO policy translates to independent
reorganization of the subtrees; we find then

Rn = Dn+RI�1+Rn�I : (6)

The statistics ofDn are well known; it satisfies a recursion even simpler than (6):Dn = 1+DI�1+ Dn�I .
From this it is easy to obtain itsprobability generating function(PGF), the expected value and its variance,
respectively:

gn(z) = [n(1�2z)]�1(1� (�1)n

��2z
n

�
);

dn � E[Dn] = 2(1+
1
n
)Hn�4;

un � V[Dn] = 2(n+5)Hn=n+4[1� (n+1)H(2)
n =n� (n+1)H2

n=n2]:
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We useH(2)
n to denote thenth second-order harmonic number, that converges promptly toπ2=6.

Let us return to rotations: Taking expected values (with respect to the entire access sequence used by the
MO policy) of equation (6) we derive the first-order difference equation

rn+1 � E[Rn+1] = dn+1� n
n+1

dn+
n+2
n+1

rn; (7)

which has the immediate solution

rn = 2n(H(2)
n �1)�2Hn+2H(2)

n : (8)

For not-too-smalln, a good approximation ofrn is given byrn � n(π2=3�2)�2logn+2:3950.
The total expected number of rotationsper recordin the tree is then less than 1.3.
ThePGF of Rn does not appear to be easy to obtain. Even the variancevn �V[Rn], which satisfies a relation
very much like (7), does not seem to have a useful closed form representation. An asymptotic estimate is
obtainable, though the explicit form is very complicated. It boils down to

vn � 1:165381n�4log2n�10:617725logn+O(1): (9)

The main information this result provides is that for large trees the distribution is very tightly centered at the
mean value.

4 Reference Counters and Approximately Optimal Trees

The glaring difference between the use of reference counters for the reorganization of linear lists and ofBSTs
is that for the first storage mode, the Counter Scheme (CS)—the policy that keeps the records ordered by their
counters—converges to the optimal order without any extra costs, while unless tree reorganization is “free,”
there appears to be no such simple rule forBSTs that results in an optimal structure.

4.1 The Counter Scheme and Dynamic Programming

In [11] the CS was shown to be optimalfor linear lists, not only asymptotically, but also for everyfinite
reference string. It is tempting to search such a rule forBSTs. This does not seem to exist. In particular,
the so-called “monotonicBST”, which like theCS keeps records with higher counters closer to the root, will
usually fail to result in the optimal structure, for the same reason that using aknownRPV to structure aBST

monotonically fails to reproduce the tree which is computed by the Dynamic Programming (DP) algorithm of
section 2.

It is also known that the cost of the monotonic tree can be unboundedly higher than that of the optimal
one (specifically – their ratio can be as high as roughlyn= logn, [17]).

But all is not lost. We can combine theMO and theCS with the DP algorithm as follows. The counters
provide estimates for theRPV which could be used inDP to produce a tree which is the optimal one for the
estimates (but would usually be in fact suboptimal). The computation takes a (constant) time inΘ(n2); this is
non-trivial for a large tree. Hence we would like to do it once, and to do it right. This requires

1. That the estimates should be good enough for the deviation from optimality to be tolerable.
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2. An efficient management of the counters, that will minimize their space overhead. As we show below,
the total number of references needed is typically a moderate multiple ofn. Hence, unless for some
reason very small counting registers must be used, we need not worry about their potential overflow.

These points—especially the second one—suggest that the procedure needs a stopping criterion, a way to
determine when the estimates are good enough to stop theMO phase. The criterion must connect the total
number of references (possibly with some information about the estimatedRPV) and the nearness of the sub-
optimal value to the optimal one. We suggest the following compound policyMOUCS (for Move Once and
Use Counter Scheme):

Reorganization RuleMOUCS. This rule has two phases:
Phase A: Use the ruleMO and also compile reference counters,Ci for Ri, during a total ofm0 references. A
suitable value form0 is shown below.
Phase B: usefCi=m0g as estimates for theRPV; compute the “ostensibly optimal”BST using them as input
for theDP algorithm, restructure the tree accordingly and stop reorganizing.

