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Abstract

More than ever before schema transformation is a prevalent problem that needs to be addressed
to accomplish for example the migration of legacy systems to the newer OODB systems, the
generation of structured web pages from data in database systems, or the integration of systems
with different native data models. Such schema transformations are typically composed of a
sequence of schema evolution operations. The execution of such sequences can be very time-
intensive, possibly requiring many hours or even days and thus effectively making the database
unavailable for unacceptable time spans. While researchers have looked at the deferred execution
approach for schema evolution in an effort to improve availability of the system, to the best of
our knowledge ours is the first effort to provide a direct optimization strategy for a sequence
of changes. In this paper, we propose heuristics for the iterative elimination and cancellation of
schema evolution primitives as well as for the merging of database modifications of primitives such
that they can be performed in one efficient transformation pass over the database. In addition we
show the correctness of our optimization approach, thus guaranteeing that the initial input and
the optimized output schema evolution sequence indeed produce the equivalent final schema and
data state. We also provide a proof of the algorithm’s optimality by establishing the confluence
property of our problem search space, i.e., we show that the iterative application of our heuristics
always terminates and converges to a unique minimal sequence. To validate the feasibility of our
optimization approach we have implemented our optimization strategy, the CHOP optimizer, on
top of the Persistent Storage Engine (PSE), the Java-based object server developed by Object
Design Inc. Moreover, we have conducted experimental studies that demonstrate the performance
gains achieved by our proposed optimization technique over previous solutions.

Keywords: Schema Evolution, Object-Oriented Databases, Deferred Updates, Modeling Database Dynam-
ics, ODMG, Schema Consistency, Optimization.
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1 Introduction

1.1 Background on Schema Evolution

Not only is it difficult to pre-determine the database schema for many complex applications during the first
pass, but worst yet application requirements typically change over time. For example [Sjo93] documents
the extent of schema evolution during the development and the initial use of a health management system
at several hospitals. There was an increase of 139% in the number of relations and an increase of 274% in
the number of attributes, and every relation in the schema was changed at least once during the nineteen-
month period of the study. In another study [Mar93], significant changes (about 59% of attributes on the
average) were reported for seven applications which ranged from project tracking, real estate inventory and
accounting to government administration of the skill trades and apprenticeship programs. These studies
reveal that schema changes are an inevitable task not only during the development of a project but also once
a project has become operational. For this reason, most object-oriented database systems (OODB) today
support some form of schema evolution [Tec94, Tec92, BMO'89, Obj93, BKKK8&7, Inc93].

The state of the art in OODB evolution is to offer seamless change management by providing transparency
between the database schema and the application source files representing the schema. Systems such as
ObjectStore [Obj93] allow users to directly edit the application source leaving the OODB system to handle
the propagation of these changes to the database schema. Other systems such as Itasca [Inc93] provide a
graphical user interface (GUI) that allows the users to specify their schema changes graphically while the
system again propagates the schema changes to the database. Other systems such as Oz [Tec94, Bré96|,
TESS [Ler96] and SERF [CJR98b] all deal with more advanced schema changes, such as merging of two
classes, which are often composed of a sequence of schema evolution primitives. All of these systems deal
with applying not a single schema change but a sequence of schema changes to the underlying database.

Unfortunately, schema evolution remains a very expensive process both in terms of system resource
consumption as well as database unavailability [FMZ94b]. Even a single simple schema evolution primitive
(such as add-attribute to a class) applied to a small database of 20,000 objects (approx. 4MB of data)
has been reported to already take about 7.4 minutes [FSS*97]. With the current database technology
for the specification of schema changes as a sequence of changes the performance of the system is further
compromised with evolution costs for large databases possibly escalating to hours, perhaps even days for
entire sequences. The focus of this work is thus to provide improvements in the execution of such sequences
of schema evolution operations. While researchers have looked at deferred execution [Tec94] for schema
evolution in an effort to improve availability of the system, to the best of our knowledge ours is the first
effort to provide an optimization strategy for a sequence of changes prior to execution. Qur approach is
orthogonal to the existing deferred execution strategy and can in fact be applied to both immediate and the
deferred execution strategies [FMZ94b).

1.2 Owur Proposed CHOP Approach - A Motivating Example

A schema evolution operation modifies both the class definitions and the objects associated with the extent
of the modified classes. The time taken to perform the schema modification for a given schema evolution
primitive is inconsequential compared to the time taken to modify the database objects. Moreover, as per
Zicari et al. [FSS*97] the time for performing an object transformation is largely determined by the time
taken to fetch and then later flush the page from memory !.

Using the result from Zicari et al. [FSST97], our optimization strategy, called CHOP, exploits two
principles of schema evolution execution within one integrated solution:

e Minimize the number of schema evolution operations in a sequence by for example canceling or elimi-
nating redundant schema evolution operations.

e Optimize the execution by for example merging all schema evolution changes that operate on one
extent to amortize the cost of schema evolution over several schema changes.

L According to Zicari et al. [FSST97] the computation time once the page is in memory is negligible compared to the page
fetch and page flush times.



Given Input Sequence: Employee Employee
< AA(Employee, name) AA(Employee, age) phone phone
AC(Faculty) DC(Faculty) address address
DA(Students, gradDate) DC(Student) > age
One Possible Optimized Sequence:
< <AA(Employee, name) AA(Employee, age)>
DC%SIuden(( >
Student
Notation:
AA(C, x) - add attribute ‘‘x” to class “‘C” gradDate
DA(C, x) - delete attribute ““x” from class ““C” course
AC(C, R) - add class **C” with all the attributes
in the List “‘R”
DC(C - delete class ‘“‘C”

Schema State 1 (before) Schema State 2 (after)

Figure 1: Sample Sequence of Schema Evolution Operations and its Optimization.

For example, the schema evolution sequence in Figure 1 will take the schema from State 1 to State
2. The net structural change of the schema is the addition of the two attributes name and age to the class
Employee and the removal of the class Student from the schema. In this example, it is possible to reduce
this sequence of 6 operations down to an optimized sequence of 3 operations that achieve the same net
structural change with better performance. For example, we can observe that the operations AA (Employee,
name) and AA(Employee, age) can be merged as they add attributes to the same class; while the operation
DA(Student, gradDate) can be eliminated by the operation DC(Student, Employee) as the delete of an
attribute becomes redundant when the entire class is being deleted. Similarly, the operations AC(Faculty,
Employee) and DC(Faculty, Employee) can be canceled as they are direct inverse operations thereby
reducing the performance while not affecting the final state of the schema.

In this paper, we present a general strategy for the reduction of a given sequence of schema evolution
operations prior to its actual execution. Our work is based on a taxonomy of schema evolution operations we
developed for the ODMG object model but it can easily be applied to any other object model. In particular,
we address open issues including:

e What are the right schema evolution optimization functions for reduction?
e What are the control strategies for applying local optimization steps?
e What is the algorithm complexity for heuristic vs optimal approaches?

e What is the cost model to assess the minimality of reduced schema evolution sequences?

Is a global minimum achievable?

1.3 Contributions
In summary, our work makes the following contributions:

e Formal analysis - a characterization of the core properties of the schema evolution operations leading
to a formal basis for the CHOP optimization.

e CHOP optimizer - overall CHOP optimization strategy based including local heuristic optimization
functions that reduce the sequence of schema evolution operations.

e Proof of correctness - prove that the optimized sequence of the CHOP optimizer when applied to a
schema results in the identical schema as that produced by the application of the original sequence.

e Confluence theorem - prove that the order of application of the CHOP optimization functions is irrel-
evant, and thus the final optimized output sequence is guaranteed to be unique and minimal.

e CHOP implementation - prototype development of the CHOP optimizer based on the ODMG standard
and PSE Pro2.0 as proof of feasibility.

¢ Experimental validation - confirm that the proposed optimization strategy results on average in signif-
icant performance savings and the overhead of the optimization algorithm is negligible.



Outlook. The rest of the paper is organized as follows. Section 2 presents related work while Section
3 presents the taxonomy of schema evolution primitives on which we base our analysis. Section 4 gives a
formalization of the schema evolution operation properties, i.e., the formal foundations for optimizations.
Section 5 presents the actual optimization functions while Section 6 describes how these are combined to
form the overall CHOP strategy. Section 8 presents our experimental evaluation. We conclude in Section 9.

2 Related Work

Current commercial OODBs such as Itasca [Inc93], GemStone [BMO™89], ObjectStore [Obj93], and O,
[Tec94] all provide some schema evolution - be it a set of schema evolution primitives or some mechanism
for global changes. Some work in schema evolution has focused on the areas of optimization and database
availability, in particular on deciding when and how to modify the database to address concerns such as
efficiency and availability. In [FMZ94b, FMZ94a], a deferred execution strategy is proposed for the O,
database system that maintains a history of schema evolution operations for a class and migrates objects
only when actually accessed by the user. This allows not only for high database availability but also amortizes
the cost of the object transformations with that of a query lookup. However, no optimizations are applied to
this sequence of schema evolution operation(s) and the performance of this deferred mechanism deteriorates
as the set of queried objects grows larger. Our approach, while primarily optimizing the immediate update
mode, also complements the deferred mechanism by offering time savings as the queried set of objects and
the number of schema evolution operations to be applied on it grows larger.

In recent years, research has begun to focus on the issues of supporting more complex schema evolution
operations. Breche and Lerner [Bré96, Ler96] studied the design of a set of more complex operations. Lerner
[Ler96] has proposed compound type changes like Inline, Encapsulate, Merge etc. but more from the aspect
of discovering the transformation sequences to map between these given two schemas. Lastly, our previous
work on SERF [CJR98b] has provided a framework that allows the user to define arbitrarily complex schema
changes by composing them out of the basic set of evolution primitives and OQL. All of these approaches
for complex schema evolution transformations are based on combining the basic set of schema evolution
operations. Thus, these could all potentially benefit from the CHOP optimization strategies.

Schema evolution can cause both structural as well as behavioral (code) inconsistencies. Zicari et al.
[DZ91], Navathe et al. [MNJ94] and others have explored the effects of schema evolution on the methods
defined for a class, while others like Bergstein et al. [BH93] have looked at it from a software perspective in
terms of doing code transformations when schema evolution occurs. Ozsu et al. [OPS195] have developed
TIGUKAT, an Objectbase for modeling the uniform semantics of behaviors on objects and have explored
behavioral consistency for TIGUKAT. All of these above mentioned works focus on the correctness of an
individual schema evolution operation, and thus are a pre-requisite for our work. None of them addresses,
however, the problem of optimizing the sequence of one or even several schema evolution operations as done
by our work.

Another important issue focuses on providing support for existing applications that depend on the old
schema, when other applications change the shared schema according to their own requirements. Research
to address this issue has followed along two possible directions, namely, views [RLR98, RR97, Ber92] and
versions [SZ86, Lau97]. To the best of our knowledge, optimization of schema evolution execution and even
worse yet sequences of such operations in such multi-layered systems that would require rippling changes
through possibly several different schema models remains un-explored.

3 Background - Taxonomy of Schema Evolution Primitives

The CHOP approach is based on the Object Model as presented in the ODMG Standard [Cea97]. The
ODMG object model encompasses the most commonly used object models and standardizes their features
into one object model, thus increasing the portability and applicability of our prototype. Due to space
restrictions we do not discuss the ODMG object model here, rather the reader is referred to [Cea97].

Since the ODMG standard does not as yet include any standard primitives for evolution support, we have
designed a taxonomy of schema evolution primitives for the ODMG object model [CJR98a] by borrowing from
schema evolution primitives proposed for other data models such as Oy or Itasca [Tec94, Tec92, BMO™89,



Obj93, BKKK87, Inc93]. The taxonomy given in Table 1 is a complete set of schema evolution primitives
such that it subsumes every possible type of schema change [BKKK87]. The taxonomy is the essential
[Zic91] set of schema evolution primitives, i.e., each primitive updates the schema and the objects in a
unique way.

| Term | Description | Capacity Effects |

add-class(c, C) Add new class ¢ to C in schema S (AC) augmenting

delete-class(c) Delete class ¢ from C in schema S if subclasses(C) = 0 | reducing
(DC)

rename-class(c, d) Rename class ¢ to d (CCN) preserving

add-ISA-edge(c,, cy) Add an inheritance edge from ¢, to ¢, (AE) augmenting

delete-ISA-edge(c,, cy) Delete the inheritance edge from ¢, to ¢, (DE) reducing

add-attribute(cy, az, t, d) Add attribute a; of type t and default value d to class | augmenting
¢z (AA)

delete-attribute(c,, a) Delete the attribute a, from the class ¢, (DA) reducing

rename-attribute(az, by, c;) | Rename the attribute a, to b, in the class ¢, (CAN) preserving

Table 1: The Taxonomy of Schema Evolution Primitives

Schema evolution operations are generally categorized as capacity-augmenting if they increase the
capacity of the schema, for instance, by adding a class, capacity-reducing if they decrease the capacity of
the schema, for instance, by deleting a class, or capacity-preserving if they do not change the capacity of
the schema, for instance, by changing the name of a class [RR97]. For each schema evolution primitive its
capacity type is shown in the third column of Table 1.

4 Formal Foundations of Schema Evolution Sequence Analysis

To establish a foundation for our optimization principles we now develop a formal characterization of the
schema, evolution operations, their impact on the schema, as well as their interactions within a schema.

4.1 Properties of Schema Evolution Operations and Their Parameters

Operation Property - Properties of Schema Evolution Operations. Below we define some basic
relationships for a pair of schema evolution operations opl and op2 given in Table 1:

e same-operation-as - opl is same-operation-as op2 if they both have the same operation name
irrespective of the particular parameters they are being applied to. For example, AA(Employee, age)
is same-operation-as AA(Student, name) as they both use the add-attribute (AA) primitive.

e inverse-operation-of - op1 is inverse-operation-of op2 if the effects of one operation op1 could be
canceled (reversed) by the effects of the other operation op2. For example, AA () is inverse-operation-
of DA() as one adds an attribute and the other deletes an attribute.

e super-operation-of - opl is super-operation-of op2 if the functionality of opl superimposes the
functionality of op2, i.e., op1 achieves as part of its functionality also the effects of op2 2. For example,
DC(Employee) also achieves DA(Employee, age) as part of its functionality and thus DC (Employee)
is a super-operation-of DA (Employee, age).

Table 2 shows how the schema evolution operations that we consider for the ODMG model (Table 1) are
related by the above operation properties. Operations that are not related are said to be independent. As
can be seen from the examples above, for optimization it is not sufficient to categorize the schema evolution

2We refer to opl as the super-operation and op2 as the sub-operation.



AC() DC() | CCN() AA() | DA() | CAN() | AE() DE()
AC() same inverse | - super - - - -
DC() inverse | same super super super super super super
CCN() | - - same/inverse | - - - - -
AA() - - - same inverse | - - -
DA() - - - inverse | same super - -
CAN() | - - - - - same - -
AE() - - - - - - same inverse
DE() - - - - - - inverse | same

Table 2: Classification of Operation Properties for the Schema Evolution Taxonomy in Table 1 (with same
= same-operation-as, inverse = inverse-operation-of and super = super-operation-of).

operations based on just their functionality. It is important to also know the parameters, i.e., the classes
and the properties, these operations are being performed on.

Context Property - Relationships Between Schema Elements. In the analysis presented below we
now extend and categorize the relationships that exist between schema elements as stated in the ODMG
standard for the Schema Repository [Cea97]. Moreover, we assume that a Schema Repository for an OODB
system will allow us to extract the information required to establish these relationships.

According to the ODMG standard [Cea97], each element of the Schema Repository has a definedIn
scope which describes the scope of the element. For example, the property Employee.name is definedIn the
class Employee with the latter describing the scope for the former.

Two classes are related by the extendedBy relationship if a class A inherits from class B. For example,
class Person is extendedBy class Employee as Employee inherits (extends) the class Person.