For the access cost during Phase A we have an explicit, if cumbersome result in equation (4).
Allen and Munro use equation (4) to show that theMTR rule produces a tree with an expected access cost that
differs from its limiting value by at most one, withindnlogn=ee references2. They also show, however, that
this limiting value,C(MTRjp), can exceed the optimal one by some 40%. We would like to do better.

In the following result we quantify the efficiency of theMOUCS rule in terms of convergence to the optimal
tree vs. the length of the request sequence. We shall see that large trees need even less references in phase A
than Allen and Munro suggest, and provide expected access cost which is close to the optimum.

Denote byĈ(OPTjp) the expected access cost to the tree built in Phase B for the estimate ˆp to theRPV p.

Theorem 4: For any unknownRPV p, δ > 0 andα < 1,

Prob(
��Ĉ(OPTjp)�C(OPTjp)��> δ)< α (10)

after a sequence of m0 accesses to the tree, where

m0 =
5:235n

δ2α
; (11)

Note: Below we compare thism0 with m0, the number of references found empirically to be needed to
approach the optimal cost to the desired level.

We use in the proof the following lemmas, which relate weights (= access probabilities) of subtrees to
their position in the optimalBST. We remind the reader that the level of a node was defined as its distance
from the root.

Lemma 5: Let T be an optimalBST as given in Figure 2 (possibly a subtree of the completeBST). Node B is
at level 2, and P is the weight of T . Let pB,pt ; pr denote the weights of the nodes B; t; r respectively, Pt is the

2The remarkable fact about this value is that it is far smaller than the expected number of references before all records are
referenced at least once!
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Figure 2: The optimal treeT

weight of the tree rooted at t, and PB is the weight of the tree rooted at B, and for1� i � 4, Pi are the weights
of the subtrees Ti, then8a2 [0;1]

either Pt � aP or PB < (1�a)P: (12)

We give the proof in the Appendix. Lemma 6 improves the bound on the maximal level of an item in an
optimalBST as given in [9].

Lemma 6: For anyRPV p1; : : : ; pn corresponding to the records R1; : : : ;Rn, such that S= ∑n
i=1 pi � 1, if Li

is the level of Ri in an optimalBST (where the level of the root is0), then

pi � ϕLi�1 : (13)

whereϕ is given by(
p

5�1)=2, the celebrated golden ratio.

Proof: Using Lemma 5, the proof is similar to the proof of Lemma 2 in [17]. In addition we get ana-
fortiori bound (read: possibly poor) by replacing the weight of a subtree by that of its root.

αnn 10 20 50 100 200
0.25 0.0141 0.0164 0.01768 0.01816 0.01766
0.1 0.00961 0.0108 0.00895 0.00843 0.00807
0.05 0.00715 0.0064 0.00538 0.00462 0.004405
0.01 0.00223 0.0017 0.00132 0.00109 0.000971

Table 1: The required length for the reorganization process underMOUCS to approach the optimum within a
differenceδ = 0:25 with probability higher than 1�α (The table shows the ratiom0=m0).
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Proof of Theorem 4: Let p̂ be the estimate forp, obtained after a sequence ofm references, and let̂l i; l i be
the levels ofRi in the optimal trees for ˆp;p respectively. Using the optimality offl̂ ig for fp̂ig,

��Ĉ(OPTjp)�C(OPTjp)�� =

�����
n

∑
i=1

l̂ i pi �
n

∑
i=1

l i pi

����� (14)

�
�����

n

∑
i=1

l̂ i pi �
n

∑
i=1

l̂ i p̂i

�����+
�����

n

∑
i=1

l i p̂i �
n

∑
i=1

l i pi

����� : (15)

Therefore, forδ > 0 and 0< α < 1, it is sufficient to look for the minimal value ofmsatisfying