The ODMG standard defines the notion of sameAs for objects based on the identity of two objects. We
extend this notion of sameness to the elements of a schema, namely to classes and to properties, such that
they are sameAs if their name and definedIn scope is identical. For example, Employee.age; is sameAs
Employee.age, since age; is sameAs age, and they are both definedIn the same scope, i.e., Employee 3.

We also introduce an aliasedTo relationship between two classes or two properties such that an element
is aliasedTo another element if the initial element is mapped to the target element through a series of name
modifications. For example, class Employee is aliasedTo class Staff if class Employee is translated to class
Staff through a series of one or more rename-class schema evolution primitives.

In summary we distinguish between four kinds of relationships between elements of a schema *:

e definedIn - the scope for all schema elements (from ODMG).

e extendedBy - the inheritance of schema elements of the type Class (from ODMG).

e sameAs - the identity of a class or a property based on unique name in given scope (CHOP extension).
o aliasedTo - the derivation of a schema element from another element through a series of name modi-

fications (CHOP extension).

4.2 Relationships between Schema Evolution Operations in a Sequence

Below we present how the properties of evolution operations and of schema elements (Section 4.1) used as
their parameters can be combined to formulate the basic conditions for our optimization functions.

3We use the notation x1, x2 to distinguish two attributes that have same name for purpose of clarity.
41f two elements are related by the sameAs and the aliasedTo property we regard them as being the same, i.e., property1
is sameAs property2.



Relationships between Schema Evolution Operations. Schema evolution primitives are operations
that modify the schema and hence the elements of the schema, i.e., the latter provide the context. Combining
the operation properties and the context properties defined in Section 4.1 we can develop necessary criteria
for when an optimization function can be applied. For instance, for the two schema evolution primitives
opl = AA(Employee;, name;) and op2 = DA(Employees, namey), we know the operation property op1 is
inverse-operation-of op2 holds and the context property name; is sameAs name, and they are definedIn
in the same scope. As we will show later these three relations between the two operations together are
necessary conditions that make them eligible for cancellation, i.e., they guarantee that the effect of op1 is
canceled by the execution of op2. However the operation and context properties alone while necessary are
not always sufficient conditions for optimization.

Order-Related Properties - Order of Schema Evolution Operations in a Sequence. In some
scenarios it is not sufficient to identify the parameters of two operations op1l and op2 to be the same but
also a certain ordering among them must be satisfied. For example, if op1 = CCN(A, B) and op2 = CCN(B,
b), then establishing that:

e opl is inverse-operation-of op2,
e A and B are definedIn same scope and

e A and B in opl are sameAs A and B in op2,

while necessary is not sufficient for cancellation. The order of the parameters, i.e., the order of A and B in
opl and op2, is relevant information as the reverse order of the parameters here indicates that these two
operations can indeed be canceled.

When operation op1 is sameAs op2, we identify the schema-invariant-order property °:

e For two capacity-augmenting and capacity-reducing operations, opl is in schema-invariant-
order with op2 if the order of their parameters is the same.

e For capacity-preserving operations, opl is in schema-invariant-order with op2 if the order of
their parameters is reversed.

The conditions for optimization must also take into account the relative positioning of the operations op1
and op2 in the sequence. For example, consider DA (Employee, name) followed by AA(Employee, name).
Although, these two operations could be canceled ®, the database state produced by the execution of a
canceled sequence (in this case a no-op) would not be the same as that produced by the original sequence.
For the above example, an execution of a DA() followed by the AA() will first delete the attribute and
its value from all objects. The AA will add a new attribute name and its value will be initialized to some
default value for all objects. A canceled sequence however will do nothing, thus preserving the original
attribute name and hence also all the old values for the attribute. We hence identify the following property
for operations that are related by the inverse-operation-of property:

e Object-Invariant-Order Property - opl is object-invariant-order with op2, if op1 is capacity-
augmenting and op2 is capacity-reducing and in the sequence of evolution operations the capacity-
augmenting operation appears prior to the capacity-reducing operation. There is no specific
object-invariant-order for the capacity-preserving operations.

Dependency Property - Dependencies of Other Schema Evolution Operations in Sequence.
The conditions for optimization must also take into account any dependencies caused by other operations
that may exist between two operations in a sequence. Consider for example the sequence:

5 All operations fall into one or the other of the two categories.
8They can be canceled as the operations are related by the inverse-operation-of property and the parameters are sameAs
each other and are definedIn same scope.



< AC(Employee, Root) AA(Employee, name) DC(Employee, Root) >.

If AC(Employee, Root) and DC(Employee, Root) are optimized through a cancellation without consid-
ering the presence of AA(Employee, name), this would produce a schema state that is not equivalent to the
schema state produced by the original sequence. This leads to the dependency criterion.

e Dependency Property - The schema elements used as parameters by the two operations opl and
op2 being considered for optimization must not be referred by any other operation which is placed
between the two operations in the sequence.

5 The CHOP Optimization Functions

5.1 An Optimization Function

Definition 1 An optimization function F is a function that within the context of a schema evolution oper-
ation sequence X operates on a pair of schema evolution operations opl and op2 with opl before op2 (i.e., if
the index position i of opl is less than the index position j of op2 in X, index(opl) = i < j = index(op2)),
and produces as output an operation op3 which is placed in the sequence ¥ at the index position i of the first
operation, opl. The operation at index position j is set to a no—op. The operations opl, op2 and op3 can
be either schema evolution primitives as described in Table 1 or complex evolution operations as defined in
Section 5.2.

For the remainder of this work, we assume that the optimization function, F(opl, op2), is aware of
the sequence ¥ that opl and op2 belong to as well as their respective index positions (i) and (j) in the
sequence.

One requirement for the CHOP optimization is to reduce the number of schema evolution operations in
a sequence such that the final schema produced by this optimized sequence is consistent and is the same as
the one that would have been produced by the unoptimized sequence for the same input schema. Towards
that goal, any optimization function must observe several properties that will be characterized below.

Invariant-Preserving-Output Operations. Schema evolution operations guarantee the consistency of
the schema and the database by preserving the invariants defined for the underlying object model [BKKK8&7].
An important property of the optimization function therefore is for its output to also preserve the schema
consistency by preserving the invariants defined for the object model.

Definition 2 (Invariant Preserving.) An optimization function is invariant preserving if for a given
mwvariant preserving input sequence it will produce an output sequence that is also invariant preserving,
i.e., the output sequence including complex operations is equivalent to (can always be broken down into)
invariant-preserving schema evolution primitives.

Schema-State Equivalent. An important property of an optimization function is that the optimized
sequence produces a schema that is the same as the schema produced by the unoptimized sequence when
applied to the same input schema.

Definition 3 (Schema State Equivalent.) Two instances of a schema S1 and S2 are said to be schema-
state equivalent, denoted by S1 = S2, if they both have an identical schema definition, and the same
number, type, content (values) and object identifiers of all the objects in the database.

The = is an equivalence relation [AHV95] and is reflexive, symmetric and transitive, i.e., if S1 = S2 and
52 = 53, then S1 = 53, S2 = S1 and S3 = S2. For instances of schemas the equivalence relation implies
equality of the schemas. Thus if Sy = S, then Sg = S1. We now extend this equivalence to sequences of
schema evolution operations.

Definition 4 (Sequence Equivalence Property.) Two sequences of schema evolution operations, Y1
and Xo, are said to be sequence-equivalent, denoted by X1 =5 Yo, when the two instances of schemas, S
and Sz, produced by the application of the two sequences on the same input schema Sy are equivalent.



Lemma 1 (Sequence Equivalence Relation.) The sequence-equivalent property between two sequences
of schema evolution operations X1, Yo, denoted by =x, is an equivalence relation, i.e., it is symmetric, re-
flexive and transitive.

Proof:

Here we prove that the sequence-equivalence =y; is reflexive, transitive and symmetric in order to prove that
it is an equivalence relation.

Reflexive. For any sequence of schema evolution operations, 31, that is applied on the input schema S0 and
produces the output schema S1, we know that ¥1(S0) = S1 and S0 = S1 and S1 = S1 (By Definition 3).
Thus, ¥; =y ¥, i.e., the sequence-equivalence relation is reflezive.

Symmetric. Assume two sequences of schema evolution operations, ¥; and X5, that are sequence-equivalent
as per the Definition 4. Then by Definition 4, when the two sequences ¥; and Y- are applied to the same
input schema Sy, they produce schemas S; and Sy respectively, such that S; = S,. Since the schemas
produced are the same and are by Definition 3 symmetric, then S; = Sy and S; = S; hold. Hence, by
Definition 4, ¥, =5 ¥; also holds, i.e., ¥1 =5 Yo = ¥ =5 ¥;. Thus, the sequence-equivalence relation
is symmetric.

Transitive. Assume 3 sequences of schema evolution operations, X1, X2 and X3 such that ¥(50) = S1,
¥2(S0) = 52 and ¥3(S0) = S3. Assume: X1(S0) =5 X2(50) and X2(50) =5 X3(S0).

We want to show that then: ¥ (S0) =5, £3(50) also holds.

By Definition 4, ¥1(S51) =5 ¥2(S52), then S1 = 52 and ¥5(52) =5 ¥3(53), then S2 = S3.

By transitivity property of the = relation we know, (S1 = S2) and (52 = S3) =(S1 = 53). Hence, by
Definition 4 we know that, ¥1(S0) =5 ¥3(S50). O

Definition 5 (Schema State Equivalence Property.) An optimization function is said to be schema-
state-equivalence preserving if the input sequence, X;,, of the optimization function is always sequence-
equivalent with the output sequence, Yoyt, produced by the optimization function .

The schema-state-equivalence property for optimization functions is a key property that defines the
correctness criteria for optimization functions. Thus all optimization functions abide by the following lemma.

Lemma 2 If two optimization functions, Fy and Fy, are schema-state-equivalence preserving then the output
31 of one function Fy is always sequence-equivalent to the output Yo of the other function Fy when both are
applied to the same input sequence ¥, .

Proof. The proof of this can be given by the transitivity of the sequence-equivalence property shown in
Lemma 1. By Definition 5, Fl(Em) — ¥ =Y =x Xy, and F2(Zzn) — Yo =¥, = Y.
Then by transitivity of =5, by Lemma 1 we have X1 =5 ¥;, =5 3o =31 =5 o O

Relative-Order Preserving. As discussed in Section 4, the order in which the schema evolution op-
erations appear with respect to one another in a sequence is relevant to the application of an optimization
function. This relative order of an operation op1 in a sequence is defined by its index, index(op1), with
respect to the index of the other operations, e.g., index(op2), in the sequence. For example, if index (op1)
< index(op2), then op1l is before op2 in the sequence, denoted by opl < op2.

Definition 6 (Relative-Order Preserving.) An optimization function is relative-order preserving if
for all pairs of operations op; and op; with op; < op; in the inpul sequence, the output sequence maintains
the same relative order of the corresponding operations indez(op;) < index(op;) assuming that op; and op;

exist in the output sequence *.

Based on the above concepts, we now extend Definition 1 to refine the definition of an optimization function.

Definition 7 (Optimization Function.) An optimization function in CHOP is a function as defined in
Definition 1 that is invariant-preserving by Definition 2, schema-state-equivalence preserving by
Definition 5 and relative-order preserving by Definition 6.

For the CHOP approach, we will define three such optimization functions, Merge, Eliminate and Cancel.

7If op; and op; are replaced by a complex operation opg, then opy is at the same index position as op;.



5.2 The Merge Optimization Function

As stated in Section 1, the time taken for performing a schema evolution operation is largely determined by
the page fetch and page flush times. In our proposed CHOP approach we amortize these page fetch and flush
costs over several operations by collecting all transformations on the same set of objects and performing them
simultaneously 8. A collection of schema evolution operations for the same class which affect the same set
of objects, i.e., it is possible to perform all the object transformations for these operations during the same
page fetch and flush cycle, is called a complex operation denoted by < op;, .... opg >, with k >
2. For two complex operations, opl = < op;.... op; > and op2 = < opjy.... Op, >, the operation
pairs (op;,opy,;) and (op,, op;) are termed complex-representative pairs.

Definition 8 Merge is an optimization function (Definition 7) that takes as input a pair of schema evolu-
tion operations, either primitive or complex, opl and op2, and produces as output a complex operation op3
= < opl, op2 >. If one or both of the input operations are a complex operation, e.g., opl = <op;, op; >
and op2 = <op,,, Op, >, then a relative order within the complex operations ops is maintained such that
the output operation op3 = <op;, Opj, OPm, OPp >. The input operations opl and op2 must satisfy:

e Context Property

— If opl and op2 are related by the same-operation-as property, then their context parameters
must be definedIn in same scope.

— If opl and op2 are related by the super-operation-of property, then for the sub-operation the
definedIn scope of the context must be the sameAs the context of the super-operation.

— If opl and op2 are related by the inverse-operation-of property, then the context of opl must
be sameAs the contezt of op2 and definedIn same scope.

¢ Dependency Property must hold.

When one or both of the input operations opl and op2 are complez, then all the merge conditions given
above must be satisfied by at least one pair of operations in the complex operation. This is the complex-
representative pair.

For example, given the sequence in Figure 1 we can merge the operations AA(Employee, name) and the
AA(Employee, age) as the two operations are related by the same-operation-as property and their context
parameters are definedIn the same scope, i.e., Employee for both operations is in the same schema and the
attributes name and age are being added to the same class Employee. Lastly, the dependency property
holds as there are no operations between the index positions of the two operations.

A complex operation is thus a sub-sequence of schema evolution operations and other optimization
functions (cancel and eliminate) can be applied on the primitive schema evolution operations inside of a
complex operation. However, the merge optimization function itself cannot be applied inside of a complex
operation as this can lead to infinite recursion.

5.3 The Eliminate Optimization Function

In some cases a further optimization beyond merge may be possible. For example, while it is possible to
merge DA(Employee, name) and DC(Employee) the execution of DC(Employee) makes the prior execution
of DA(Employee, name) redundant. Hence, some operations may be optimized beyond a merge by being
completely eliminated by other operations, thus reducing the transformation cost by one operation.

Definition 9 Eliminate is an optimization function as defined in Definition 7 that takes as input o pair
of schema evolution primitives opl and op2 and produces as output op3, such that op3 = opl if opl =
super-operation-of (op2) or op3 = op2 if op2 = super-operation-of (opl). The input operations opl
and op2 must satisfy:

8This merge of operations relies on the underlying OODB system to be able to separate the schema evolution operation into
a schema change at the Schema Repository level and into object transformations at the database level.



e Operation Property such that either opl = super-operation-of (op2) or op2 = super-operation-
of (op1),

e Context Property such that the definedIn scope of the sub-operation is sameAs the context pa-
rameter of the super-operation, and

¢ Dependency Property must hold.

For example, given the sequence in Figure 1, the operation DC (Studentcan eliminate the operation DA(Students,
gradDate) as they meet all the requirements for elimination.

5.4 The Cancel Optimization Function

In some scenarios further optimization beyond a merge and eliminate may be possible. Some schema evolution
operations are inverses of each other, for example, AA (Employee, age) adds an attribute and DA (Employee,
age) removes that attribute. A cancel optimization thus takes as input two schema evolution operations
and produces as output a no-op operation, i.e., an empty operation that does nothing.

Definition 10 Cancel is an optimization function as in Definition 7 which takes as input a pair of schema
evolution primitives opl and op2 and produces as output op3, where op3 = no-op, an empty operation,
assuming the input operations opl and op2 satisfy:

e Operation Property such that opl and op2 are related by the inverse-operation-of property,

e Context Property such that opl and op2 are definedIn the same scope and opl is sameAs op2,
¢ Schema-Invariant-Order Property for capacity-reducing operations must hold, and

¢ Object-Invariant-Order Property must hold, and

¢ Dependency Property must hold.

Given the sequence in Figure 1 for example, the operation AC(Faculty) is inverse-operation-of DC (Faculty)
and thus the two can be canceled.