Prob

 �����
n

∑
i=1

l i p̂i �
n

∑
i=1

l i pi

�����> δ
2

!
< α; (16)

and a similar relation witĥl i replacingl i (for which thesame mwould suffice, since thêl i are the optimal
levels for the estimated probabilities ˆpi ). Now, sinceC(m)

i has the marginal distribution Bin(m; pi), we can
compute the moments of the estimates ˆp. Using the Chebyshev inequality in relation (16) we solve formand
have

m� 4

n

∑
i=1

l i
2pi(1� pi)�

n

∑
i=1

∑
j 6=i

pi pj l i l j

δ2α
� 4

δ2α

n

∑
i=1

l i2pi(1� pi); (17)

where the last inequality amounts to neglecting the (negative) covariances between the counters. From
Lemma 6 we havel i � 1+ logpi= logϕ, hence

m� 4
δ2α

n

∑
i=1

(1+ logpi= logϕ)2pi(1� pi): (18)

Each of the terms in the sum is at most maxpi2(0;1)(1+ logpi= logϕ)2pi(1� pi) = 1:33371::: (at pi � 0:071),
yielding the bound in (11).

δ n n 50
0.9 0.032794
0.7 0.025901
0.4 0.016375
0.2 0.010796
0.1 0.006905
0.06 0.004883
0.01 0.001184
0.001 0.000072

Table 2: The ratiom0=m0 for n= 50 andα = 0:15.

Note: The procedure we used to derive the bound in (11) suggests that for most distributions, the stopping
point for the execution ofMOUCS is significantly lower. Table 1 verifies this for a large set of randomly
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generatedRPVs: We computed the access probabilities from a vector(x1; : : : ;xn), such thatxi �U(0;1), and
pi = xi=∑ j xj ; 1� i � n.

We estimated the stopping pointm0 for a set of 500RPVs, for each pair(n;α), with δ = 0:25. Table
1 presents the ratiom0=m0 (using the average of the 500 values). The results are consistent with the linear
dependence of the bound onn. However, for most of theRPVs we tried, the constant was evidently much
smaller. In addition, Table 1 suggests that the stopping point depends on 1=αy for some 0< y� 0:5, whereas
we could only proved a bound usingy = 1. Table 2 shows that for fixed values ofn andα, the ratiom0=m0

is a decreasing function ofδ. It is more likely then, that the stopping point depends on 1=δ or even a smaller
value rather than 1=δ2.

We can summarize our empirical results on the stopping point forMOUCS in the following

Conjecture 7 : For any unknownRPV p, the expected access cost to aBST rearranged by theMOUCS

approaches the optimal average cost within a difference ofδ, with probability higher than1�α, following
c�n=δxαy references, for some small constant c< 1, x approximately1 and0< y< 0:5.

4.2 The Counter Scheme and Weight Balanced Trees

As the computation of the approximation to the optimal tree requiresΘ(n2) steps, we are interested in a more
efficient construction ofnearlyoptimal BSTs. This holds even when theRPV is known, unlike our statistical
scenario, when the truly optimal tree is available. A suitable candidate appears to be theweight balanced tree,
which is constructed as follows:
Weight Balancing Rule([9]): Choose the root so as to equalize the weight of the left and right subtree as much
as possible, then proceed similarly on the subtrees.
It is shown in [7], that a weight balanced tree is constructible with time and space complexity inΘ(n).
Bayer shows in [3], that for a givenRPV p, the average access cost to the weight balanced tree, denoted by
C(WBjp̄) satisfies

C(WBjp)�C(OPTjp)� lgH + lge+1� lgH +2:4427::: < 1:45lnlnn+2:45; (19)

whereH = ∑ pi lg p�1
i is the entropy of theRPV p. SinceH 2 [0; lgn], this bound looks acceptable. We

describe in the next section the usage of a scheme which keeps the tree weight-balanced, in terms of the
counters of the keys. Its performance is given by the following Theorem. Denote byĈ(WBjp̄) the cost of the
balanced tree constructed by the estimate ˆp for the rpvp.

Theorem 8: For any δ > 0 and0< α < 1, and for any unknownRPV p,

Prob(
��Ĉ(WBjp)�C(WBjp)��> δ)< α; (20)

after a sequence of m0 accesses to the tree, where

m0 =
5:235n

δ2α
: (21)

We use in the proof a bound on the structure of these trees that appears identical with the one derived in
Lemma 6 for the optimalBST; it was first shown by Mehlhorn in [17]:
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Lemma 9: ([17]) For anyRPV p1; : : : ; pn corresponding to the records R1; : : :;Rn, such that S= ∑n
i=1 pi � 1,

if Li is the level of Ri in the weight balanced tree (where the level of the root is0), then

pi � ϕLi�1 ; (22)

with ϕ as defined in Lemma 6.