5.5 Optimization Function Properties
5.5.1 Choosing the Right Optimization Function

In the previous sections we have presented the three optimization functions, merge, eliminate and cancel.
However, we note that the conditions under which the merge optimization function can be applied is a
superset of the conditions under which an eliminate or a cancel can be applied ?. Thus, often a merge
can be applied to a pair of operations where either an eliminate or a cancel can be also applied. However,
as these optimizations offer different degrees of reduction for a pair of schema evolution operations (with
merge offering the least and the cancel offering the most), choosing the optimization function that offers
the most reduction is very desirable. Next, we show that doing a merge where a cancel or an eliminate
is also applicable does not prevent the application of a cancel or an eliminate during the next iterative
application of these functions.

Lemma 3 (Merge Order Irrelevancy.) An application of the optimization functions merge and cancel
on one pair of schema evolution operations is equivalent to directly applying a cancel and vice versa, i.e.,
C(op1, opa) = CM(op1, op2)). Similarly, applying a merge and eliminate on a pair of schema evolution
operations is equivalent to directly applying just an eliminate and vice versa, i.e., ECop1, ops) = E(M(opy,
op2)).

9The conditions under which a cancel and an eliminate can be applied are mutually exclusive.
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Proof:

We want to show that: MC(op; ® op2) = C(op1 © op2) and ME(op; @ op2) = E(op1 © op2) assuming cancel C
and eliminate E are successful operations on (op; ® opz) respectively.

MC: For the merge and the cancel functions, we can re-write the statement as follows:

MC(op1 © op2) = C(M (op1 ® op2))

=C(<op1, opz >)

By definition of the merge optimization function M we know that a cancel function C can be applied within
the merge complex operation. Hence,

C(<op1, op2 >) = (<C(op1 ® op2)>) = no-op

Hence, MC(op; @ opz) = C(op1 ® opz) = no-op.

ME: Similarly for merge and eliminate we can re-write it as follows:

ME(op1 © op2) = E(M (op1 © op2))

=—=E(<op1, op2 >)

By definition of the merge optimization function M we know that an eliminate function E can be applied
within the merge complex operation. Hence,

E(<op1, opz >) = (<E(op1 © op2)>) = op1.

Hence, ME(op1 © op2) = E(op1 © op2) = op1. a

5.5.2 Operation Dependencies and Optimization Functions

An important criteria for the successful application of any of the three optimization functions is that the
Dependency Property as given in Section 4.2 must hold, i.e., there must be no reference to the schema
elements used as parameters in the two operations op; and ops being considered for optimization by any
other operation which is placed between the two operations in the sequence. However, the order in which
the pairs of operations are selected can have an effect on this dependency.

Consider a sequence of three operations op;, ops and ops. Consider that the pairs (op;, op2) and (op2,
ops3) are immediately optimizable while a successful optimization of the pair (op;,0ps) requires removing the
dependency operation ops. In this case, there are two possibilities for applying the optimization functions on
the pairs of operations. We could either apply the respective optimization functions on the pair (op;, ops)
and then on the pair (op2,0ps) ° and not be concerned about the optimization possibility between op; and
ops. Or we could first apply the optimization function for the pair (op2, ops), reduce the dependency ops
and then optimize the pair (op:, ops). However, as before our goal is to achieve the mazimum optimization
possible. To this end, we state the following.

Lemma 4 (Selectivity Order) The order of selection for pairs of schema evolution operations in a se-
quence to which optimization functions can be applied does not prevent the achievement of maximum opti-
mazation.

Proof - Proof by Induction
Base Case. For the base case we consider that the input sequence ¥;, is composed of three schema
evolution operations op;, ops and ops, i.e.,

Yin = op1 © op2 © ops .

We evaluate on a case by case basis whether the above stated lemma will hold for all possible pair
combinations of operations ( (op:1, op2), (opz2, op3) (op1, opz) '1). We assume that all three pairs (op1, opz),
(opa, ops) (op1, ops) are optimizable. In this scenario, ops can be considered as a dependency for the pair
(op1, ops). For the rest of the proof we use the notation M(op;, op2) to denote a pair that can be merged,
C(op1, op2) to denote a pair that can be canceled and E(op1, ops) to denote a pair in which op; eliminates
the operation ops.

e Case 1. M(op1, op2), C(op2, op3): Given the dependency caused by op; we have two selection orders
possible:

10Note that in some cases op2 may not exist any more and hence optimizing (op2, op3) may no longer be possible.
11'We use the following to denote a pair (op1, op2) composed of operations op; and opa.
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— Case 1.1. Selection Order M(opy, op2), C(ops, ops3):
M(op1, op2) C(opz, ops)[op1, op2, ops |
= C(opz, op3)[<op1, op2 >, ops |
= C(opz, op3)[<op1, opz opz >] ™2
= ()[<op1 >]
=op
— Case 1.2. Selection Order C(op2, ops), M(op1, ops):
C(op2, op3) M(op1, op2) [op1, op2, op3 |
= M(op1, opz)[op1 ]
=op

In this case the selection order of the pairs of schema evolution operations to which we can apply
optimization function has been shown to be irrelevant.

e Case 2. M(op1, op2), E(ops, op2) C(op1, ops): Note C(opi, ops) can only be performed when the
dependency ops has been removed. There are two orders for selecting the optimization pairs:

— Case 2.1. Selection Order M(op;, op2), E(ops, op2) C(op1, ops):
M(op1, op2), E(ops, op2) C(op1, ops)[opy, op2, ops ]
= E(ops, op2) C(op1, ops)[<op1, opz >, ops |
= E(ops, op2) C(op1, ops)[<op1, op2, ops >] '
= ((3)(51017 ops)[<opi, ops >]

= no-op
— Case 2.2. Selection Order E(ops, ops), M(opy, ops), C(op1, ops3):
E(ops, op2) M(op1, op2) C(op1, op3)[op1, opz, ops |
= M(op1, opa) C(op1, ops)[op1, ops ]
= C(op1, ops)[op1, ops |

=01

= no-op

Again all selection orders of the pairs of schema evolution operations for optimization result in the
same final sequence.

e Case 3. Selection Order M(op1, opa), E(ops, op2) E(ops, op1): Note E(ops, op1) can only be performed
when the dependency ops has been removed. There are two order for selecting the optimization pairs:

— Case 3.1. Selection order M(opy, op2), E(ops, op2) E(ops, opy):
M(op1, op2) E(ops, op2) E(ops, op1)[op:, opz2, ops ]
= E(ops, op2) E(ops, op1)[<op1, opz >, ops |
= E(ops, op2) E(ops, op1)[<op1, opz, ops >] (By Lemma 3.)
= E(ops, op1)[<op1, op3 >]
= ()[ops ] = op3

— Case 3.2. Selection Order E(ops, op2), M(op1, op2) E(ops, op1):
E(op3, op2) M(op1, op2) E(ops, op1) [op1, opz, ops |
= M(op1, op2) E(ops, op1) [op1, ops ]
= E(Op3, Opl) [Opla ops3 ]
= ()[ops ]

= 0ps3

In this case, also, the selection order of the pairs for optimization is irrelevant for the final optimized
sequence.

12 As per Lemma 3, we can first apply a Merge and then a Cancel and be assured that the final result is equivalent.
13This is by Lemma 3.
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e Case 4. C(opy1, op2), M(op2, op3): This is similar to Case 1 and hence we stipulate that the order of
selection of the pairs is irrelevant in this case as well.

e Case 5. C(op1, op2), E(ops, op2), E(ops, op1): The pair E(ops, op1) can only be optimized when the
dependency op2 has been removed. Hence we consider the first two primary order of selection.

— Case 5.1. Selection order C(opy, op2), E(ops, op2) E(ops, opy):
C(op1, op2) E(ops, op2) E(ops, op1) [op1, opz, ops |
= E(ops, op2) E(ops, op1) [ops ]
= E(ops, op1) [op3 ]
= ()ops ] = op3
— Case 5.2. Selection Order E(ops, op2), C(op1, op2) E(ops, op1):
E(ops, op2), C(op1, ops) E(ops, op1) [op1, op2, ops |
= C(op1, op2) E(ops, op1) [op1, ops |
= E(ops, op1) [op1, op3 |
= () [ops ]

= 0ps3

In this case, also, the selection order of the pairs for optimization is irrelevant for the final optimized sequence.
As can be seen from the cases above the order of selecting the pairs of operations for optimization does not
prevent us from achieving the final optimized sequence.

Induction Hypothesis. Assume that for input sequence Y;, composed of k-1 operations, the selectivity
order irrelevant lemma holds, i.e., for a sequence of (k-1) operations we are guaranteed to get the same final
optimized sequence no matter in which order we apply the optimization functions.

Induction Step. Consider now that the input sequence X;, is composed of k operations, i.e.,

Yin=o0p1 ... © 0pg—1 © Opg.

Thus we need to prove that the selectivity order irrelevant lemma holds for k operations, i.e., for k operations
we will still achieve the same final optimized sequence.

There are two cases that we need to consider:

e Case 1. opy, is independent, i.e., it cannot be optimized with any of the (k-1) operations. In this case
the order of selection of the pairs is irrelevant based on our induction hypothesis for the subsequence
of the first k-1 elements and hence the same final sequence if obtained. Hence the selectivity order
irrelevant lemma holds.

e Case 2. op; can form an optimizable pair with some other operation op;, with 1 < j < k-1, with op;
the largest j index that is < k-1. In this case we have 2 scenarios:

— Case 2.1. There are no dependent operations between op; and opy and op; is not optimizable by
any other operation, op;, in the sequence. In this case, since op; will not be optimized by any
preceding optimization function, we know that this pair (op;, opx) will be optimized eventually
immaterial of the order of selection. By our induction hypothesis we know that the subsequence
to the left of op; is of length < k-1 and the optimization of the left subsequence (op1, op;_1) and
the optimization of (op;, opx) are independent. Hence the selectivity order irrelevant property
holds for it this case as well.

— Case 2.2. There are no dependent operations between op; and op; and op; is optimizable by
another operation, op;, in the sequence with 1 < j. In this case, since op; can be optimized by
op; and opy, we need to consider the order in which these pairs are picked. However, simplistically
this reduces to our base case with the following three operation: [op;, op;, opr]- We know by our
base that the selectivity order irrelevant lemma holds for this.

Hence the order in which pairs of schema evolution operations are selected from a sequence of k operations
is irrelevant in terms of obtaining the final optimized sequence. O
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6 CHOP Optimization Strategy

In this section, we assume first that the CHOP optimizer algorithm iteratively applies the three classes of
optimization functions merge, eliminate and cancel introduced in Section 5 until the algorithm terminates
and a minimal solution is found. Below then we introduce the criteria for termination, for minimality and
for optimality of this heuristic algorithm.

Definition 11 A sequence X,,;, is minimal if no pair of schema evolution operations in the sequence
satisfies the conditions that are set forth for either of the three optimization functions merge, eliminate
and cancel, i.e., none of the optimization functions can be applied successfully.

We now define the CHOP algorithm as the strategy to continuously apply optimization functions until none
can be applied any more, i.e., when a minimal sequence is reached.

Definition 12 (Function Ordering.) A series of optimization functions (merge, cancel and eliminate)
applied successfully to pairs of operations in a sequence is termed a function ordering.

Lemma 5 (Function Ordering Equivalence.) The output sequence produced by a function ordering is
sequence-equivalent to the input sequence.

Proof - Proof by Induction
As per Definition 12, a function ordering is any combination of successful applications of the three optimiza-
tion functions, merge, cancel, and eliminate. Thus a function ordering is:

fi=F 0FK...0 Fy,

where F; € {Merge, Eliminate, Cancel} and Vi: 1 <i < m.

Base Case. For the base case m = 1 we have, f; = Fj, where F; € {Merge, Eliminate, Cancel}. Hence
[1(Bin) = F1(Zin) — Xy, , where Xy, is the output sequence produced by the application of the optimization
function F3, i.e., the function ordering f;.

An optimization function by Definition 5 is schema-state-equivalence preserving, i.e., the output sequence
produced by an individual optimization function is always schema-state-equivalent to the input sequence of
schema evolution operations. Since the function ordering f; is composed of only one optimization function
F} we have,

Zin =y Zﬁ .

Induction Hypothesis. Assume that a function ordering fx 1 preserves the schema-state-equivalence
property when it is composed of k-1 optimization functions, i.e. if

fe—1 = F1 © F> ... ® Fj,_1, where F; € {Merge, Eliminate, Cancel} andi=1 ... k-1

and fr 1(Zin) = F1 © Fy ... ® Fp_1(Zin) = Xy, _,, where Xy, is the output sequence produced by the
application of (k-1) optimization functions i.e., the function ordering f;_, then we have Xj,_, = X;,.
Induction. Consider that the function ordering is now composed of k optimization functions, i.e.,

fe=FiL ®F...® Fy_1 ® Fy, where F; € {Merge, Eliminate, Cancel} andi=1... k.

We know fk = fkfl ® Fk.

Re-writing the above statement such that F} is an optimization function that is applied on the result of the
function ordering fr_1 we have,

fx(Zin) = Fr(fr—1(Zin))
= fk(z’m) = Fk(zf}c—l)
== fk(Ezn) = Efk
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Since X, is produced by the application of one optimization function, Fj, on the sequence, Xy, _,, by Def-
inition 5, we have Xy =x ¥; _,. We know from our induction hypothesis that Xy _, =s X,. Thus by
transitivity (Lemma 1) we have Xy, =5 X;p.

This implies that the sequence produced by any function ordering is sequence-equivalent with the input
sequence. O

Definition 13 (Complete Function Ordering.) A function ordering is defined to be a complete func-
tion ordering when its application to an input sequence ¥;, yields a minimal sequence X, (Defini-
tion 11).

As each of the optimization functions either reduces the number of operations in a sequence or compounds
them into complex operations and none of them undoes the effects of the other, the maximal length of a
complete function ordering is O(n), where n is the length of the input sequence. However, given that there
can potentially be a vast number of complete function orderings, the search space to enumerate all of the
orderings and select an optimal function ordering is exponential. In fact, for a sequence of length n the
number of possible complete function orderings is of O(n™).

In order to select an optimal function ordering we consider an enumeration of all the possible complete
function orderings for a given input sequence as a tree with each application of an optimization function
represented by a child node. The depth of each branch of the tree could then be indicative of the cost of
the schema evolution itself. Thus, one heuristic for choosing an optimal complete function ordering could
potentially be based on the depth of the branch. Another heuristic could base the selection on the number
of operations in the final output sequence. The problem with these heuristic selection criteria is however the
cost associated with the search space. One important result of our work addresses this limitation and finds
that all complete function orderings conform to the confluence property as defined in term rewriting systems
[Gra98], i.e., all complete function orderings converge to one unique minimal sequence.

Theorem 1 [Confluence Theorem]: Given an input schema evolution sequence, ;y, all complete func-
tion orderings f; produce minimal resultant sequences X; that are all exactly the same.

Proof - Proof by Contradiction
Given:

fo(Bin) — %o

fl (Ezn) — E1

where fo, fi ... fn are complete function orderings applied on the input sequence X;, that produce the
minimal sequences Xg, X1, ...,X, respectively, such that ¥;, = ¥, X;n = X1, etc. By the transitivity of
the sequence-equivalence relation (Lemma 1), we have X;, =5 3¢ =5 X1 =y ... =5 X,. This in turn im-
plies by Definition 4 that the schemas produced by these sequences are also equivalent, i.e., S =51 ... = 5,.

The input and the output sequences are by definition composed of either primitive schema evolution opera-
tions or complex operations. Thus, for example, ¥;, = op;y ® ops ... ® op,, where op; ... op, are schema
evolution operations or complex operations . We use |X;,| to denote the length of the sequence, i.e., the
number of operations in a sequence. Hence, |X;,| = n.