Proof of Theorem 8: Using the proof of Theorem 4, witĥC(OPTjp) andC(OPTjp) replaced byĈ(WBjp) and
C(WBjp) respectively, and̂l i; l i denoting the levels ofRi in the weight balanced trees for ˆp;p respectively,m0

satisfies equation (17). The bound is obtained by using Lemma 9.
The identical bounds on the structure of those two types of trees suggest at once that they are typically

rather close, and that these bounds do not characterize them very tightly.

5 Discussion

We have studied reorganization rules for aBST, where accesses to the tree are generated independently by a
fixed unknown distribution. We showed that when the distribution is static for sufficiently long durations, the
MOUCS rule:

(i) provides an on-going reorganization of the tree which improves the expected access cost and requires a
low number of rotations,

(ii) yields on termination a search tree with access cost which is arbitrarily close to that of the optimal
tree, using statistics accumulated from a reference sequence with length which is linear in the number
of elements (for relatively largen the length of this sequence is comparable with, or smaller than the
expected number of references till all records are touched once).

It is an open challenge to derive a bound on the stopping point ofMOUCS that corresponds more closely
to the experimental results, as summarized in Conjecture 6. It is our belief that the discrepancy does not
represent a possible worst case, but rather our failure to bound the sums that appear in equation (14) more
tightly.

A different, interesting rule, which also reorders the tree while updating the counters, is based on the
near-optimal weight-balanced tree: during the reference sequence the tree is kept weight-balanced as esti-
mated by the counters. Since the difference between the estimates and the true access probabilities decreases
monotonically (in expectation), we conjecture that this rule provides at each stage a closer approximation to
the weight-balanced tree which could be constructed ifp were known.

In fact, we have shown that for any distribution, the cost of the estimated weight balanced tree approaches—
as close as we wish—the cost of the “true” weight-balanced tree (based on theunknownRPV p) within a
number of accesses that is linear inn.

The relative efficiency of theMO rule compared to the scheme which keeps the tree weight balanced by
the counters is still open. For longaccess sequences, we would expect theMO to be inferior with respect to
the total average cost of the sequence, but it will retain its advantage of low reorganization cost.

The main assumption driving the results above is the stationarity of the reference process. While systems
may rest unchanged over periods long enough for the analysis to be applicable, they all do change ultimately.
It is of interest to extend the results to quasi-stationary systems. When theRPV changes slowly over time there
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is nothing to be gained from the presented approach, but it can be useful for systems withphasestructure.
During each phase, guaranteed to be at leastK references long, and averageM, theRPV is fixed. Consider the
following scheme:

1. Keep reference counters and store their values everyK accesses. The tree is reorganized so as to keep
it weight-balanced by the counters. Call a sequence ofK requests asegment.

2. After every segment, test for the hypothesis that the counters accumulated in the last two segments
where generated by identical distributions. If the hypothesis is rejected, reset the counters.

This opens the door to a large number of statistical inference problems, that we expect to address in a forth-
coming paper.

Another issue concerns the cost of computing (which includes the construction of) the optimal tree. The
best known algorithm, as presented in Section 2, usesθ(n2) steps—with a non-trivial coefficient—and has the
same space complexity [14]. We showed thatMO produces a tree with a “nearly optimal” cost – though its
shape could differ radically from that of the optimal one. The question, whether a more efficient algorithm is
available which uses the structure of theMO tree as a starting point, is still open.
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Appendix

Proof of Lemma 2: Consider an arbitrary pair of records,Ri andRj . We look at the sufficient and necessary
conditions forRi to be an ancestor ofRj in TMTR(I) and TMO(I) and call themCMTR(i; j) andCMO(i; j)
respectively. The structure of theBST is determined (uniquely) once we specify the ancestor-offspring relation
for all pairs of nodes in the tree. Therefore our claim will be established if we show that a stringI satisfies
CMO(i; j) for all i and j iff CMTR(i; j) holds in IR for all pairs. The concept ofinterval setis useful for
this discussion. Such a set comprises two records and all other records with keys that lie between them. Let
Ki <Kj , then the corresponding set is denoted byIS(i; j). Throughout the discussion below we assume w.n.l.g.
thatKi < Kj so that the first one of the pair of setsIS(i; j) andIS( j; i) is non-empty. We avoid sticky notation
by assuming all records were referenced at least once. For sufficiently long reference strings this holds with
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an arbitrarily high probability (On the other hand, we should mention that when therpv is far from uniform
we expect to obtain informative reference counts long before the above assumption is satisfied). Whatever the
case may be, all the claims here hold also for strings that cover only part of the set of records.