Worst Case. Assume no optimization is possible, i.e., 3;, is a minimal sequence. This implies:

YSin=S0=51=...= %,

Thus, in this case, there is no optimization possible and all complete function orderings, f;, produce the
same minimal resultant sequence as the input sequence, i.e., ¥; = %;,.

Best Case. In this case, there is complete optimization, i.e., the input sequence X;,, is reduced to a sequence,
¥;, such that |3;| = 0, by some complete function ordering f;. By the transitivity as per Lemma 1,

Ein =y 20 =y El ---Ei—l =y Ez el =% En
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Considering ¥; =sno-op and ¥; =x ¥;, for some 1 < i,j < nand i # j. However, as ¥; and ¥; are
equivalent and they produce the same schema, i.e., S; = S;, the net effects of the application of ¥; must
also be null (no-op). But given that ¥; has been optimized we can assume that ¥; does not contain any
more optimizable operations and hence, ¥; = ;. Extending this result to the sequences produced by other
function orderings, we have:

¥o=%¥y =...=%, = no-op.

Average Case. In the average case, we have some optimization. Consider two sequences ¥; and X;
produced by two complete function orderings f; and f; respectively and |¥;,| = n, then we have, 0 < i, j
< n, where |X;| = i and |X;| = j respectively. There are three possibilities:

e i = j. We know that the two sequences, ¥; and X¥;, produce the same schema, ie., S; = S; (by
Definition 4) and the two output sequences are composed of essential schema evolution primitives. By
Lemmas 3 and 4, we are assured that if there was a schema evolution operation pair that could be
optimized then it would be optimized independent from the order in which the pairs themselves were
selected. By Lemma 4 we are assured that the final outcome is the same, irrelevant of the intermediate
sequences. Hence, if two sequences are of the same length and are equivalent, then by Lemma 4 we
can say that the two sequences cannot be a permutation of each other and thus are the same.

e i > j. Here as before, ¥; =5 ¥;, and thus by Lemma 1 we have S; = S;. However, in this scenario
we have the number of operations in the sequence |X;| > |X;|. As the optimization functions are
composed of the essential set of schema evolution primitives, we assume that all of the schema
evolution operations that exist in the sequence ¥; must also exist in ¥;, thus ¥; C X;.

— The extra operations in ¥; (¥; — X;) are independent operations, i.e., they act on a different
part of the schema and hence can not be optimized by any of the optimization functions (by the
minimality of the function ordering). In this case, however, this would produce a different schema
than that produced by ¥;, which violates the sequence equivalence (Definition 4).

— The extra operations in ¥; (X; — X;) are redundant operations, i.e., their combined effect is
a no-op. However, this implies that at the very least the cancel or an eliminate optimization
function can be applied to the sequence. This implies that the sequence can be optimized (reduced)
further. However, this contradicts our basic premise that the sequence is minimal.

e j > i. The same argument as above holds for this as well with the order of i and j now reversed..

In summary, in addition to all the sequences produced by complete function orderings being sequence equiv-
alent, they are also equal, i.e., ¥g = %; ... X; = %; ... = 3,,. m|

This theorem reduces the complexity of our problem of finding an optimal output sequence from expo-
nential to polynomial. Based on just simple heuristics as discussed before, it is hard to guarantee that the
chosen output sequence is better in terms of execution performance than another output sequence. As per the
theorem, however, it is no longer necessary to enumerate all possible function orderings to find the optimal
minimal sequence. The CHOP optimizer can simply choose any one of all possible function orderings and
it is always guaranteed that the final output sequence is globally minimal.

7 The CHOP Implementation

CHOP Requirements. The implementation of CHOP assumes that certain features are provided by the
underlying OODB system. Below we list these required features:

e Persistence capability: CHOP requires the OODB to be capable of storing data objects persistently
and retrieving them when necessary. This feature is essential and is provided by all existing OODB
systems.

e Extensibility: Since we are building CHOP as a layer above the OODB system, we require the OODB
architecture to be modular enough to facilitate this.
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e Modular Schema Evolution Manager layer: A very crucial requirement for CHOP to be effective
is that the schema evolution manager must provide a separation between schema-level updates and
object-level updates. This is essential for the merge optimization as that hinges on the capability
of performing all the schema-level updates at one time followed by the object-level updates. Hence,
CHOP needs to be able to hold back the object-level updates until all the schema-level updates for a
merged complex operation have been performed. This capability to control the time when the object-
level update for each SE operation is performed is thus a very important requirement that the OODB
must satisfy. Most OODBs do not provide this capability as a built-in feature as it is not needed by
end users, but since several of them are extensible, we expect that this feature could be easily provided
by exposing appropriate APIs.

CHOP Architecture. Figure 2 gives the general architecture of the CHOP system composed of three
layers. The top layer contains the User Interface which supplies the user input in the form of a sequence
of schema evolution operations. The middle layer corresponds to the CHOP optimizer as presented in this
paper, while the bottom layer represents system components that we expect any underlying OODB system
to provide. For our implementation platform we have used PSE Pro 2.0 running on Windows NT as the
underlying OODB system [O’B97]. PSE Pro 2.0 is the first persistent storage engine written entirely in Java
[0’B97] and runs within the same process as the Java applications or applets. The PSE Java client and the
storage layer provide an easy-to-use interface for storing and retrieving persistent objects.

User Interface

Application Layer

User input = ©

CHOP Manager
CHOP Controller

i opl. op2 T op3 i‘“z

CHOP Optimizer CHOP Executor

CHOP Layer

Uses for analysis Executes schema evolution
operations and complex operations

Schema Evolution Manager
Schema Repository Schema Object
Update Update
Manager Manager

PSE Object Storage
System

Transforms
objects

System Layer

Figure 2: System Architecture of CHOP Implementation

CHOP Tool. The user input to the CHOP system is a sequence of schema evolution operations. The
CHOP Manager manages the sequence of schema evolution operations, provides access to a pair of schema
evolution operations to be used as input by the optimization functions, and also manages the correct place-
ment of the output schema evolution operation in the sequence 4.

The CHOP Manager invokes the CHOP Controller which incorporates a control strategy for controlling
the execution of the optimization function on the sequence. The CHOP Controller is also responsible for the

14 A5 stated earlier, by default we place the output schema evolution operation at the index position of the first input operation.
The index of the second input operation is set to an empty operation by the CHOP Manager.
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termination of the optimization. In general termination is determined when no optimization function can
be applied successfully for any pair of schema evolution operations in the sequence. The CHOP Controller
invokes one of the optimization functions and passes the pair of operations as parameters to the invoked
function.

The CHOP Optimizer is responsible for correctly applying the optimization function selected by the
CHOP Controller on a given pair of schema evolution operations.

To encapsulate the notion of complex schema evolution operations within CHOP, we have built the CHOP
Executor that controls the execution of the complex operations by invoking the correct primitives through
the Schema Evolution Manager.

OODB System Components. The Schema Evolution Manager provides an interface for the execution of
the set of schema evolution primitives as described in Section 3. It interacts with the Schema Repository that
we have built on top of the PSE Pro 2.0. More details of the actual implementation can be found in [CJR98a].
The Schema Repository contains information on each class and its placement in the class hierarchy. It is
also responsible for the migration of objects from the existing (old) class definition to the changed (new)
class definition, thus keeping them updated and consistent with the schema change. For CHOP, we have
enhanced this schema evolution manager such that it separates it into two processes and provides separate
APIs for both schema updates and object updates. We distinguish these as Schema Update Manager and
Object Update Manager. This allows us to perform several schema-level updates on a class before applying
these changes to the affected objects.

8 Experimental Validation

We have conducted several experiments to not only evaluate the potential performance gains of the CHOP
optimizer but also to experimentally validate the confluence property of complete function orderings.

Experimental Setup. Our experimental system, CHOP, was implemented as a pre-processing layer over
the Persistent Storage Engine (PSE Pro2.0). Our work is based on the ODMG object model and for this we
have built an ODMG-compliant Schema Repository and a dynamic schema evolution facility for the ODMG
object model using PSE Pro2.0 as our database (For more implementation details see [CJR98a]).

The input to the CHOP system are sequences of schema evolution operations from the set defined in
Section 3. Given our result of confluence, the control strategy for picking a pair of operations from the input
sequence is based on a linear traversal of the sequence. We use the payroll schema as shown in Figure 3
as the basis for building the input sequences of schema evolution operations. This schema is populated
with 5000 objects per class. Due to lack of availability of a benchmark of typical sequences of schema
evolution operations, the input sequences themselves were randomly generated sequences. All experiments
were conducted on a Pentium II, 400MHz, 128Mb RAM running WindowsNT and Linux.

Baseline Experiments - One Operation. To establish a baseline for our experiments we performed
two tests to measure the unoptimized schema evolution processing time on our test database. The first test
measures the time needed for the schema evolution process while varying the number of attributes in a class.
The second test measures the time required by the schema evolution process as the number of database
objects in the class are varied.

For the first test, the number of objects and the schema evolution operations itself were kept at a constant.
Figure 4 shows the experiment results for add_attribute operation and an extent size of 100 objects. Figure 5
shows the same experiment with the number of objects now constant at 1000. We notice that as the number
of attributes increases, the curve showing the time requirement increases non-linearly with slightly increasing
slope. These results confirm that the number of objects has a very minimal effect on the general trend for
attribute v/s time variation. The slight deviation from a linear nature of the slope is due to system factors
such as page faults, etc., which occur as the size of the objects grows.

For the second test we kept the number of attributes in the referred class constant at 4 (see Figure 6).
Here , we measure the cost of performing one schema evolution operation on a varying number of objects.
We observe that the curve is linear. This is in accordance with our expectations as well as observations

18



Employee
Grant name: String Address
amount:String ﬁygg?tlgc_‘g{ﬁ”&ddr% street:String
numberOf Students:integer cint {er : 9 city:String
institute: String o i €9 state:String
numberOfY ears:integer sex_._Stnng Zip:String
startDate: String mailing Addn?s.Address sex:String
endDate:Strin homeNumber:String
- 9 officeNumber:String
salary:String
I |
Faculty Student
universityAddress:Address major:String
hireDate: String yearOf Graduation: Sting
payrollPeriod:String GPA:float
email:String advisor:Professor
[ | [ |
I nstructor Professor Resear ch_Assistant Teaching_Assistant
payscale:String tenured:boolean forProfessor: Professor startDate: String
accuredV acation:integer numberOf Grants: String project:String currentCourse: String
numberOfClasses:integer summersalary: String
grants:Vector
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Figure 3: Example Schema Used for Experiments - Payroll Schema (UML Notation)

by others in the literature [Mey92]. Hence the schema evolution processing time for a given class increases
linearly with an increase in the number of objects affected by the schema change.

Thus, the schema evolution processing time for a sequence is proportional to the number of objects in the
schema. The time needed per SE operation increases linearly with an increase in the number of attributes
in the referred class. Hence, for larger databases we can potentially have larger savings.

Optimized vs Unoptimized Sequences. Key experiment to show how our strategy can indeed provide
performance was a direct comparison between the performance of an optimized vs an unoptimized sequence.
Here, we have limited our sample schema to four classes with four attributes each. Figure 7 shows the
optimized and unoptimized SE processing times for a sequence of fixed length. While the input sequence
had eight SE operations, the optimized sequence had three SE operations. Figure 8 shows the same two
curves for another SE operation sequence with five operations. Here the optimized sequence reduces to a
single complex operation containing 2 schema evolution operations. Both these graphs incorporate the cost
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7 4000 4
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E £
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q 2000 4
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Figure 4: SE Processing Time v/s Number of Figure 5: SE Processing Time v/s Number of
Attributes (1) Attributes (2)
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of CHOP execution, i.e., the algorithm overhead.
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Performance Gains. In order to get an estimate of the performance gains of CHOP we have measured
the execution time for optimized versus unoptimized input sequences. For a set of random input sequences
we run CHOP to produce their respective minimal sequence. In our experiments, we encountered sequences
that reduced to length zero, length one, etc. all the way to no reduction at all. Figure 9 shows the schema
evolution processing times for different output sequences for an initial input of length 8. The execution time
for a sequence decreases in uniform ratios as the number of operations in the output sequence decreases.
An optimized length of zero represents the best case while a sequence with the optimized length of eight
represents the worst case.

The chart in Figure 10 shows a more detailed view of the best and worst case conditions taken from
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Figure 9 with the CHOP algorithm overhead time taken into consideration. As seen from these curves, the
CHOP pre-processing optimization overhead is negligible in both best and worst case conditions (59ms and
78ms respectively). Thus there is no loss in terms of overhead even for cases where CHOP is not able to
reduce the input sequence at all while the potential performance savings are immense.
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Figure 9: Sequence Times w/o Algorithm Over- Figure 10: Best and Worst Case Sequence Times
head for Input Sequences of Length 8 on the Sam- with Algorithm Overhead for Input Sequences of
ple Schema. Length 8 on the Sample Schema.

Average Degree of Optimization. In short, the performance gain achievable by CHOP is proportional
to the degree to which the input sequence of schema evolution operations can be reduced in length. Thus,
the degree of optimization of a sequence is the ratio given by the initial sequence versus the reduced
sequence length. Figures 11 and 12 show two bar charts depicting the optimizations obtained for randomly
generated sequences of length 8 with the number of classes in the schema varying from 8 to 16. The graphs
depict the distribution of optimization (with respect to the number of schema evolution operation in the
output sequence) for 50 sequences of length 8. With the sequence lengths equal to the number of classes on
which schema evolution operations were being applied, we were on average able to get better optimization.
However, as the schema evolution operations were spread over a large number of classes, i.e., the number of
classes was larger than the length of the sequence of schema evolution operations, the optimization in terms
of the reduction was on average not as good. It can be observed that on average the degree of optimization
increases with the divergence of the number of classes in a schema and the number of schema evolution
operations in a sequence.

Summary.

Summary of Results. We have presented here a representative set of our experiments. For more details
on these experiments please refer to [Nat98]. To summarize, we have found the following results:

e The SE processing time for a sequence is proportional to the number of objects in the schema. The
time needed per SE operation increases super-linearly with an increase in the number of attributes in
the referred class. Hence, for larger databases we can potentially have larger savings.

e The schema evolution processing time is linearly proportional to the length of the sequence, hence the
more evolution operations are reduced, the larger the savings.

e The optimizer algorithm overhead is negligible when compared to the overall cost of performing the
schema evolution operations themselves. Thus our optimization as a pre-processor offers a win-win
solution for any system handling sequences of schema changes.

e The degree of optimization increases with the increase in the number of class-related operations in the
sequence. Hence, depending on the type of sequence, major improvements are possible.
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e We have experimentally tested that on a small-sized database of 20,000 objects per class, even the
removal of a single schema evolution operation on a class already results in a time saving of at least
7000 ms. This time savings is directly proportional to the number of attributes and the extent size of
a class thus offering huge savings for today’s larger and larger database applications.

9 Conclusions

In this paper, we have presented the first optimization strategy for schema evolution sequences. CHOP
minimizes a given schema evolution sequence through the iterative elimination and cancellation of schema
evolution primitives on the one hand and the merging of the database modifications of primitives on the
other hand. Important results of this work are the proof of correctness of the CHOP optimization, a proof
for the termination of the iterative application of these functions, and their convergence to a unique and
minimal sequence. A version of this system along with the SERF system has been implemented and will be
presented as a demo at SIGMOD’99 [RCL199]. We have performed experiments on a prototype system that
clearly demonstrate the performance gains achievable by this optimization strategy. For random sequences
an average optimization of about 68.2% was achieved.

While the CHOP optimizer was initially developed for OODB schema evolution optimization, much of
the analysis as well as the optimizations suggested in this paper can be applied to other domains such as
Data Warehousing to optimize the schema changes reported to the warehouse by the information source or
for complex database transformations that perhaps contain queries inter-leaved with the schema evolution
operations [CJRI8b].
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