The proof devolves from properties of the rotation operation. Refer to Figure 1. We shall say that “the
rotated node” is the one that gets to a higher (=lower numbered) level. The second node taking part in the
rotation is “the lowered node”. The salient properties are:

(a) When a node is rotated it continues to be an ancestor to all of its previous offspring, andbecomesso
to the lowered node and its other subtree. The effect of a sequence of rotations of a single node is
cumulative.

(b) A lowered nodelosesas offspring the rotated node and its left subtree when the rotation is to the right
(or the right one, when the rotation is to the left).
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Claim 10: (i) CMO(i; j) is: Ri is the first node to be referenced in IS(i; j).
(ii) CMTR(i; j) is: Ri is the last node to be referenced in IS(i; j).

Proof: The proof of (i) is immediate if we consider the subtree in the initial tree that containsIS(i; j).
References (and the consequent rotations) of records outside of this subtree do not change its structure, but
may change its level only. References to records in it which are outside ofIS(i; j), beforeRi is used, will
make them ancestors of the entireIS(i; j). OnceRi is referenced (and rotated as high as necessary) it will be
ancestor to all other nodes inIS(i; j), and since it will not be lowered again, this relation will be maintained
indefinitely. Hence the sufficiency.
For the necessity: If someRk 2 IS(i; j), k 6= i; j is referenced beforeRi , it will put Ri andRj in its two separate
subtrees, again indefinitely. And lastly, ifRj is the first to be referenced inIS(i; j) it will be the ancestor ofRi.

Part (ii) is due to the fact that a referenced node is rotated all the way to the root. For sufficiency: at the
last reference toRi it reaches the root, and all the rest ofIS(i; j) is in its right subtree. Subsequent references
to records with lower keys (which are in the left subtree ofRi) will leave it as ancestor of allIS(i + 1; j).
References to records with keys higher thanKj , will get during their sequence of rotations to haveIS(i +1; j)
in their left subtrees, and will allowRi to retain its ancestry with respect to this set (property (b) above). The
necessity is similar to the previous case. A subsequent reference to an intermediate key inIS(i; j) will place
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Ri andRj in two disjoint subtrees.
The statement of the lemma is now obvious.

We remark that similar considerations also allow us to determine conditions under whichRi ends up as
the immediateparent ofRj : in TMO(I) it is required thatRi andRj were the first two records fromIS(i; j) to
be referenced, in that order, and the same state will be found inTMTR(I) whenRj andRi were the last two
records referenced, in that order, fromIS(i; j).

Proof of Lemma 5: If Pt � aPwe are done. Otherwise we consider the case where

Pt > aP : (23)

Without loss of generality, we assume thatP= 1. There are two geometrically different cases:

1. If B is in the left subtree oft (as in Figure 2), then by the optimality ofT, rotatingt to the root would
result in a possibly non-optimal tree, i.e.

pt +PB � pr +P3 ; (24)

therefore, sincePt = pt +PB+P4,

a< pt +PB+P4 � pr +P3+P4 ; (25)

Hence
PB = 1� (pr +P3+P4+ pt)� 1� (pr +P3+P4)< 1�a: (26)

2. B is in the right subtree oft, as shown in Figure 3(a), then the expected access cost toT is at most the
average access cost toT 0 (as given in Figure 3(b), and obtained by rotatingB twice), thus

pr +P3 � 2pB+P1+P2 > PB (27)

and sincepr +P3 = 1�Pt , using (23) we find

PB � 1�Pt < 1�a: (28)

(Observe, that the case wheret is the root of the right subtree ofr is symmetric).


